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Abstract

Human lower-limb kinematic measurements are critical for many applications including gait

analysis, enhancing athletic performance, reducing or monitoring injury risk, augmenting

warfighter performance, and monitoring elderly fall risk, among others. We present a new

method to estimate lower-limb kinematics using an error-state Kalman filter that utilizes an

array of body-worn inertial measurement units (IMUs) and four kinematic constraints. We

evaluate the method on a simplified 3-body model of the lower limbs (pelvis and two legs)

during walking using data from simulation and experiment. Evaluation on this 3-body model

permits direct evaluation of the ErKF method without several confounding error sources

from human subjects (e.g., soft tissue artefacts and determination of anatomical frames).

RMS differences for the three estimated hip joint angles all remain below 0.2 degrees com-

pared to simulation and 1.4 degrees compared to experimental optical motion capture

(MOCAP). RMS differences for stride length and step width remain within 1% and 4%,

respectively compared to simulation and 7% and 5%, respectively compared to experiment

(MOCAP). The results are particularly important because they foretell future success in

advancing this approach to more complex models for human movement. In particular, our

future work aims to extend this approach to a 7-body model of the human lower limbs com-

posed of the pelvis, thighs, shanks, and feet.

Introduction

Human lower-limb kinematic measurements are critical for many applications including gait

analysis, enhancing athletic performance, reducing or monitoring injury risk, augmenting

warfighter performance, and monitoring elderly fall risk, among others [1–5]. Historically,

most research studies are constrained to laboratory environments where camera-based motion

capture systems (MOCAP) are used to measure body segment kinematics. A major disadvan-

tage of laboratory-based studies is that experimental constraints (e.g., limited capture volume,

artificial environment, and observers) may alter how subjects perform tasks, making it difficult
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to extrapolate results to unconstrained (real-life) environments [6,7]. Some research studies

require continuous monitoring of human kinematics, rendering laboratory-based methods

ineffective [8–10]. In addition, camera-based systems are relatively expensive, require long

setup times, and require trained researchers [1,7]. Collectively, the above realities of labora-

tory-based experiments may significantly limit the findings and benefits of the research. Thus,

there remains a strong motivation to advance the use of wearable sensors to measure human

kinematics outside of the lab environment.

The most utilized sensors for mobile kinematic measurements are inertial measurement

units (IMUs) which contain three-axis accelerometers and angular rate gyroscopes (with some

designs also including magnetometers, GPS, barometers, or other sensors). The resulting mea-

surements can be integrated and/or differentiated to estimate the kinematics of the body seg-

ments to which they are attached [11]. However, because of measurement noise and finite

sampling rates, kinematic variables estimated via numerical integration are subject to integra-

tion drift errors. Consequently, accurate estimates of kinematics from (noisy) IMU measure-

ments must also correct for drift errors [10–14].

In the context of estimating lower-limb human kinematics with IMUs, approaches that

leverage known kinematic conditions and relationships demonstrate success in correcting

integration drift errors in certain applications [15]. One well-known example is the zero-veloc-

ity update (ZUPT) method for computing three-dimensional trajectories of the feet [13,16].

This method uses the fact that, during human walking, the foot (and attached IMU) must be

nearly still (zero-velocity) at some point during each stance phase to correct for drift in the

estimated foot velocity. Other methods successfully estimate joint angles for single joints. For

example, IMU-based knee joint angle algorithms capitalize on the fact that the knee often acts

as a hinge joint [17,18].

In addition to single-segment or single-joint methods highlighted above, recent work for

multi-segment or multi-joint systems shows progress towards describing the human lower

limbs. While proprietary products for such analyses exist (e.g., Xsens MVN Link, Noraxon

Ultium Motion), they incorporate unspecified assumptions (hence, unspecified limitations)

which is especially pertinent because accuracy of IMU-based methods are often task-specific

[15]. Independent validation studies of these systems confirm such task dependence and also

reveal that accuracy varies significantly between specific joint angles [19–21]. These proprie-

tary products also have significant cost and rely on product-specific IMU hardware or even

specialized wearable suits. Thus, a significant need exists for validated and well-documented

methods to advance future research and applications.

Several methods exist for estimating the kinematics of the human lower limbs using a

7-body representations of the human lower limbs constituting the feet, shanks, thighs and hip.

Ahmadi et al. [22] utilize a ZUPT method to estimate ankle position trajectories and combine

those with individual segment orientation estimates to yield estimated lower-limb kinematics

for straight walking on level ground and stairs. Optimization ensures the joint angles conform

to assumed ranges of motion. Results are validated via comparison with MOCAP measure-

ments for short trials (six passes through a MOCAP volume) that may not fully expose the

accumulation of (long-term) drift error. The results demonstrate strong correlations (R

>0.94) for joint angles, but only those restricted to the sagittal plane. Teufl et al. [23] employ

an iterated extended Kalman filter to estimate lower-limb kinematics and with root-mean-

square (RMS) joint angle differences (all three axes) below 6 degrees relative to MOCAP mea-

sures. Additionally, their method estimates RMS stride length and step width differences of

0.04 and 0.03 meters, respectively, compared to MOCAP [24]. However, their algorithm

assumes level-ground (to correct vertical drift and to identify zero-velocity update times),

which renders it unsuitable for quantifying gait on general (unconstrained) terrain as often
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encountered outdoors. Collectively, the limitations of the studies reviewed above point to the

need for a general algorithm that accurately estimates lower-limb kinematics over long trials

(i.e., greater than five minutes) and without assumptions of terrain morphology.

This paper presents a novel error-state Kalman filter (ErKF) method for estimating lower-

limb kinematics using data from wearable IMUs. We use this method to estimate three

degree-of-freedom (DOF) joint angles, stride length and step width. The method presented

here extends Sola’s formulation of the ErKF for a single IMU [12] to a multi-IMU formulation

and also incorporates biomechanical measurement models to correct integration drift errors.

In contrast to [22], the method is effective for long integration times (i.e., long trials). In con-

trast to [23], the method does not embed a level-ground assumption. As a first step towards

developing a complete (7-body) model of the human lower limbs, we first consider herein an

approximate 3-body mechanical model. Doing so enables careful formulation and study of all

key modeling steps but within the context of a simpler model. Additionally, evaluation on this

well-characterized mechanical model permits direct evaluation of the ErKF method without

the confounding error sources associated with human subjects including uncertainties in joint

center locations, joint axes, sensor-to-segment alignment parameters, increased joint complex-

ity, and soft tissue artefacts. Thus, evaluation of this novel ErKF method on a well-character-

ized 3-body mechanical model (a “walker”) is a critical step towards extension to a full

(7-body) model of the human lower limbs. We demonstrate the success of the method by com-

parison to two reference data sets. In the first comparison, estimated kinematic variables are

compared to ground truth obtained by simulation. In the second comparison, estimated kine-

matic variables are compared to those measured by MOCAP using an engineered 3-body

walker.

Methods

3-body lower-limb model

As a step towards estimating the lower-limb kinematics of a human (i.e., a 7-body model), we

employ a novel ErKF method on a simplified (3-body) model of the lower-limbs for walking

(i.e., a “walker”). We utilize the ErKF to estimate the poses (positions and orientations) of each

IMU attached to each segment of the model. This simplified model embeds the key challenge

to accurate lower-limb kinematic estimation from body-worn IMU data; namely, utilizing

well-conceived measurement models to correct integration drift errors. The simplified model

consists of a pelvis and two legs attached to the pelvis by hinge joints. The leg lengths and pel-

vic width are comparable to human anthropometrics (0.92 m and 0.39 m respectively). This

model is simulated in OpenSim [25] (Fig 1A) and also fabricated for experiments (Fig 1B).

The OpenSim model is modified from OpenSim’s "Dynamic Walking Challenge" example

[26].

The model includes three IMUs with one near the center of mass of the pelvis (i.e., a

sacrum-mounted IMU) and one at the distal end of each leg (i.e., foot-mounted IMUs). The

IMUs are attached via a weld joint in the OpenSim model and via athletic tape in the

experiment.

Error-state Kalman filter method (ErKF)

While traditional extended Kalman filter equations are written with respect to the states of the

system directly, the ErKF equations are written with respect to the errors in these states which

then correct the estimated states. The ErKF demonstrates superior performance over a tradi-

tional extended Kalman filter for similar applications for aircrafts and robots due to key advan-

tages including linearity, singularity avoidance, and simplicity [12,27–29]. Recent work also
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shows great promise for using ErKF formulations to improve the accuracy of joint angle esti-

mates for biomechanical applications [30].

In this formulation, each segment is treated as a free body (i.e., possesses six DOF) which

yields superior estimates of joint angles versus a minimal DOF kinematic chain, as previously

illustrated for the human arm [31]. This algorithm requires knowledge of the positions of the

joint centers and the directions of the anatomical axes for each segment in the attached IMU’s

reference frame. We refer to these relationships as the sensor-to-segment alignment and

assume they remain constant throughout a trial. Through the process model of the ErKF, IMU

data from each body segment is integrated to estimate the time-dependent pose of the IMU

(thus the time-dependent pose of the segment). Errors are corrected through known kinematic

constraints (e.g., the joints between segments) and kinematic states (e.g., if a segment is

momentarily at rest) that are incorporated in the measurement model. We describe the filter

below.

States and error-states. This multi-IMU formulation for the ErKF draws from and extends

Sola’s formulation for a single IMU [12] which also provides detailed derivations of relations

used below. To reduce the size of the state, we do not estimate sensor biases or the gravitational

acceleration. Instead, we assume sensor biases and the gravitational acceleration are well char-

acterized (and constant) and these are estimated using IMU data during an intentional still

period at the start of a trial. Therefore, the state for the jth IMU, xj, is the (10x1) vector

xj ¼

pj

vj

qj

2

6
6
4

3

7
7
5 ð1Þ

where pj is the (3x1) position vector of the accelerometer within the IMU in a world (i.e. lab-

Fig 1. 3-body model of the lower limbs. 3-body model of the lower limbs for (A) simulation and (B) experiment

including IMU and reflective marker placement. Body-fixed axes defined such that the x-axis points anteriorly (not

shown), the y-axis superiorly, and the z-axis to the right (aligned with hinge joint axis) when the model is in a neutral

upright pose (as in (b)) for all limbs.

https://doi.org/10.1371/journal.pone.0249577.g001
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fixed) frame, vj is the (3x1) velocity vector of the same point, and qj is the (4x1) quaternion

rotation vector (using Hamiltonian convention) that relates the IMU sense axis frame (hereaf-

ter called the IMU frame) to the world frame. In particular, we define q as the rotation quater-

nion that transforms a vector in the body-fixed frame (yb) to its components in the world

frame (yw) per

0

yw

" #

¼ q�
0

yb

" #

� q� ð2Þ

where� denotes quaternion multiplication and q
�

denotes the quaternion inverse.

The error state for the jth IMU, δxj, is the (9x1) vector

dxj ¼

dpj

dvj

dyj

2

6
6
4

3

7
7
5 ð3Þ

where δpj and δvj denote errors in the position and velocity, respectively, and δθ j is the (three-

component) attitude error vector (assumed to be small) defined such that the quaternion error

δqj obeys

dqj ¼

cos
kdyjk

2

� �

bsin
kdyjk

2

� �

2

6
6
6
4

3

7
7
7
5
�

1

dyj

2

2

4

3

5: ð4Þ

where b is the unit vector in the direction of δθ j (i.e., the axis of rotation) and k�k is the Euclid-

ean vector magnitude. The full state x is the concatenation of the states of all n IMUs in the sys-

tem, namely

x ¼

x1

x2

..

.

xn

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: ð5Þ

Similarly, the full error state δx is

dx ¼

dx1

dx2

..

.

dxn

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: ð6Þ

The error-state covariance matrix (associated with the full error state) is denoted by P.

Process model. The prediction step of the ErKF uses the process model

bxj;kþ1 ¼ f ðxj;k; uj;kÞ ð7Þ

for each IMU where bxj denotes the prediction of xj, the additional subscript k denotes the kth

time-step, and uj denotes the IMU data (acceleration and angular velocity). The state of each

IMU at time-step k+1 is then predicted from the state and IMU data at the previous time-step
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k per

bxj;kþ1 ¼

pj;k þ vj;kDt þ 1=2ðRj;kaj;k þ gÞDt2

vj;k þ ðRj;kaj;k þ gÞDt

qj;k �

cos koj;kk
Dt
2

� �

oj;k

koj;kk
sin koj;kk

Dt
2

� �

2

6
6
6
6
4

3

7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð8Þ

where Δt is the sampling period of the IMU, R is the rotation matrix corresponding to q, g is

the gravitational acceleration vector (in the world frame), aj is the acceleration measured by

the jth IMU, and ωj is the angular rate measured by the jth IMU. Note that the predicted state

for each IMU (Eq 8) is independent of the other IMUs (each IMU is treated as an independent

six DOF rigid body).

During the prediction step, the covariance matrix P is also estimated as follows. The Jaco-

bian of the process model for the jth IMU at time-step k with respect to its error state vector,

Fxj,k, follows from

Fxj;k ¼

I3�3 DtI3�3 03�3

03�3 I3�3 � Rj;k½aj;k�xDt

03�3 03�3 ðSfoj;kDtgÞT

2

6
6
4

3

7
7
5 ð9Þ

where Im×m represents an m × m identity matrix, 0m×m represents an m × m matrix of zeros,

the superscript T denotes the transpose of a matrix, [y]x corresponds to the skew-symmetric

form of y

y1

y2

y3

2

6
6
4

3

7
7
5

x

¼

0 � y3 y2

y3 0 � y1

� y2 y1 0

2

6
4

3

7
5 ð10Þ

and S{w} applies the Rodrigues’ rotation formula on the vector w

Sfwg ¼ Sfφsg ¼ I3�3cosðφÞ þ sinðφÞ½s�x þ ssTð1 � cosðφÞÞ: ð11Þ

Here, φ is the scalar magnitude of w and s is the unit vector in the direction of w. Due to the

independence of the IMUs in the prediction step (Eq 8), the Jacobian of the full system process

model relative to the error state at time-step k, Fx,k, is

Fx;k ¼ blkdiagðFx1;k; Fx2;k; . . . ; Fxn;kÞ ð12Þ

where blkdiag denotes the block diagonal matrix composition. The process noise covariance

for the jth IMU, Qj, is

Qj ¼

03�3 03�3 03�3

03�3 s2
aDt2I3�3 03�3

03�3 03�3 s2
o
Dt2I3�3

2

6
4

3

7
5 ð13Þ

where s2
a and s2

o
are the noise variances for the acceleration and angular rate signals, respec-

tively, with the values being obtained from the manufacturer or through experiment. Note that

this matrix is assumed constant for each IMU and thus we do not denote a time step. Again,
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due to the independence of the IMUs in the prediction step, these matrices can be

concatenated to form the full system process noise covariance matrix, Q, per

Q ¼ blkdiagðQ1;Q2; . . . ;QnÞ: ð14Þ

Thus, the prediction update for P is

bPkþ1 ¼ Fx;kPkF
T
x;k þ Q: ð15Þ

The process model equations above detail predictions for the state and the error-state

covariance. Note that the estimated error-state mean is not calculated because it is always zero

throughout the process model because the error-state mean is initialized to zero and is reset to

zero following any measurement update.

Measurement model. In the absence of any measurement during this time step we use the

predicted state and error-state covariance as the best estimates at time-step k+1, namely

xkþ1 ¼ bxkþ1 ð16Þ

Pkþ1 ¼
bPkþ1: ð17Þ

However, when measurements are available during this time step, we apply corrections

using the measurement model to improve the estimates as follows. The measurement model

takes the functional form

z ¼ hðxÞ þ c ð18Þ

where z is the observed measurement, h(x) is the expected measurement represented as a func-

tion of the state x, and c is Gaussian white noise with covariance C. Specific measurement

models follow below. For each, we linearize the measurement equation by defining the Jaco-

bian H evaluated at x

H ¼
@h
@dx
jx: ð19Þ

Consistent with [12], we use the chain rule to decompose H as

H ¼
@h
@x

�
�
�
x

@x
@dx

�
�
�
x
¼ HxXdx ð20Þ

where Hx depends on the measurement model and Xδx depends only on the estimated orienta-

tion. Next, the Kalman gain, K, and error-state mean,cdx are updated per

Kk ¼
bPkþ1H

T
k ðHk

bPkþ1H
T
k þ CkÞ

� 1
ð21Þ

cdxkþ1 ¼ Kkðzk � hðbxkþ1ÞÞ: ð22Þ
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The error-state mean for each IMU,cdxj, updates its respective nominal state per

xj;kþ1 ¼

bpj;kþ1 þ
cdpj;kþ1

bvj;kþ1 þ
bdvj;kþ1

bqj;kþ1 �

cosðkcdy j;kþ1k=2Þ

cdy j;kþ1

kcdy j;kþ1k
sin kcdy j;kþ1k=2
� �

2

6
6
6
6
4

3

7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð23Þ

where

cdxj ¼

cdpj

bdvj

cdy j

2

6
6
6
4

3

7
7
7
5
: ð24Þ

After the nominal state mean is updated, the error-state mean is reset to zero and the error-

state covariance is updated per

Pkþ1 ¼ GkðI9n�9n � KHÞbPkþ1G
T
k ð25Þ

where Gk is the Jacobian of the error-state reset operation with respect to the error state at

time-step k, defined as

Gk ¼ blkdiagðG1;k;G2;k; . . . ;Gn;kÞ ð26Þ

where

Gj;k ¼

I3�3 03�3 03�3

03�3 I3�3 03�3

03�3 03�3 I3�3 �
1

2
cdy j;kþ1

� �

x

2

6
6
6
6
4

3

7
7
7
7
5
: ð27Þ

We note that the addition of the G terms in Eq 25 in the present formulation differs from

the covariance measurement update in a traditional extended Kalman filter formulation to

account for the error-state mean reset (to zero) after each measurement update. The above

process of prediction and measurement updates (when available) repeats each time step.

Next, we present four measurement models. The first two pertain to known kinematic

states of the body segments (e.g., when the IMU is still) and the second two pertain to known

kinematic constraints (e.g., constraints imposed by the two joints). Note that in the case of

multiple measurements during a time step, a batch measurement update is used (i.e., all mea-

surements are stacked and processed together).

Measurement model 1: ZUPT correction. We leverage the fact that a foot will be momen-

tarily at rest sometime during the stance phase during gaits that do not induce significant slip-

ping. Thus we employ, a zero-velocity update (ZUPT) correction for estimating foot

trajectories which accurately describes gaits at normal walking speeds [13,16] through fast

walking and running speeds [32]. Within our framework, the associated measurement equa-

tion becomes

hZUPTðxÞ ¼ vIMU ð28Þ
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where hZUPT(x) is the expected measurement for the ZUPT correction and vIMU is the (3x1)

velocity vector for a foot-mounted IMU. This expected foot velocity is compared to the (vir-

tual) observed measurement of the foot velocity

zZUPT ¼

0

0

0

2

6
4

3

7
5 ð29Þ

when the IMU (foot) is (momentarily) still.

Measurement model 2: Gravitational tilt correction. We also leverage the fact that when an

IMU is still, the accelerometer in the IMU measures only gravitational acceleration and there-

fore functions as an inclinometer, thus enabling a gravitational (tilt) correction for IMU orien-

tation. This correction yields the measurement model

htiltðxÞ ¼ RT

0

0

1

2

6
4

3

7
5 ð30Þ

where htilt(x) is the expected measurement for the gravitational correction and R is the rotation

matrix for the still IMU. Note that in Eq 30, it is assumed that gravity acts opposite the third

world-frame component (i.e., in the “–z” direction); however, this equation can be easily modi-

fied to accommodate other world-frame definitions. This expected measurement is compared

to the observed measurement of tilt

ztilt ¼
a
kak

ð31Þ

with a being the IMU acceleration. Note that we compare the direction of unit vectors (htilt

and ztilt) rather than the full acceleration vector to mitigate the effects of discrepancies in mag-

nitude caused by the IMU not being exactly still or the effects of sensor noise and bias.

Measurement model 3: Joint center correction. Next, the joint center between two adjacent

limbs must be approximately at the same position as deduced from the positions and orienta-

tions of those limbs [31]. For IMUs on adjacent limbs 1 and 2, the measurement equation

becomes

hJCðxÞ ¼ p1 þ R1r1 � ðp2 þ R2r2Þ ð32Þ

where hjc(x) is the expected measurement for the joint center correction, the subscript i = 1,2
denotes IMUi, ri denotes the known position of the joint center from IMUi (and resolved in

the IMU frame), and Ri denotes the rotation matrix for IMUi. The (virtual) observed measure-

ment for the joint center correction is

zJC ¼

0

0

0

2

6
4

3

7
5: ð33Þ

Measurement model 4: Joint axis correction. Similar to the joint center correction above, at

times the joint axis must be the same as deduced from the orientations of the adjacent limbs

(IMUs). An example of this correction arises when the knee is predominantly acting like a

hinge [17,18] and the flexion/extension axes of the thigh and shank must be aligned in the
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world frame. This can be generalized for any pair of adjacent limbs 1 and 2 per

hJAðxÞ ¼ R1e1 � R2e2 ð34Þ

where hJA(x) is the expected measurement for the joint axis correction and ei is the aligned

joint axis (unit vector) deduced from IMUi in the frame of IMUi. The (virtual) observed mea-

surement for the joint axis correction is

zJA ¼

0

0

0

2

6
4

3

7
5: ð35Þ

Evaluation of ErKF method using two reference data sets

We evaluate the performance of the ErKF method using two sets of reference data, namely: 1)

simulated IMU data for the simulated walker with associated simulated ground truth results

and 2) experimental IMU data for the physical walker with associated MOCAP results. These

two data sets allow us to evaluate the performance of the method with increasing levels of

model complexity and uncertainty (e.g., knowledge of sensor noise characteristics, sensor-to-

segment alignment) and without several confounding error sources from human subjects that

affect both the ErKF method and reference MOCAP estimates including uncertainty in sen-

sor-to-segment alignment parameters (e.g., relationships between sensor and anatomical coor-

dinate systems, joint center locations), increased joint complexity, and soft tissue artefacts. To

this end, we compare estimated and reference hip joint angles, stride length, and step width

for the walker simulation and experiment (i.e., reference data sets 1 and 2 above). The reported

hip joint angles mirror the International Society of Biomechanics convention for human sub-

jects [33] with body axes defined such that the x-axis points anteriorly, the y-axis superiorly,

and the z-axis to the right (aligned with hinge joint axis) when the model is in a neutral upright

pose (as in Fig 1B). The definitions of stride length and step width parameters are consistent

with [24] with the following minor modifications: 1) identified footfall instances are used in

place of initial contact times, and 2) the IMU position is used in place of the heel position for

the 3-body model. S1 Appendix details the methods for detecting footfalls and still periods.

Further details for each reference data set are provided next.

Reference data set 1: ErKF method estimates for walker compared to simulation. We first

evaluate the performance of the ErKF method via simulation because simulation enables

assessment of the ErKF method independent of many confounding factors associated with

experimental data. For example, in the simulation we specify the 1) sensor error (e.g., bias,

noise) parameters, 2) sensor-to-segment alignment parameters, 3) measurement times (e.g.

when a foot is stationary, when a joint acts as a hinge), and 4) ground truth data for compari-

son. We first compute generalized coordinate trajectories for a straight-line walk for the three

body segments. The gait consists of 200 identical strides with a mean speed and stride length

of 0.33 m/s and 0.73 m, respectively. Stance and swing angular trajectories were chosen to

have a waveform similar to the simplest walking model [34]. The gait also contains (0.1 sec-

ond) still periods following each ground contact, permitting clear identification of times of

zero-velocity of the “feet”. The OpenSim model is then driven with these computed trajectories

and the BodyKinematics analysis tool in OpenSim computes the virtual IMU poses with

respect to a fixed lab-frame. Simulated IMU data (accelerations and angular rates) that are free

of noise and bias are calculated by differentiating these poses at a sampling rate of 512 Hz

(sampling rate of the IMUs used for Reference Data Set 2). Finally, real (i.e., noisy) IMU data is

simulated by adding prescribed zero-mean Gaussian noise to this data. The accelerometer
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noise value is taken from the specification sheet for the commercial IMU (Opal, APDM, ±16 g

and ±200g accelerometers, ±2000 deg/s gyro) used in the experiments. The gyro noise is that

from the same specification sheet plus additional noise (10 deg/hr drift) to account for both

bias instability and angular random walk. The joint center measurement noise comes from

[23]. All noise values are summarized in Table 1.

Poses of each segment throughout the walk are estimated by employing the ErKF method

with the simulated IMU data. Because the joints are constrained to be pure flexion/extension,

the joint axis and joint center measurement corrections are applied at each time step with con-

stant joint centers and joint axes. The segment poses follow directly from the IMU poses

because the sensor-to-segment alignment is constant throughout the trial. Additionally, for

this simulation, the sensor-to-segment alignment is known exactly.

Zero-velocity measurements are applied at identified footfalls while gravitational correction

measurements are applied at each still period while using the measurement noise reported in

Table 1. The accuracy of ErKF estimated hip joint angles, stride lengths, and step widths are

compared to prescribed values from the original gait trajectories.

Reference data set 2: ErKF method estimates for walker compared to MOCAP. Next, we

evaluate the performance of the method on the walker during overground walking gait. A

marker-based motion-capture (MOCAP) system (Vicon, 18 Vero V2.2 cameras) tracks posi-

tions of reflective markers on the model at 100 Hz. Seven reflective markers are attached to

each segment (four to define the primary axes and three additional markers, see Fig 1B). Posi-

tional estimates of the markers are filtered with a 4th order low-pass Butterworth filter at 20

Hz. Additionally, the attached IMUs yield sampled acceleration and angular rate data at 512

Hz.

IMU poses on the segment (for sensor-to-segment alignment) are defined by three reflec-

tive markers attached to each IMU (Fig 1B). Body frame axes for the three segments are deter-

mined as described in Reference data set 1. Joint center locations are estimated at the center of

the T-joints at the hips using the known dimensions of the model. A single still frame at the

beginning of the trial is used to determine the positions of joint centers, IMUs, and reflective

markers in the body-fixed frames and are assumed constant. MOCAP estimates of segment

orientations are determined as follows using a published optimization method [35]. For each

segment and time step, we record all pairwise positions between the markers on the segment

and compare them to the same from the still frame. A MATLAB implementation of the afore-

mentioned optimization method [36] is used to estimate segment orientation. Segment orien-

tation estimates that yield (mean residual) marker positional errors exceeding 0.01 meters are

eliminated as they indicate misidentified markers or significant marker positional error. Short

time gaps (<0.05 seconds) in the orientation estimates are filled using linear interpolation for

the resulting Euler angles (“unwrapped” to account for discontinuities) following which a 4th

order low-pass Butterworth filter (20 Hz cut-off) is applied for data smoothing. Rotational

alignment between segment axes and their associated IMU sense axes is computed using a sin-

gular value decomposition procedure [37] comparing body-fixed IMU (from gyro measure-

ment) to segment (from MOCAP segment orientation estimate) angular velocity vectors.

Table 1. IMU and measurement noise values used for simulating data and for ErKF method.

Noise Parameter σa (m/s2) σω (deg/s) σZV (m/s) σtilt (deg) σJC (m) σJA (rad)

Value 0.027 5.66 0.01 5.73 0.01 1.15

Noise values for the process model and the simulated IMU data are for the accelerometer (σa) and gyroscope (σω). Measurement noise values are for the zero-velocity

(σZV), gravitational tilt (σtilt), joint center (σJC), and joint axis (σJA) measurements.

https://doi.org/10.1371/journal.pone.0249577.t001
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During the trial, a researcher manually operates (walks) the model back and forth through

the 4.5-meter capture volume for ten minutes. The average sacrum velocity during straight

walking is 0.44 m/s. Because the model is restricted to pure flexion/extension of the hip, joint

center measurements are applied at every time step. Additionally, joint axis measurements are

applied at every time step recognizing that the body-fixed z-axes (flexion/extension axes) of

the pelvis and legs are aligned. As with the simulation, zero-velocity measurements are applied

at all footfall instances and gravitational tilt measurements applied at all still periods. Measure-

ment noise parameters used in the ErKF for data set 2 are the same as for data set 1 (Table 1).

Results

Reference data set 1: ErKF method estimates for walker compared to

simulation

We open by comparing estimated outputs from the walker model (using simulated IMU data)

to ground truth from the OpenSim simulation. Comparisons are made for all full strides

excluding the first (transition) stride for each leg (198 strides for the right leg, 199 strides for

the left leg). Joint angle estimates from the model are compared to ground truth values at each

sample throughout the trial. Mean, standard deviation (SD), and root-mean-square (RMS) dif-

ferences for the three joint angles are summarized in Table 2. RMS differences are specifically

included for comparisons to results from [23,24]. Additionally, range of motion (ROM) is esti-

mated and compared for each stride. Summary statistics for ROM differences are also reported

in Table 2 for flexion/extension but not for internal/external rotation or abduction/adduction

as their true values are constantly zero for this model.

Fig 2 shows the differences in the three joint angles as functions of time for the right hip

joint over this exemplary long (7 minute) trial (results similar for left hip). Importantly, the

results reveal no observable drift in the joint angle differences with time (slopes of linear fits of

the joint angle differences versus time remain below 0.1 deg/hr across all joint angles). By con-

trast, without any filter corrections, the differences can grow to up to 10 degrees due to drift

over this same time interval.

Fig 3 illustrates the estimated flexion/extension angle compared to ground truth during the

gait cycle where time is normalized by gait cycle time (which begins and ends with the

instances of identified footfalls). Shown are the average (solid line) and one standard deviation

(shaded region) across all strides.

We also report the accuracy of the estimated stride length and step width as summarized in

Table 3. The mean differences are less than 1% of the average values for both stride length

(0.73 m) and step width (0.39 m), while the RMS differences remain within 1% and 4%

respectively.

Finally, we report the accuracy of the estimated foot IMU trajectories for each leg for the

duration of the stride cycle. Fig 4 compares the forward, lateral and vertical coordinates of the

right (Fig 4A) and left (Fig 4B) foot IMU to ground truth. Both mean (solid line) and one

Table 2. Comparisons of joint angle and range of motion estimates for simulation.

Mean Diff. ±SD (deg) RMS Diff. (deg) Mean ROM Diff. ±SD (deg) ROM RMS Diff. (deg)

Flexion/Extension -0.01 ± 0.17 0.17 0.18 ± 0.23 0.29

Internal/External 0.00 ± 0.09 0.09 NR NR

Abduction/Adduction 0.00 ± 0.08 0.08 NR NR

Mean ± one standard deviation (SD) and root-mean-square (RMS) differences (IMU-true) in estimated hip joint angles and ranges of motion (ROM). Values reported

across both hips (NR denotes not reported).

https://doi.org/10.1371/journal.pone.0249577.t002

PLOS ONE Error-state Kalman filter for lower-limb kinematic estimation: Evaluation on a 3-body model

PLOS ONE | https://doi.org/10.1371/journal.pone.0249577 April 20, 2021 12 / 21

https://doi.org/10.1371/journal.pone.0249577.t002
https://doi.org/10.1371/journal.pone.0249577


standard deviation (shaded region) are illustrated as functions of time (normalized by gait

cycle). Note significantly enlarged scales for lateral and vertical displacements. Additionally,

note that these trajectories show the relative displacement of the IMU center and not the posi-

tion of the ground contact point itself (refer to Fig 1A); thus, negative vertical displacement

(Fig 4) does not necessarily represent penetrations of the ground.

Reference data set 2: ErKF method estimates for walker compared to

MOCAP

Next, we compare estimated outputs from the model using measured IMU data to those mea-

sured by MOCAP. The results below report the differences in estimated kinematical quantities

Fig 2. Joint angle differences with and without filtering corrections for simulation. Right hip joint angle differences

versus time (A) with the ErKF corrections and (B) without any filtering corrections (raw integration). Hip angles are

for flexion/extension (Flex./Ext.), internal/external rotation (Int./Ext.), and abduction/adduction (Ab./Ad.). Results

reveal no observable drift error despite the long trial with ErKF method.

https://doi.org/10.1371/journal.pone.0249577.g002

Fig 3. Comparisons of hip flexion/extension estimates for simulation. Mean and standard deviation of the estimated hip

flexion/extension angle for the right (A) and left (B) hip. Solid lines denote mean and shaded regions denote ± one standard

deviation. Time is normalized by gait cycle time. Insets provide zoomed images where small differences are apparent.

https://doi.org/10.1371/journal.pone.0249577.g003
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obtained by the two measurement modalities. Recall that the experimental procedure requires

repeated walking through the MOCAP capture volume and thus consists of straight walks

through the capture volume separated by sharp turns. Since the sharp turns do not represent

human-like gait, we focus our evaluation only on the “straight walking strides”. A straight

walking stride is defined as one where the total displacement of the foot during the stride is no

more than fifteen degrees from the primary direction of travel and the stride length is greater

than 0.2 meters. We also exclude from analysis the transition stride following a turn for each

leg.

Consider first the differences in joint angle estimates from the IMU-based and MOCAP-

based methods using data from the straight walking strides (239 strides for the right leg, 215

strides for the left leg). Bland-Altman plots of Fig 5 [38] illustrate the 95% limits of agreement

(mean difference ± 1.96 times the standard deviation) between the two measurement

Table 3. Comparisons of stride length and step width estimates for simulation.

Mean Diff. ±SD (m) RMS Diff. (m)

Stride Length 0.01 ± 0.01 0.01

Step width 0.00 ± 0.01 0.01

Mean ± one standard deviation (SD) and root-mean-square (RMS) differences (IMU-true) in estimated stride length

and step width for simulation.

https://doi.org/10.1371/journal.pone.0249577.t003

Fig 4. Comparisons of foot displacement estimates for simulation. Forward, lateral and vertical coordinates of right (A) foot

and left (B) foot compared to ground truth. Solid lines denote the mean and shaded regions denote ± one standard deviation.

Note significantly enlarged scales of lateral and vertical displacements.

https://doi.org/10.1371/journal.pone.0249577.g004
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modalities for the hip flexion/extension angle. Since the motion induces pure flexion/exten-

sion, we do not report Bland-Altman plots for internal/external rotation and abduction/adduc-

tion angles as the reference values are expected to be nominally zero. The mean differences for

flexion/extension remain less than 1 degree for both hips with limits of agreement less than 3.2

degrees across both hips.

The mean, SD, and RMS differences for all three joint angles and the ROM difference for

flexion/extension are reported in Table 4. As with the Bland-Altman plots, we do not report

range of motion results for internal/external rotation and abduction/adduction angles as the

reference values are expected to be nominally zero.

Next, we evaluate how the differences in estimated joint angles vary with time over the

entire ten-minute trial. Fig 6 illustrates the right hip joint angle differences versus time for all

straight walking strides (similar results for left hip). While very small biases between the two

joint angle estimates exist, the results reveal no observable drift in the differences over the ten-

minute trial (slopes of linear fits of the joint angle errors versus time remain below 1.8 deg/hr

across all joint angles). By contrast, without any filter corrections, the differences can grow to

up to 13 degrees due to drift over the 10-minute trial.

Consider next a comparison of the flexion/extension angle estimates through the gait cycle

as reported in Fig 7, following the same procedure described above in the context of Fig 3.

Illustrated are the mean (solid curves) and one standard deviation from the mean (shaded

regions) for both measurement modalities. The largest differences in the means arise during

the stance phase. However, the measured stride-to-stride variability in flexion/extension angle

(the average width of the shaded regions) is only 0.2 degrees larger for the IMU-based esti-

mates versus MOCAP estimates.

Fig 5. Bland-Altman plots of hip flexion/extension angle between IMU and MOCAP methods. Estimates for right (A) and

left (B) hips. Blue points denote all samples, solid red line denotes the mean difference (IMU-MOCAP), and the red dashed

lines denote 95% limits of agreement (LoA).

https://doi.org/10.1371/journal.pone.0249577.g005

Table 4. Comparisons of joint angle and range of motion estimates for experiment.

Mean Diff. ±SD (deg) RMS Diff. (deg) Mean ROM Diff. ±SD (deg) ROM RMS Diff. (deg)

Flexion/Extension -0.70 ± 1.17 1.36 0.85 ± 1.06 1.36

Internal/External -0.39 ± 0.29 0.48 NR NR

Abduction/Adduction 0.14 ± 0.56 0.58 NR NR

Mean ± one standard deviation (SD) and root-mean-square (RMS) differences (IMU-MOCAP) in estimated hip joint angles and ranges of motion (ROM). Values

reported across both hips (NR denotes not reported).

https://doi.org/10.1371/journal.pone.0249577.t004
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Finally, we assess the differences in estimated stride length, step width and the trajectories

of both feet for all straight walking strides. The differences in estimated stride length and step

width over all strides are reported in Table 5. The mean differences remain below 2% of the

average value for both stride length (0.77 m) and step width (0.38 m), while the RMS differ-

ences remain below 7% and 5%, respectively.

Fig 8 compares the forward, lateral and vertical coordinates of the right (Fig 8A) and left

(Fig 8B) foot IMU to those measured by MOCAP. Both mean (solid line) and one standard

deviation (shaded region) are illustrated as functions of time (normalized by gait cycle). Note

significantly enlarged scales for lateral and vertical displacements. Additionally, note that these

Fig 6. Joint angle differences with and without filtering corrections for experiment. Right hip joint angle

differences versus time for all straight walking strides (A) with the ErKF corrections and (B) without any filtering

corrections (raw integration). Hip angles are for flexion/extension (Flex./Ext.), internal/external rotation (Int./Ext.),

and abduction/adduction (Ab./Ad.). Results reveal no observable drift error despite the long trial with ErKF method.

https://doi.org/10.1371/journal.pone.0249577.g006

Fig 7. Comparisons of hip flexion/extension estimates for experiment. Mean and standard deviation of the estimated hip

flexion/extension angle for the right (A) and left (B) hip. Solid lines denote mean and shaded regions denote ± one standard

deviation. Time is normalized by gait cycle time.

https://doi.org/10.1371/journal.pone.0249577.g007
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trajectories show the relative displacement of the IMU center and not the position of the

ground contact point itself (refer to Fig 1B); thus, negative vertical displacement (Fig 8) does

not necessarily represent penetrations of the ground.

Discussion

This paper presents an IMU-based method that accurately estimates the kinematics of a sim-

plified 3-body model of the human lower limbs for overground walking. The estimation

method, developed using an error-state Kalman filter, fuses acceleration and angular rate data

from three independent IMUs (one per rigid body) using four kinematic constraints. The

kinematic constraints capture 1) foot zero-velocity updates, 2) gravitational tilt corrections, 3)

joint center corrections and 4) joint axis corrections. The model is tested using two sets of

Table 5. Comparisons of stride length and step width estimates for experiment.

Mean Diff. ±SD (m) RMS Diff. (m)

Stride Length 0.01 ± 0.05 0.05

Step width 0.01 ± 0.02 0.02

Mean ± one standard deviation (SD) and root-mean-square (RMS) differences (IMU-MOCAP) in estimated stride

length and step width for experimental model comparison.

https://doi.org/10.1371/journal.pone.0249577.t005

Fig 8. Comparisons of foot displacement estimates for experiment. Forward, lateral and vertical coordinates of right (A) foot

and left (B) foot compared to MOCAP. Solid lines denote the mean and shaded regions denote ± one standard deviation. Note

significantly enlarged scales of lateral and vertical displacements.

https://doi.org/10.1371/journal.pone.0249577.g008
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comparison data, namely: 1) simulated IMU data from a simulated walker that yields ground

truth results, and 2) experimental IMU data from a physical walker with associated MOCAP

results.

Results using simulated IMU comparison data demonstrate the success of the underlying

IMU-based estimation model when all required inputs (e.g., noise parameters, sensor-to-seg-

ment alignments) are known and when critical measurement times (e.g., zero-velocity times)

are also known. Under these conditions, the hip angle estimates remain highly accurate (RMS

difference below 0.2 degrees) and without detectable drift error despite long-duration trials

(~7 min). Additionally, stride length and step width estimates exhibit very small differences

(RMS less than 1% and 4% respectively) when compared to ground truth values.

The experimental results for the second comparison data set with an experimental walker

demonstrate excellent agreement between the IMU and MOCAP-based estimates for the hip

joint angles, stride length, step width, and foot trajectories. In particular, the IMU and

MOCAP-based estimates of the hip joint angles exhibit limits of agreement less than 3.2

degrees for the flexion/extension angle with RMS differences less than 1.4 degrees across all

three hip angle axes. Additionally, RMS differences for stride length and step width remain

below 7% and 5% respectively, compared to nominal values. Importantly, the differences in all

kinematic variables did not appear to drift despite the longer duration trial (~10 minutes).

Because the differences neither drift nor increase with time, there is every reason to anticipate

similarly tight error bounds over even longer time periods. Moreover, the IMU-based esti-

mates exhibit similar variation in the flexion/extension angle compared to MOCAP estimates;

refer to the similar spread of the shaded regions in Fig 7. In the absence of a prior study like

ours on a mechanical walker, we instead compare this study to prior work evaluating IMU-

based methods on humans, while also recognizing the limitations of such comparisons. Recall

that Teufl et al. [23] estimate the joint angles of the human lower limbs from IMU data (via an

iterated extended Kalman filter) during a 6-minute walking test for comparison to MOCAP

results [23]. Consequently, results from this study might be compared to those of [23] by

focusing on the knee joint in [23] as it acts predominantly like a hinge during walking (as does

the hip joint in the 3-body model herein). Doing so reveals that the RMS differences (relative

to MOCAP) reported in [23] (~1.5 degrees) is remarkably similar to that reported herein (1.37

degrees), although also acknowledging that this comparison is limited due to obvious differ-

ences between the 3-body model for a walker and a 7-body model for a human. Importantly

though, the model herein removes limitations in [23] including the assumption of level

ground. Consequently, the method herein may hold great promise in extending to a 7-body

model for a human and particularly for applications where the level ground assumption does

not hold, including during activities of daily living and for outdoor sports and exercise. Accu-

rate results for this second comparison data set may also be affected by uncertainties in model

inputs such as sensor-to-segment alignment and footfall and still period detection. We miti-

gate these uncertainties by using MOCAP data to establish sensor-to-segment alignment and

to manually correct misidentified footfalls. While this yields a method that is not truly

“MOCAP-free”, these topics (sensor-to-segment alignment and still period detection from

IMU data alone) are themselves active areas of research for human applications [39–41].

The success of the novel ErKF method on a simplified mechanical model of the human

lower limbs demonstrated in this study motivate its extension to a full (7-body) model. Exten-

sion to the full model for the human lower limbs presents many additional challenges includ-

ing those due to complex human (versus mechanical) joints, uncertainties in model inputs

(e.g., sensor-to-segment alignment, footfall detection), and soft tissue artefacts. Thus, future

work must ensure that extensions of this ErKF method maintain accurate kinematic estimates

despite these additional error sources. Importantly, future extensions should be evaluated
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against many different types of human gait, including abnormal gaits (e.g., due to injury or dis-

ease), to demonstrate its utility in a variety of clinical and other biomechanical applications.

We note that the ErKF method developed here yields great promise for accurately estimating

human lower-limb kinematics in such applications because it relies only on kinematic con-

straints that are largely independent of movement type.
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24. Teufl W, Lorenz M, Miezal M, Taetz B, Fröhlich M, Bleser G. Towards inertial sensor based mobile gait

analysis: Event-detection and spatio-temporal parameters. Sensors (Switzerland). 2019; 19: 38. https://

doi.org/10.3390/s19010038 PMID: 30583508

25. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: Open-source software to

create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007; 54: 1940–1950.

https://doi.org/10.1109/TBME.2007.901024 PMID: 18018689

26. Jacobs DA, Seth A. Dynamic walking challenge: Go the distance! OpenSim Documentation. [cited 10

Mar 2021]. Available from: https://simtk-confluence.stanford.edu:8443/pages/viewpage.action?

pageId=28777060.

27. Trawny N, Roumeliotis SI. Indirect Kalman filter for 3D attitude estimation. Department of Computer Sci-

ence and Engineering, University of Minnesota, Minneapolis, MN; 2005. Available from: http://mars.cs.

umn.edu/tr/reports/Trawny05b.pdf.

28. Madyastha VK, Ravindray VC, Mallikarjunan S, Goyal A. Extended Kalman filter vs. error state Kalman

filter for aircraft attitude estimation. AIAA Guid Navig Control Conf 2011. 2011. https://doi.org/10.2514/

6.2011–6615

PLOS ONE Error-state Kalman filter for lower-limb kinematic estimation: Evaluation on a 3-body model

PLOS ONE | https://doi.org/10.1371/journal.pone.0249577 April 20, 2021 20 / 21

https://doi.org/10.3390/s19081925
https://doi.org/10.3390/s19081925
http://www.ncbi.nlm.nih.gov/pubmed/31022889
https://doi.org/10.3390/ijerph15092001
http://www.ncbi.nlm.nih.gov/pubmed/30217079
https://doi.org/10.3390/s140712900
http://www.ncbi.nlm.nih.gov/pubmed/25046016
https://doi.org/10.1109/JSEN.2015.2393883
https://doi.org/10.1049/PBRA017E
https://arxiv.org/abs/1711.02508
https://doi.org/10.1017/S0373463307004286
https://doi.org/10.1109/70.964672
https://doi.org/10.3390/s20030673
https://doi.org/10.3390/s20030673
http://www.ncbi.nlm.nih.gov/pubmed/31991862
https://doi.org/10.1109/mcg.2005.140
http://www.ncbi.nlm.nih.gov/pubmed/16315476
https://doi.org/10.3390/s140406891
http://www.ncbi.nlm.nih.gov/pubmed/24743160
https://doi.org/10.3390/s17091970
http://www.ncbi.nlm.nih.gov/pubmed/28846613
https://doi.org/10.1007/s11517-016-1537-2
http://www.ncbi.nlm.nih.gov/pubmed/27379397
https://doi.org/10.1016/j.jbiomech.2018.03.031
https://doi.org/10.1016/j.jbiomech.2018.03.031
http://www.ncbi.nlm.nih.gov/pubmed/29602475
https://doi.org/10.1088/0967-3334/34/8/N63
http://www.ncbi.nlm.nih.gov/pubmed/23893094
https://doi.org/10.1109/JSEN.2016.2593011
https://doi.org/10.3390/s18071980
https://doi.org/10.3390/s18071980
http://www.ncbi.nlm.nih.gov/pubmed/29933568
https://doi.org/10.3390/s19010038
https://doi.org/10.3390/s19010038
http://www.ncbi.nlm.nih.gov/pubmed/30583508
https://doi.org/10.1109/TBME.2007.901024
http://www.ncbi.nlm.nih.gov/pubmed/18018689
https://simtk-confluence.stanford.edu:8443/pages/viewpage.action?pageId=28777060
https://simtk-confluence.stanford.edu:8443/pages/viewpage.action?pageId=28777060
http://mars.cs.umn.edu/tr/reports/Trawny05b.pdf
http://mars.cs.umn.edu/tr/reports/Trawny05b.pdf
https://doi.org/10.2514/6.2011%26%23x2013%3B6615
https://doi.org/10.2514/6.2011%26%23x2013%3B6615
https://doi.org/10.1371/journal.pone.0249577


29. Hartley R, Ghaffari M, Eustice RM, Grizzle JW. Contact-aided invariant extended Kalman filtering for

robot state estimation. Int J Rob Res. 2020; 39: 402–430. https://doi.org/10.1177/0278364919894385

30. Vitali R V., McGinnis RS, Perkins NC. Robust error-state Kalman filter for estimating IMU orientation.

IEEE Sens J. 2020. https://doi.org/10.1109/jsen.2020.3026895

31. Miezal M, Taetz B, Bleser G. On inertial body tracking in the presence of model calibration errors. Sen-

sors (Switzerland). 2016; 16: 1132. https://doi.org/10.3390/s16071132 PMID: 27455266

32. Potter M V, Ojeda L V, Perkins NC, Cain SM. Effect of IMU design on IMU-derived stride metrics for run-

ning. Sensors (Switzerland). 2019; 19: 2601. https://doi.org/10.3390/s19112601 PMID: 31181688

33. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions

of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip,

and spine. Journal of Biomechanics. 2002. pp. 543–548. https://doi.org/10.1016/s0021-9290(01)

00222-6 PMID: 11934426

34. Garcia M, Chatterjee A, Ruina A, Coleman M. The simplest walking model: Stability, complexity, and

scaling. J Biomech Eng. 1998; 120: 281–288. https://doi.org/10.1115/1.2798313 PMID: 10412391

35. Shuster MD, Oh SD. Three-axis attitude determination from vector observations. J Guid Control Dyn.

1981; 4: 70–77. https://doi.org/10.2514/3.19717

36. Lourakis M. Absolute orientation with the QUEST algorithm. MATLAB Central File Exchange. 2020

[cited 5 May 2020]. Available from: https://www.mathworks.com/matlabcentral/fileexchange/65173-

absolute-orientation-with-the-quest-algorithm.

37. Challis JH. A procedure for determining rigid body transformation parameters. J Biomech. 1995; 28:

733–737. https://doi.org/10.1016/0021-9290(94)00116-l PMID: 7601872

38. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res.

1999; 8: 135–160. https://doi.org/10.1177/096228029900800204 PMID: 10501650

39. Pacini Panebianco G, Bisi MC, Stagni R, Fantozzi S. Analysis of the performance of 17 algorithms from

a systematic review: Influence of sensor position, analysed variable and computational approach in gait

timing estimation from IMU measurements. Gait Posture. 2018; 66: 76–82. https://doi.org/10.1016/j.

gaitpost.2018.08.025 PMID: 30170137

40. Bouvier B, Duprey S, Claudon L, Dumas R, Savescu A. Upper limb kinematics using inertial and mag-

netic sensors: Comparison of sensor-to-segment calibrations. Sensors (Switzerland). 2015; 15: 18813–

18833. https://doi.org/10.3390/s150818813 PMID: 26263993

41. Vitali R V., Perkins NC. Determining anatomical frames via inertial motion capture: A survey of methods.

J Biomech. 2020; 106: 109832. https://doi.org/10.1016/j.jbiomech.2020.109832 PMID: 32517995

PLOS ONE Error-state Kalman filter for lower-limb kinematic estimation: Evaluation on a 3-body model

PLOS ONE | https://doi.org/10.1371/journal.pone.0249577 April 20, 2021 21 / 21

https://doi.org/10.1177/0278364919894385
https://doi.org/10.1109/jsen.2020.3026895
https://doi.org/10.3390/s16071132
http://www.ncbi.nlm.nih.gov/pubmed/27455266
https://doi.org/10.3390/s19112601
http://www.ncbi.nlm.nih.gov/pubmed/31181688
https://doi.org/10.1016/s0021-9290%2801%2900222-6
https://doi.org/10.1016/s0021-9290%2801%2900222-6
http://www.ncbi.nlm.nih.gov/pubmed/11934426
https://doi.org/10.1115/1.2798313
http://www.ncbi.nlm.nih.gov/pubmed/10412391
https://doi.org/10.2514/3.19717
https://www.mathworks.com/matlabcentral/fileexchange/65173-absolute-orientation-with-the-quest-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/65173-absolute-orientation-with-the-quest-algorithm
https://doi.org/10.1016/0021-9290%2894%2900116-l
http://www.ncbi.nlm.nih.gov/pubmed/7601872
https://doi.org/10.1177/096228029900800204
http://www.ncbi.nlm.nih.gov/pubmed/10501650
https://doi.org/10.1016/j.gaitpost.2018.08.025
https://doi.org/10.1016/j.gaitpost.2018.08.025
http://www.ncbi.nlm.nih.gov/pubmed/30170137
https://doi.org/10.3390/s150818813
http://www.ncbi.nlm.nih.gov/pubmed/26263993
https://doi.org/10.1016/j.jbiomech.2020.109832
http://www.ncbi.nlm.nih.gov/pubmed/32517995
https://doi.org/10.1371/journal.pone.0249577

