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The aim of this study was to characterize the EEG alterations in inter-band interactions

along the Alzheimer’s disease (AD) continuum. For this purpose, EEG background activity

from 51 healthy control subjects, 51 mild cognitive impairment patients, 50 mild AD

patients, 50 moderate AD patients, and 50 severe AD patients was analyzed by means

of bispectrum. Three inter-band features were extracted from bispectrum matrices:

bispectral relative power (BispRP), cubic bispectral entropy (BispEn), and bispectral

median frequency (BispMF). BispRP results showed an increase of delta and theta

interactions with other frequency bands and the opposite behavior for alpha, beta-1,

and beta-2. Delta and theta interactions, along with the rest of the spectrum, also

experimented a decrease of BispEn with disease progression, suggesting these bands

interact with a reduced variety of components in advanced stages of dementia. Finally,

BispMF showed a consistent reduction along the AD continuum in all bands, which is

reflective of an interaction of the global spectrum with lower frequency bands as the

disease develops. Our results indicate a progressive decrease in inter-band interactions

with the severity of the disease, especially those involving high frequency components.

Since inter-band coupling oscillations are related to complex and multi-scaled brain

processes, these alterations likely reflect the neurodegeneration associated with the

AD continuum.

Keywords: electroencephalography (EEG), bispectrum, Alzheimer’s disease (AD), mild cognitive impairment (MCI),

AD continuum, interactions

1. INTRODUCTION

Dementia due to Alzheimer’s disease (AD) is a progressive neurological disorder that exhibits brain
changes leading to cognitive and physical impairment. AD is the most common case of dementia,
accounting for between 60 and 80% of all cases (Alzheimer Association, 2018). Some general
symptoms are typically associated with AD, such as loss of short-termmemory, behavioral changes,
and problems with abstract reasoning, planning, and decision making (Alzheimer Association,
2018). Dementia progression is mainly divided in three severity stages: mild, moderate, and severe
(Reisberg et al., 1982). Mild AD patients (ADMIL) are generally independent in a daily basis,
requiring some assistance in order to ensure safety. They are often able to perform high cognitive
tasks, such as driving, working or leisure activities. Subsequently, moderate AD patients (ADMOD)
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usually have difficulties with routine tasks and may exhibit
confusion about time and place. ADMOD patients tend to show
the first behavioral changes, such as agitation and suspiciousness.
Finally, in the last stage of AD, severe AD patients (ADSEV)
gradually become unable to perform any day-to-day activity
to a point where they are eventually completely dependent on
others to survive. At this point, verbal communication is also
limited (Reisberg et al., 1982). A transitional period between
healthy cognition and early dementia is likely to occur. This
stage is called mild cognitive impairment (MCI) (Petersen,
2004). MCI due to AD is considered a prodromal form of
the disease since 15% of subjects with this condition develop
AD per year (Davatzikos et al., 2011), while only 1–2% of
people not suffering from any pathological cognitive decline
begin to manifest dementia symptoms (Petersen, 2004). MCI is
described with slight cognitive deficits, but insufficient to precise
a dementia diagnosis (Petersen, 2004).

In order to help diagnose AD and MCI,
electroencephalography (EEG) has been widely used (Vecchio
et al., 2013). EEG is a non-invasive technique to measure the
spontaneous electrical activity of the brain over time. A set of
electrodes placed on the scalp acquires the voltage fluctuations
generated by groups of synchronized neurons. EEG spectrum
has been extensively demonstrated to be susceptible of reflecting
dementia. EEG frequency-based measures, such as median
frequency (Penttilä et al., 1985; Hornero et al., 2009) and spectral
entropies (Abásolo et al., 2006; Maturana-Candelas et al., 2019),
have been applied in this regard. Low values of median frequency
and spectral entropy have been commonly associated with AD
(Penttilä et al., 1985; Abásolo et al., 2006; Hornero et al., 2009;
Maturana-Candelas et al., 2019). Other spectral parameters, such
as alpha peak (McBride et al., 2014) or spectral flux (Poza et al.,
2017), also showed significant differences between AD, MCI, and
control groups.

Despite the invaluable potential of EEG spectral analyses
to detect altered neuronal behavior, only power spectrum (PS)
examinations are considered in most cases. A limitation of
PS is its inability to measure non-linear interactions between
frequency components. This issue is overcome by analyses that
take higher order spectra (HOS) into account. HOS is defined
in terms of higher order statistics, or “cumulants” (Nikias and
Mendel, 1993). Whereas PS is the spectra of second-order
cumulants, HOS of third-order cumulants is called bispectrum
(Nikias and Mendel, 1993). Bispectrum is calculated through the
Fourier transform of third-order statistics, where the skewness
of the distribution of the series is reflected (Chua et al.,
2010). This point is crucial, as it permits to reveal divergences
from Gaussianity. This allows bispectrum to discern non-linear
interactions, such as phase coupling, which are suppressed under
PS analyses (Nikias and Mendel, 1993). Although information
contained in the PS is frequently enough to describe statistically
any temporal series (Nikias and Mendel, 1993), extracting
information of non-linear elements can be decisive to elucidate
physiological perturbations from biomedical signals.

Many studies have applied bispectrum to EEG data in order
to characterize different diseases and cognitive processes. For
instance, Yuvaraj et al. (2018) applied HOS to develop a diagnosis

algorithm able to discriminate controls from patients with
Parkinson’s disease. In another study, an automatic epileptic
seizure detector using HOS-based measures was designed (Chua
et al., 2007). Bispectrum has been also employed to determine
the depth of anesthesia by Bispectral Index (BIS) calculation
(Rampil, 1998; Tiefenthaler et al., 2018). AD has been studied
by means of bispectrum analyses as well. In fact, a significant
decrease of BIS has been observed in patients with dementia
(Renna et al., 2003; Spiegel et al., 2006). Bispectral methods
have also been used for emotion assessment (Hosseini, 2012)
and the analysis of short-term memory processing (Schack et al.,
2002), suggesting that interactions between oscillators at different
frequency bands are related with complex neuronal processes.
Bressler (1995) remarked the importance of cooperation between
different cortical areas to achieve complex brain operations. Since
AD is widely known as a “disconnection syndrome” (Delbeuck
et al., 2003), the study of inter-band interactions may therefore
help to elucidate these disturbances in neocortical dynamics.

Previously, different bispectral features have been used to
characterize EEG dynamics, such as the mean of bispectral
magnitude (Nasrolahzadeh et al., 2018; Vaquerizo-Villar et al.,
2018), sum of logarithmic amplitudes (Nasrolahzadeh et al.,
2018; Vaquerizo-Villar et al., 2018), bispectral entropies (Wang
et al., 2015; Nasrolahzadeh et al., 2018; Vaquerizo-Villar et al.,
2018), or weighted center of bispectrum (Wang et al., 2015).
These parameters were calculated from the triangular region
that satisfies f2 ≥ 0, f2 ≥ f1, f1 + f2 ≤ fs, being fs
the sampling frequency of the signal (Chua et al., 2010).
These values are sufficient to evaluate the bispectrum due to
its symmetry conditions (Chua et al., 2010). However, the
parameters calculated from this region as a whole are unable
to describe interrelations between different frequency bands. To
overcome this limitation, we propose three measures: bispectral
relative power (BispRP), bispectral cubic entropy (BispEn),
and bispectral median frequency (BispMF), calculated from the
regions of the bispectrum that display the interactions between
each band and the global spectrum. To the best of our knowledge,
no previous study analyzed specific inter-band regions of the EEG
bispectrum to characterize the AD continuum.

Based on the aforementioned considerations, and since
complex cognitive processes are related with interactions
between inter-band components, we hypothesize that aberrant
physiological activity caused by dementia may be reflected
in alterations of these interactions. Our aim is therefore to
investigate whether the alterations of BispRP, BispEn, and
BispMF are able to characterize the progressive EEG disturbances
along the AD continuum.

2. MATERIALS

2.1. Subjects
We analyzed the EEG from 252 subjects divided in five groups:
51 healthy control (HC) subjects, 51 patients with MCI due to
AD, 50 ADMIL patients, 50 ADMOD patients, and 50 ADSEV

patients. Dementia and MCI due to AD were diagnosed on
every subject following the criteria of the National Institute on
Aging and Alzheimer’s Association (Jack et al., 2018). Cognitive
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deficit for each subject was evaluated bymeans of theMinimental
State Examination (MMSE) test (Folstein et al., 1975). For AD
and MCI patients, an age older than 65 and a diagnosis from
a specialized physician were required to be included in their
respective groups. On the other hand, the exclusion criteria
were the following: (i) presence of atypical signs of cognitive
evolution, (ii) history of active or under treatment neoplasia, (iii)
history of recent surgery, (iv) history of hypercatabolic states, (v)
chronic alcoholism, and (vi) indications of vascular pathology.
HC were also evaluated to assess whether they satisfied some
requirements in order to participate in this study. The applied
criteria were the following: (i) age older than 65, (ii) MMSE
scores equal or higher than 27, and (iii) absence of history of
neurological or major psychiatric disorders. All subjects and
caregivers gave written informed consent to participate in the
study, according to the recommendations of the Code of Ethics
of the World Medical Association (Declaration of Helsinki). The
protocol was approved by The Ethics Committee at the Porto
University (Porto, Portugal). Table 1 shows the demographic
data of the participants.

2.2. EEG Recording
Five minutes of resting-state EEG data were acquired for each
subject, while staying in a relaxed position with their eyes
closed. In order to minimize artifact presence, EEGs were
recorded in a noise-free environment. Researchers made sure to
avoid drowsiness of the participants during the procedure. EEG
acquisition was performed with a 19-channel Nihon Kohden
Neurofax JE-921A EEG System at electrodes F3, F4, F7, F8, Fp1,
Fp2, T3, T4, T5, T6, C3, C4, P3, P4, O1, O2, Fz, Cz, and Pz of the
international 10-20 system. Sampling frequency was established
at 500 Hz.

EEG data were converted to ASCII files and stored
in a personal computer. A preprocessing procedure was
conducted according to these steps (Núñez et al., 2017; Ruiz-
Gómez et al., 2018b; Maturana-Candelas et al., 2019): (i)
mean removal; (ii) finite impulse response (FIR) bandpass
filtering with a Hamming window between 1.5 and 30
Hz; (iii) independent component analysis (ICA) to remove
components associated with myographic, cardiographic and
oculographic noise; (iv) segmentation into 5 s epochs; and
(v) visual rejection of artifacted epochs. An average of 38.81
± 13.03 (mean ± standard deviation) artifact-free epochs
per subject were selected. Digital procedures in this study
were carried out with MATLAB R© (R2018 version, Mathworks,
Natick, MA).

3. METHODS

3.1. Bispectral Analysis
HOS describe the spectral properties of cumulants and moments
of higher orders (Nikias and Mendel, 1993). Second-order
spectra (PS, a function based on the signal autocorrelation in
the time domain) methods are frequently used to characterize
AD (Dauwels et al., 2010). However, they are unable of
perceiving components that remain hidden because of their non-
linear nature (Nikias and Mendel, 1993). Phase and amplitude

coupling between frequency components of a signal is a
common concept that cannot be measured by these conventional
metrics. In this work, bispectrum (spectral representation of
the third-order cumulant) is used to study interactions between
different frequency bands. The bispectrum of a signal x(t) is
defined as

Bisp(f1, f2) = E[X(f1)X(f2)X
∗(f1 + f2)], (1)

where X(f ) is the Fourier transform of the signal x(t), X∗(f )
its complex conjugate, and E[·] corresponds to the expectation
operation (Chua et al., 2010). As a result, a bispectrum matrix
is obtained, representing the interactions between each pair
of frequency components of the signal spectrum. In order to
simplify analysis, a grand-averaged matrix across all epochs and
channels was obtained for each subject. The resulting bispectrum
matrix was normalized before any further procedure.

3.2. Bispectrum Features
A wide variety of features extracted from bispectrum has been
previously proposed, such as the mean of bispectral magnitude,
the sum of logarithmic amplitudes, the bispectral entropy and the
weighted center of bispectrum (Venugopal and Ramakrishnan,
2014; Wang et al., 2015; Nasrolahzadeh et al., 2018; Vaquerizo-
Villar et al., 2018). These parameters quantify global interactions
between all the spectral components. However, feature extraction
is commonly calculated from the whole bispectrum matrix,
ignoring particular interactions between frequency bands. To
overcome this limitation, three new parameters, which measure
the interaction of each frequency band with the global spectrum,
are applied in this study: bispectrum relative power (BispRP),
bispectrum cubic entropy (BispEn), and bispectrum median
frequency (BispMF). Another novelty aspect of these parameters
is the exclusion of the self-band elements located in the diagonal
for each calculation, allowing the assessment of the interactions
between each band and strictly the rest of the spectrum. This
approach is not often considered when analyzing the bispectrum,
and may provide new insights about the categorization of the
AD. Bands of interest corresponded to the classical frequency
bands: delta (δ, 1.5–4 Hz), theta (θ , 4–8 Hz), alpha (α, 8–
13 Hz), beta-1 (β1, 13–19 Hz), and beta-2 (β2, 19–30 Hz).
BispRP, BispEn, and BispMF were calculated for each band of
interest. These three parameters describe inter-band coupling
properties in a complementary way and may help to elucidate
how AD affects to neural interactions. The algorithms are
defined below:

• BispRP describes the amount of accumulated bispectral power
of a specific band interacting with the rest of the spectrum.
High values indicate that a certain band is associated with
greater inter-band interactions. BispRP is defined as

BispRP =
∑

(f1,f2)∈ρ

|Bisp(f1, f2)|, (2)

where ρ corresponds to the region of the bispectrum matrix
that reflects interactions between a specific frequency band
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TABLE 1 | Demographic data.

Age Sex MMSE Education Smoker Diet Alcohol Diseases

Group N (x ± σ ) (F:M) (x ± σ ) (Pr:Sc) (Y:Ex:N) (M:A:H) (Y:N) (C:S:H)

HC 51 80.1 ± 7.1 25:26 28.8 ± 1.1 33:18 1:11:39 42:7:2 18:33 30:1:12

MCI 51 85.5 ± 7.3 36:15 23.3 ± 2.8 38:13 2:5:44 45:3:3 9:42 32:12:10

ADMIL 50 80.5 ± 6.9 29:21 22.5 ± 2.3 36:14 3:4:43 44:4:2 7:43 30:10:9

ADMOD 50 81.3 ± 8.0 43:7 13.6 ± 2.8 37:13 1:6:43 44:6:0 5:45 28:4:18

ADSEV 50 80.0 ± 7.8 43:7 2.4 ± 3.7 45:5 0:2:48 42:6:2 0:50 33:5:16

x, mean; σ , standard deviation; education: (Pr: primary education or below, Sc: secondary education or above); smoking habits: (Y: smoker, Ex: ex-smoker, N: non-smoker); dietary habits:

(M: balanced/mediterranean, A: antidiabetic, H: hypocaloric); alcohol consumption: (Y: occasional drinker, N: non-drinker); clinical story: (C: cardiovascular, as arterial hypertension, high

cholesterol, etc.; S: sensorimotor as visual impairment, abnormal gait, etc.; H: hormonal, as diabetes, thyroid dysfunctions, etc.). Clinical story describes prevalence of clinical issues in

the sample. Several diseases can affect the same subject and can only count one of each type.

and the global spectrum, excluding the interactions among
frequencies of that frequency band.

• BispEn describes how bispectral values are distributed in the
region associated with a specific frequency band. BispEn is
implemented in this study based on the Shannon definition
of entropy (Chua et al., 2010). Homogeneous-distributed
interactions result in high BispEn values, while those
condensed in fewer components cause this parameter to
decrease. BispEn is defined as follows:

BispEn = −
1

N

∑

i

piln(pi), (3)

where

pi(f1, f2) =
|Bisp(f1, f2)|3∑

(f1,f2)∈ρ

|Bisp(f1, f2)|
3
, (4)

being i each point in region ρ and N the total number of
points in ρ.

• BispMF is defined as the frequency at which the total spectral
power of the bispectrum at ρ is halved. BispMF indicates
the tendency of a frequency band synchronizing more with
higher or lower frequency components of the global spectrum.
BispMF is defined below:

0.5
∑

(f1,f2)∈ρ

|Bisp(f1, f2)| =

BispMF∑

(minf2)∈ρ

∑

f1∈ρ

|Bisp(f1, f2)|. (5)

3.3. Interpretation of Bispectral Features
In order to facilitate the understanding of the proposed
features (BispRP, BispEn, and BispMF), these metrics have
been applied to three synthetic signals: (a) a sinusoidal signal
with multiple intra-band components (sine waves at 8.5, 9.4,
10, 12, and 12.9 Hz); (b) a sinusoidal signal with multiple
inter-band components (sine waves at 3, 7, 11, 16, and 29

Hz); and (c) a white noise signal. Bispectrum, along with the
aforementioned bispectral features, are represented in Figure 1.
Due to the large differences between high and low values in
the bispectrum, the visualization scale has been adjusted to
better reflect the former. For this reason, white regions of the
bispectrum correspond to very low values, but they are not
necessarily zero.

For the sinusoidal signal with multiple intra-band
components (Figure 1A) the bispectrum shows several
interactions in the alpha region, as expected. Other inter-
band components, located in delta/alpha region, appear due
to the interaction between all the sine waves. Since intra-band
interactions are discarded in this study (i.e., interactions within
the 8–13 Hz area in which the most prominent peaks appear),
the only bispectral values that are considered to calculate any
feature are the values for the inter-band ranges. Thereby, BispRP
values are very low because most of the power of the bispectrum
is located in the alpha/alpha range, which is discarded for BispRP
computation. High BispRP values are obtained at delta and
alpha, due to the interactions between them. Regarding BispEn,
it describes the distribution of inter-band interactions. BispEn
values are thus rather low for delta, theta, alpha, and beta-1,
which indicates that only a few interactions appear in each
inter-band region. Beta-2 is the band with the highest level of
entropy because no peaks are present in the region of interactions
between beta-2 and the remaining frequency bands. Although
beta-1 band does not seem to have any interaction as well, its
proximity to the alpha band contributes to lower entropies.
Finally, BispMF describes the median frequency component
with which another band is interacting with. As expected, delta,
theta, beta-1, and beta-2 bands interact with alpha given no other
activity in the bispectrum is present.

The bispectrum corresponding to the sinusoidal signal with
multiple inter-band components (Figure 1B) shows interactions
across all the bispectrum regions. In this case, BispRP values
are almost equally distributed along bands. Analogously, BispEn
shows similar values in each band, which means a similar
distribution of inter-band interactions. For this signal, BispMF
shows the predisposition of each band interacting with frequency
components between 10 and 15 Hz, where are located the highest
bispectrum values. Thus, BispMF for delta, theta, alpha, and beta-
1 bands is around these two values. However, beta-2 displays a
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FIGURE 1 | Time-domain synthetic signals with bispectrum values and BispRP, BispEn, and BispMF values for each band. (A) Sinusoidal signal with multiple

intra-band components (alpha band). (B) Sinusoidal signal with multiple inter-band components. (C) White noise signal.

much lower value due to the presence of meaningful interactions
with delta and theta frequency bands.

Finally, the white noise signal (Figure 1C) presents a high
number of interactions distributed on the bispectrum. For this
reason, BispRP is small in delta (due to its narrow frequency
range), obtaining the highest value at beta-2 (owing to its
wide frequency range), and shows intermediate values for theta,
alpha, and beta-1. BispEn is high and uniform for all bands,
as no dominant interactions appear. Finally, BispMF values
coincide approximately with the middle of the bispectrum,
except beta-1 and beta-2 that obtain values in the range of
alpha band.

3.4. Statistical Analysis
The statistical analysis was performed as follows. First, in
order to evaluate normality and homoscedasticity of our
results, Kolmogorov-Smirnov and Levene test were conducted.
Neither BispRP, BispEn nor BispMF results met parametric
assumptions. Statistical differences between consecutive AD
severity groups were therefore assessed with Mann–Whitney U-
tests. In addition, the False Discovery Rate (FDR) was used to deal
with multiple comparisons problem (Benjamini and Hochberg,
1995).

4. RESULTS

Bispectrum and derived features were obtained for 51 HC
subjects, 51 MCI patients, 50 ADMIL patients, 50 ADMOD

patients, and 50 ADSEV patients. Figure 2 displays the grand-
averaged absolute values of bispectrum across channels for each
group, showing a reduction of variety of inter-frequency coupling
with the severity of the disease.

The distribution of BispRP, BispEn and BispMF, for each
frequency band, are represented in Figure 3. For this purpose,
violin plots were employed. Statistical differences (FDR-corrected
Mann-Whitney U-test) between consecutive groups are depicted
on the top of each figure. Also, these values along with their
respective U-values, are shown in Table 2. Increasing tendencies
in BispRP can be observed in delta and theta bands in the
AD continuum. On the other hand, BispRP decreases with the
severity of the disease in alpha, beta-1, and beta-2 bands. Alpha
and beta-1 bands showed statistically significant differences
between the most severe groups (ADMOD and ADSEV). In theta
and beta-2 frequency bands, significant differences between HC
and MCI subjects were also found.

BispEn displayed a decrease with the severity of AD in
delta and theta bands, showing statistically significant differences
between ADMOD and ADSEV groups. On the other hand, alpha,
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FIGURE 2 | Grand-average of bispectrum values for each group.

beta-1, and beta-2 did not show any clear tendency with
AD progression.

Finally, BispMF displays a decreasing trend on all frequency
bands along the progression of AD. Delta and theta bands
exhibited statistical differences between HC and MCI. BispMF
results in theta band showed a transition from upper-theta to
under-theta frequencies. MCI and ADMIL, as well as ADMOD and
ADSEV showed statistically significant differences at beta-2 band.
Furthermore, significant differences for the ADMOD vs. ADSEV

comparison were obtained in all frequency bands.

5. DISCUSSION

Three bispectrum features (BispRP, BispEn and BispMF) were
calculated for the five groups under study, from non-pathological
elder subjects to severe cognitive-impaired AD patients. Our
results suggest changes on interactions between EEG oscillators
at different frequency bands in the development of the disease.

BispRP is the sum of the bispectrum values of each frequency
band interacting with the global spectrum. Higher values of
BispRP in a frequency band indicate more interactions between
frequency components of that band with the others. As Figure 3
reflects, BispRP in delta and theta frequencies increases with the
severity of the disease. This could be interpreted not just as an
increase of coupled interactions between delta and theta with
the rest of the bands but also as a reduction of interactions of

the higher frequency bands with the global spectrum. On the
other hand, alpha, beta-1, and beta-2 bands exhibited a BispRP
decrease along the AD development, which may be related
with a loss of coupling involving higher frequency components.
The results from previous works exploring cross-frequency
modulations on resting-state AD patients are consistent with
these alterations (Fraga et al., 2014; Engels et al., 2016).
For instance, a significant delta modulation decrease of beta
frequency band and an increased delta modulation with theta
band were reported, both intensified by the severity of the disease
(Fraga et al., 2014). Furthermore, lower alpha/beta interactions
have also been observed in AD (Palva and Palva, 2007; Fraga
et al., 2014), being reported as signs of lower cognitive ability
(Palva and Palva, 2007). Additionally, a decrease of cross-
frequency coupling between beta band and all other bands
was found in AD patients (Engels et al., 2016). This may
suggest that interactions involving alpha and beta frequency
bands are present in functional processes, which are lost
throughout neurodegeneration.

BispEn was calculated to assess homogeneity of the
distributions of interactions. As it can be observed, only
delta and theta exhibited a decreasing tendency in entropy
with AD progression, suggesting interactions of those bands
with fewer components of the global spectrum. A decrease
in EEG spectral irregularity is a widely known effect of
neurodegeneration (Abásolo et al., 2006; Ruiz-Gómez et al.,
2018a; Maturana-Candelas et al., 2019), which has been assessed
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FIGURE 3 | BispRP, BispEn, and BispMF value distributions on each band. Statistically significant differences between consecutive groups are indicated with a red

asterisk (p < 0.05, FDR-corrected Mann–Whitney U-test).
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TABLE 2 | U-values and p-values from Mann–Whitney U-test for pairwise comparisons between consecutive groups (FDR-corrected).

Comparison BispRP BispEn BispMF

Band (group vs. group) U-value p-value U-value p-value U-value p-value

Delta

HC vs. MCI 2574.0 0.8087 2662.0 0.8429 3106.5 0.0151

MCI vs. ADMIL 2402.0 0.3551 2729.0 0.5393 2670.5 0.7518

ADMIL vs. ADMOD 2452.0 0.7407 2661.0 0.5388 2727.0 0.3410

ADMOD vs. ADSEV 2506.0 0.9137 2955.0 0.0188 2935.5 0.0233

Theta

HC vs. MCI 2098.0 0.0082 2741.0 0.6047 3021.0 0.0378

MCI vs. ADMIL 2701.0 0.6239 2766.0 0.4373 2681.5 0.7175

ADMIL vs. ADMOD 2347.0 0.4020 2700.5 0.4041 2657.5 0.5393

ADMOD vs. ADSEV 2791.0 0.1613 2905.0 0.0378 2955.0 0.0188

Alpha

HC vs. MCI 2522.0 0.6209 2739.0 0.6047 2803.0 0.4083

MCI vs. ADMIL 2407.0 0.1085 2748.0 0.5048 2837.5 0.2501

ADMIL vs. ADMOD 2864.0 0.0712 2196.0 0.0743 2580.0 0.8087

ADMOD vs. ADSEV 3171.0 0.0005 2902.0 0.0378 2959.0 0.0188

Beta-1

HC vs. MCI 2921.0 0.1281 2735.0 0.6128 2581.0 0.8202

MCI vs. ADMIL 2815.0 0.3267 2412.0 0.3879 2781.5 0.4020

ADMIL vs. ADMOD 2653.0 0.5393 2578.0 0.8087 2849.0 0.0767

ADMOD vs. ADSEV 3102.0 0.0021 2799.0 0.1484 2985.0 0.0151

Beta-2

HC vs. MCI 3126.0 0.0126 2285.0 0.0743 2581.5 0.8202

MCI vs. ADMIL 2438.0 0.4373 2806.0 0.3410 3033.0 0.0188

ADMIL vs. ADMOD 2655.0 0.5393 2524.0 0.9972 2862.0 0.0712

ADMOD vs. ADSEV 2822.0 0.1117 2562.0 0.8429 2949.0 0.0188

Comparisons with p-values below 0.05 are highlighted.

by means of entropy analyses. Besides, an overall decrease of
bispectral entropy was also observed in AD patients (Wang et al.,
2015). Entropy is potentially capable to discriminate time series
generated by different systems (Costa et al., 2005), which may
be related to neural dynamic cooperation. Interestingly, our
results indicate that these entropy alterations only occur at low
frequencies, and loss of entropy in inter-band interactions at
these frequencies is progressive in the AD continuum.

BispMF expresses which components of the global spectrum
interacts predominantly with each frequency band of interest.
Noteworthy, BispMF experimented a consistent reduction at
each band as AD severity increases. The cause of these tendencies
is two-fold. First, interactions involving higher frequency bands
(alpha and beta) is diminished, and second, interactions between
delta and theta are increased. This insight is consistent with our
BispRP results, which show an increasing presence of delta and
theta bands interactions with the global spectrum in more severe
stages of AD. Alterations involving alpha and beta frequency
bands have been previously related to AD common symptoms.
For instance, theta/beta band coupling has been associated with
reward/gain motivation (Putman et al., 2010), and theta/alpha
interactions seem to be involved in retention of pictorial items
(von Stein and Sarnthein, 2000). Changes in these cognitive
capabilities are symptoms observed along the disease progression
(Robert et al., 2006; Alzheimer Association, 2018). In fact,
disturbances in these interactions have been used to develop a
biomarker system to detect impaired cognitive states (Dimitriadis
et al., 2015). Furthermore, decreases in delta/beta interactions

were associated with behavioral perturbations (Schutter et al.,
2006; Knyazev, 2007) and were also related to AD (Chow,
2000). According to lower frequency bands, previous research
aiming to study delta/theta coupling reported an increase of
these interactions in mouse models of AD (Wisor et al., 2005;
Jyoti et al., 2010). These disturbances from normal EEG behavior
were also strongly linked with increased amyloid beta deposition
(Wisor et al., 2005; Jyoti et al., 2010); a decrease of BispMF and
an increase of BispRP in delta and theta measures therefore seem
a natural consequence of neurodegeneration.

In general, our results of EEG inter-band interactions
indicate presence of neuronal interconnected systems and, thus,
may help to elucidate multi-scaled brain processes from a
physiological standpoint. Previous studies have assessed complex
physiological mechanisms, such as attention (Palva, 2005) and
learning performance (Canolty and Knight, 2010), in terms
of cross-frequency synchronization. Further evidence has been
reported about inter-band cross-frequency coupling in other
brain processes, like working memory and reward stimulation
(Palva, 2005; Cohen et al., 2009), suggesting these aspects to be
associated with information processing and communication in
large-scale brain networks (Canolty and Knight, 2010; Voytek,
2010). Bressler (Bressler, 1995) also pointed out that interareal
synchronization (i.e., exact wave frequency and phase locking)
is related with functional connections between cortical areas.
This leads to think that different brain subsystems work
synchronously so that more complex physiological processes can
take place. In fact, loss of general EEG synchronization has been
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found in AD (Stam et al., 2003, 2005; Dauwels et al., 2010).
Since this parameter has been linked with cooperation among
diverse neuronal groups (Bressler, 1995), alterations in bispectral
features may reflect impaired connectivity across the brain, in
the form of neural pathways disruption by tissue alterations or
neurotransmitter deficits (Tononi, 1998; Jelles et al., 1999; Jeong,
2004).

Although differences between five groups of progressive AD
severity have been obtained, several issues must be taken into
account in order to enhance the performance of this study.
Firstly, differences in inter-band interactions may be much
more evident when EEG is acquired under cognitive tasks.
Cross-frequency coupling is especially visible when certain brain
networks manage electrical activity of this kind. For instance,
phase synchrony has been mainly studied in these circumstances
(Palva, 2005; Pockett et al., 2009). For this reason, resting-state
acquisition may have reduced the impact of these interactions.
Secondly, since phase coupling is suggested to be related with
activity at specialized brain regions, the obtained grand-average
bispectrum values from the entire skull may diminish statistical
differences in the calculated features. Previous research has
appointed that specific channels may bemore suitable to measure
non-linear interactions (Fraga et al., 2014; Wang et al., 2015).
Additionally, AD does not alter the entire brain but particular
neural networks (He et al., 2008). In future works, we will aim
to carry out further research specifying for local brain areas
under diverse mental procedures and comparing the functional
role of multiple frequency bands. Finally, resting-state neuronal
rhythms have been demonstrated to be sensible to acquisition
conditions, such as having the eyes open (Barry et al., 2007).
Potentially, new frequency interactions could emerge by altering
this factor. However, in this study EEG data were obtained
exclusively from patients with the eyes closed. Studying the EEG
from patients with the eyes open may expose new insights on
neurodynamic behavior. Therefore, we will try to obtain new
EEG recordings in this condition to conduct further investigation
of the influence of neurodegeneration in inter-band coupling.

6. CONCLUSIONS

In this study, bispectrum and novel derived features were
computed from EEG signals of MCI and AD patients. Our results
suggest an overall decrease of spectral component interactions
involving high frequency bands. This point is consistent
with previous research aiming to relate brain functionality
with inter-band synchronization. The underlying physiological
phenomena of neurodegeneration processes could imply loss of
communication between specialized neuronal groups. This may
provoke the discussed tendencies on our bispectrum results with
the progression of the disease. We can conclude that the analysis

of inter-band interactions by means of bispectrum is able to
characterize AD continuum.
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