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Abstract

Objective

To explore the feasibility of using random forest (RF) machine learning algorithm in assess-

ing normal and malignant peripheral pulmonary nodules based on in vivo endobronchial

optical coherence tomography (EB-OCT).

Methods

A total of 31 patients with pulmonary nodules were admitted to Department of Respiratory

Medicine, Zhongda Hospital, Southeast University, and underwent chest CT, EB-OCT and

biopsy. Attenuation coefficient and up to 56 different image features were extracted from A-

line and B-scan of 1703 EB-OCT images. Attenuation coefficient and 29 image features

with significant p-values were used to analyze the differences between normal and malig-

nant samples. A RF classifier was trained using 70% images as training set, while 30%

images were included in the testing set. The accuracy of the automated classification was

validated by clinically proven pathological results.

Results

Attenuation coefficient and 29 image features were found to present different properties with

significant p-values between normal and malignant EB-OCT images. The RF algorithm suc-

cessfully classified the malignant pulmonary nodules with sensitivity, specificity, and accu-

racy of 90.41%, 77.87% and 83.51% respectively.

Conclusion

It is clinically practical to distinguish the nature of pulmonary nodules by integrating EB-OCT

imaging with automated machine learning algorithm. Diagnosis of malignant pulmonary
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nodules by analyzing quantitative features from EB-OCT images could be a potentially pow-

erful way for early detection of lung cancer.

1. Introduction

Pulmonary nodules are radiopaque densities seen in the lung parenchyma with a diameter of

less than 3 cm1. Although possible causes of pulmonary nodules include many normal dis-

eases, most of the early lung cancer patients are characterized by suffering from pulmonary

nodules. Rapidly identifying the nature of pulmonary nodules could not only avoid unneces-

sary surgery, but also resect malignant lesions in a cost-effective manner. Nowadays, various

imaging techniques have been employed for in vivo early detection of lung cancer, such as

endobronchial ultrasound (EBUS) [1], computed tomography (CT) [2], PET/CT and PET/MR

[3]. However, all these techniques whose resolution are millimeter-level are far away from

ideal resolution for detecting the nature of pulmonary nodules.

As an optical imaging method, optical coherence tomography (OCT) is gaining credibility

as a thoracic imaging tool in clinically [4, 5]. Using near-infrared light, cross-sectional micro-

scopic images are created through optical interferometry, by detecting the backscattering of

light as it interacts with tissue structures. Due to the use of low coherence light, OCT can pro-

duce images with resolution in the range of 5 to 15 μm, which allows it to visualize the different

airway wall layers including mucosa, submucosa and cartilage [6–8]. Moreover, the penetra-

tion depth of OCT in the tissue (1–2 mm) is helpful to distinguish the invasive carcinoma

from normal bronchial epithelium according to the changes of cellular and extracellular mor-

phologies beneath the tissue surface. In the recent past, several pilot studies have been per-

formed for lung cancer detection using OCT both in vivo and ex vivo [5–7, 9–11]. Studies by

incorporating fluorescent bronchoscopy and endobronchial OCT (EB-OCT) on the abnormal

airways demonstrated that EB-OCT could accurately capture the microscopic morphological

changes of the cancerous mucosa [9]. The feasibility of EB-OCT to quantify separate airway

wall layers and the satisfied correlation with histology and other imaging data have facilitated

its application in the assessment of malignant pulmonary nodules [8].

To improve the accuracy of the early diagnosis of lung cancer, it is important to integrate

the computer-aided diagnosis (CAD) into the processes of imaging pattern recognition and

pulmonary nodules classification. In addition, automated image analysis methods can provide

a robust diagnosis independent of visual interpretation limitations. Several pioneering work

have explored the availability of using machine learning and deep learning algorithms to ana-

lyze the OCT images of breast cancer tissue [12, 13], human ovarian tissue [14] and atheroscle-

rotic plaques [15]. Random Forest (RF) [16] model is an ensemble learning classifier that tries

to achieve an accurate classification results by combining a large number of weak classifiers.

RF combines multiple binary tree predictors where each tree is constituted by subset of fea-

tures of a training-set which are randomly sampled and votes for a single class. The result of

RF model classification is determined by the vote number of tree predictors. In recent years,

the RF algorithm has been broadly utilized in the classification of medical images of human

brain and prostate [17], breast cancer [18] and retina abnormalities [19]. However, computer-

aided classification of pulmonary nodules based on EB-OCT image features has never been

done before.

In this context, the main objective of this study is to explore the feasibility of using auto-

mated image analysis system to classify pulmonary nodules in malignant and normal based on
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EB-OCT images. To evaluate if significant differences exist between normal and malignant

EB-OCT images regarding to the quantitative image features, we investigated attenuation coef-

ficient and up to 56 different image features extracted from A-line and B-scan of EB-OCT

images. These features were used as predictors for automatic identification of pulmonary nod-

ules with potential malignancy using random forest (RF) machine learning algorithm. The

sensitivity, specificity as well as the area under the receiver operating characteristic (ROC)

curve were evaluated for diagnostic accuracy. The present analysis will be utilized for rapid, in
vivo assessment of pulmonary nodules and help the surgeon/pathologist in early diagnosis,

risk stratification, and prognosis of lung cancer patients.

2. Methods and materials

2.1 Patients

This study group comprised 31 patients with solitary pulmonary nodule (SPN) who under-

went EB-OCT and corresponding pathological examinations at the Department of Respiratory

Medicine, Zhongda Hospital, Southeast University between January 1st, 2018 and December

31st, 2020. Patient demographics were summarized in Table 1. This project was approved by

the hospital ethics committee (Southeast University Zhongda Hospital, Ethical number:

2017ZDSYLL086-P01). All research was performed in accordance with the regulations of

Southeast University Zhongda Hospital, and all patients provided written informed consent.

2.2 Data acquisition

All patients received chest CT screening and chest CT thin-layer reconstruction to obtain the

0.65 mm DICOM format CT data. The data were then imported into the navigation broncho-

scope system (DirectPath, Olympus, Japan) to construct a three-dimensional bronchial tree, so

as to locate and mark nodular lesions. Under the guidance of navigation, the bronchoscope

(Olympus, Japan, outer diameter: 4.0 mm) was simultaneously sent to the marked target site.

After that, the radial endobronchial ultrasound (R-EBUS, Olympus ME2 Plus, probe outer

diameter: 1.4 mm) was inserted to scan the airway and the quantitative information were

recorded such as the lesion range and the depth from the lesion to the target bronchial open-

ing. According to the planned pathway generated by the navigation system, all 31 patients

underwent examination by an OCT system (Guangdong Winstar Medical Technology CO.,

China and Tomophase Inc., Cambridge, MA, USA) which consists of an imaging computing

system and a sterile detachable probe. The OCT probe is a catheter with a diameter of 1.7 mm

and a length of 15 cm, sealed with a transparent outer sheath and a 1 mm long window near

the tip for scanning and capturing images. The optical fiber is illuminated by a broadband

light source operating at 1300 nm with 50 kHz sweeping rate. In both grayscale and color

modes, the image acquisition speed is 20 frames per second, with an axial resolution of 15 μm

axial, a lateral resolution of 25 μm, and a depth resolution of up to 3 mm. To obtain OCT

images of airways tissues, the EB-OCT catheter was inserted to the target lesion or tissues

around the lesion and then was fixed there under the real-time synchronous guidance.

According to the lesion depth marked by the ultrasound, the EB-OCT probe was inserted to

the pre-determined target site and then pulled backwards. The image data of both the lesion

and surrounding tracheas were obtained and recorded during the scanning (see video in S1

and S2 Vides). Lung biopsy was pe2rformed after bronchoscope for all patients. Rapid-on-site

cytology evaluation (ROSE) was used to determine the quality of the materials. The pathologi-

cal results of biopsy specimens were obtained by immunohistochemistry analysis based on HE

staining.
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Table 1. Demographics of the patients.

No. Gender Age Height

(cm)

Weight

(kg)

Years of

smoking

Site of

lesion

Size

(cm)

CT features Methods for diagnosis Pathological results

1. Male 64 168 58 RB6 1.7 SPN TBLB Inflammation

2. Male 53 170 68 30 RB9 1.2 SPN (GGO) TBLB+VATS Adenocarcinoma

3. Male 67 170 66 40 LB8 3.0 Mass

(Solitary)

TBLB Squamous cell

carcinoma

4. Male 64 171 64 20 RB5 3.0 SPN (GGO) TBLB+VATS Adenocarcinoma

5. Female 57 159 60 RB2 2.9 Mass

(Solitary)

TBLB+VATS Adenocarcinoma

6. Female 65 156 56 RB3 3.7 Mass

(Solitary)

TBLB Organizing pneumonia

7. Female 71 155 65 LB3 4.1 Mass

(Solitary)

TBLB Organizing pneumonia

8. Male 81 174 76 30 RB7 3.7 Mass

(Solitary)

TBLB+CT guided percutaneous

biopsy

Organizing pneumonia

9. Male 76 170 61 RB3 5.3 Mass

(Solitary)

TBLB Inflammation

10. Male 58 172 62 30 RB3 3.0 SPN TBLB+VATS Organizing pneumonia

11. Male 62 171 71.5 LB9 5.1 Mass

(Solitary)

TBLB Organizing pneumonia

12. Female 53 155 53 RB5 1.6 SPN (GGO) TBLB Adenocarcinoma

13. Male 73 176 71 40 LB3 3.0 Mass

(Solitary)

TBLB Inflammation

14. Female 58 163 56.5 RB6 1.2 SPN (GGO) TBLB+VATS Adenocarcinoma

15. Male 77 174.5 63 RB7 2.8 SPN TBLB+VATS Adenocarcinoma

16. Male 50 172 67 30 LB1 1.8 SPN (GGO) TBLB Inflammation

17. Male 71 169 61.5 20 RB1 2.9 Mass

(Solitary)

TBLB Adenocarcinoma

18. Male 62 171 55 30 RB1 2.4 SPN TBLB+VATS Organizing pneumonia

19. Female 69 156 62 RB3 2.9 SPN TBLB Adenocarcinoma

20. Female 78 155 47.5 LB1 2.0 SPN TBLB Inflammation

21. Male 53 169 67.5 RB3 2.0 SPN TBLB Inflammation

22. Male 65 177 59.5 30 LB1 2.2 SPN TBLB Inflammation

23. Male 72 171 70 30 LB1 1.5 SPN TBLB Small cell lung cancer

24. Female 79 156 55 LB1 2.3 SPN TBLB Adenocarcinoma

25. Female 65 158 64 LB1 2.3 SPN TBLB Adenocarcinoma

26. Female 85 155 43 RB3 2.7 SPN TBLB Adenocarcinoma

27. Female 65 162 62 RB3 2.2 SPN TBLB+VATS Adenocarcinoma

28. Male 34 171 60 RB9 2.6 SPN TBLB Inflammation

29. Male 65 165 52.5 LB1 3.0 SPN TBLB Inflammation

30. Male 37 173 65 RB4 1.8 SPN TBLB Inflammation

31. Male 54 165 70 30 LB1 1.6 SPN TBLB+CT guided percutaneous

biopsy

Adenocarcinoma

SPN: Solitary pulmonary nodule.

TBLB: Transbronchial lung biopsy.

VATS: Video-assisted thoracic surgery.

GGO: Ground glass opacity pulmonary nodule.

Right upper lobe: Apical segment: RB1; Posterior segment: RB2; Anterior segment: RB3.

Right middle lobe: Lateral segment: RB4; Medial segment: RB5.

Right lower lobe: Superior segment: RB6; Medial basal segment: RB7; Anterior basal segment: RB8; Lateral basal segment: RB9; Posterior basal segment: RB10.

Left upper lobe: Apical segment: LB1; Posterior segment: LB2; Anterior segment: LB3; Superior lingula segment: LB4; Inferior lingula segment: LB5.

Left lower lobe: Superior segment: LB6; Medial basal segment: LB7; Anterior basal segment: LB8; Lateral basal segment: LB9; Posterior basal segment: LB10.

https://doi.org/10.1371/journal.pone.0260600.t001
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2.3 Follow-ups

For patients whose initial negative biopsy results showed high risk of lung cancer, CT-guided

lung puncture and surgery were performed to obtain clinically proven pathological diagnosis.

For patients suggested inflammation but without puncture or surgery, a follow-up of every 3

months was conducted till the lesion was completely absorbed and confirmed to be normal.

2.4 EB-OCT imaging procedure

2.4.1 Imaging protocol. To differentiate between normal and malignant tissue, several

features were extracted from the acquired EB-OCT images. All the features were extracted

from region of interest (ROI) with high signal-to-noise ratio (SNR). The guide wire and cathe-

ter artifacts were removed, and the lumen boundary was automatically recognized using the

following procedures: (a) image transformation from polar coordinates to Cartesian coordi-

nates; (b) spekle noise reduction by Gaussion filtering; (c) image binarization by using the

Otsu’s method; (d) morphological operation. From the segmented lumen boundary, the tissue

was selected at a depth of 1mm, corresponding to about 100 pixels (Fig 1).

The extracted features can be subdivided into two categories: (1) A-line-derived optical

properties and (2) B-scan-derived image features. The detailed illustrations of these quantita-

tive features were provided in the following sections. All data analysis was performed on

MATLAB.

2.4.2 Image features extraction. A. Optical properties. Attenuation coefficient was

extracted from the A-lines. The attenuation coefficient μr is a tissue property [20, 21] that can

be measured independently in homogeneous media according to Lambert-Beer exponential

decay curve [22, 23]:

IðzÞ ¼ I0TðzÞSðzÞexp ð� 2mrzÞ ð1Þ

where T(z) and S(z) are point spread function and signal roll-off function, respectively. In

time-domain OCT, S(z) is set to be one [24]. In this study, T(z) is simplified to be constant

value (equal to one) [22, 23]. I0 is the locally intensity which is equal to the source intensity,

and z is the penetration depth.

As biological tissues in general, the healthy airway tissue is composed by multiple layers

(e.g. mucosal and submucosal layer, smooth muscle layer, cartilage). Previous studies demon-

strated that attenuation coefficient μr can be fitted to different tissue layers through individual

fitting. To automatically fit the proposed model in different layers, the attenuation coefficient

μr of each depth was least-squares fitted using an iterative linear optimization model for each

pixel along each A-line [25]. With a linear optimization, there was a unique optimum for each

set of data, and results were independent of the initial guess required for an iterative nonlinear

model. The cost function δ which was defined as the root of mean square difference between

the measured OCT trace I(z) and the model fitted value was computed at every step k. Starting

from the lumen boundary, the fitting window was extended until a decrease in fit quality was

detected that δ in step k was bigger than the δ value in step k-1. Moving the window forward

and searching for the longest window maximized the accuracy of the fitted attenuation coeffi-

cient, and the optimum values with smallest δ were stored. This procedure was repeated until

the window encountered the end of the A-line.

To simplify the calculation, we randomly sampled 100 out of 5000 A-lines in each EB-OCT

image and then took the average of μr at the same depth (Fig 1). For each chosen A-line, we

selected 100 pixels from the lumen boundary to exclude pixels with low SNR as much as

possible.
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B. Image features. Compared to normal airway tissues, malignant lesions are high scattering

without clear layer structure [20], which can be measured by image features. A total of 56 fea-

tures were extracted from B-scan images, which can be categorized into statistical feature and

textural feature:

1. Statistical feature [26] (SF): (a) mean, (b) median value, (c) standard deviation, (d) skew-

ness, (e) kurtosis.

2. Textural feature: (a) Fractal dimension analysis [27–29] (FDA): The Hurst coefficients for

dimensions 1,2,3 and 4 were computed. (b) Fourier power spectrum [30–32] (FPS): radial

sum and angular sum were calculated. (c) Spatial gray level dependence matrices [33, 34]

(SGLDM) proposed by Haralick: angular second moment, contrast, correlation, sum of

squares, inverse difference moment, sum average, sum variance, sum entropy, entropy, dif-

ference variance, difference entropy and information measures of correlation. Four values

Fig 1. Normal and malignant airway tissue. EB-OCT images of (A) normal and (B) malignant airway tissue. ROI started from lumen boundary and ended at a

depth of 100 pixels along A-line, corresponding to the region between two red circles. A-line was indicated by the yellow arrow. The average value of attenuation

coefficient and intensity for each depth of 100 randomly selected A-lines were extracted from EB-OCT images of normal (C) and malignant (D) lesions,

respectively.

https://doi.org/10.1371/journal.pone.0260600.g001
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were computed for angles θ = 0, 45, 90 and 135 degrees, and for a chosen distance d = 1.

The mean and range of the values over the four angles represents the features above. (d)

Gray level difference statistics [34] (GLDS): contrast, energy, entropy and mean. Features

above were calculated for displacements (Δx, Δy) = (0,1), (1,1), (1,0),(1,−1), and their mean

values were taken. (e) Neighborhood gray tone difference matrix [35] (NGTDM): coarse-

ness, contrast, busyness, complexity and strength. (f) Statistical feature matrix (SFM):

coarseness, contrast, periodicity and roughness. (g) Laws’ texture energy measures [29, 36–

38] (LTEM): LL-texture energy from LL kernel, EE-texture energy from EE-kernel, SS-tex-

ture energy from SS-kernel, LE-average texture energy from LE and EL kernels, ES-average

texture energy from ES and SE kernels, and LS-average texture energy from LS and SL ker-

nels. Detailed definition and formulas of these image features are provided in S1 Text.

2.5 Statistical analysis

In this study, the statistical software was SPSS 20.0 (SPSS Inc., Chicago, IL, USA), and the map-

ping software was Graphpad Prism 5.0 (Graphpad Inc., San Diego, USA). Population data and

the percentages obtained were expressed in the form of Mean ± SD. The student’s t-test was

used to investigate the differences between normal and malignant pulmonary nodules regard-

ing to the attenuation coefficient and image features. A significance level of 0.05 was consid-

ered to be statistically significant.

2.6 Image classification

All aforementioned features with significant p-values were used as predict variables in the clas-

sifier and RF model classified it into two classes: normal and malignant tissue. In this study,

the sample of EB-OCT images was firstly split based on subjects into two nonoverlapping sub-

sets. In order to assess the robustness of the model, 10-fold cross-validation was performed to

generate different training sets (70% images) and testing sets (30% images). The classification

accuracy was calculated by comparing the clinically proven pathological results with the diag-

nostic results provided by automated classifier. The average classification accuracy, sensitivity

and specificity were calculated.

3. Results

3.1 General patient characteristics

The 31 patients selected in this study had SPN lesions ranging from 1.2cm to 5.1cm, among

which 15 cases were malignant tumors (13 cases of adenocarcinomas; 1 case of squamous cell

carcinoma; 1 case of small cell lung cancer), 7 cases were inflammation, and the other 6 cases

suggested organizing pneumonia. Among all the patients, 9 cases were diagnosed by surgery

and 2 cases were diagnosed by CT guided percutaneous lung puncture. According to the path-

ological results of all 31 cases, 16 cases were demonstrated to be normal, whose lesions all dis-

appeared during chest CT follow-ups. 6 cases were organizing pneumonia, among which 2

cases were diagnosed by surgery and 1 case was diagnosed by percutaneous puncture

(Table 1).

3.2 Image features

Quantitative analysis of 1703 images of 31 patients were carried out to obtain the image fea-

tures. Table 2 presented the measured values (mean ± SD) and p-values of both optical proper-

ties and image features with significant differences between normal and malignant lesions.
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As shown in Table 2, the attenuation coefficient of normal tissue is found to be higher than

malignant one (0.055±0.018 vs. 0.050±0.019, p = 0.044), which could be partly due to the pres-

ence of the extracellular matrix in the submucosal layer in normal nodules (Fig 1). Besides, 29

image features showed significant differences between normal and malignant lesions. It is

noteworthy that the malignant tissue image had lower standard deviation compared to normal

tissue (25.044±1.113 vs. 27.741±2.650, p = 0.002), which may be attributed to the loss of layer

structure and glandular tissues in malignant pulmonary nodules. Similarly, other image fea-

tures in malignant lesions, such as skewness and kurtosis, entropy and features in the fractal

dimension texture analysis, were found lower than normal one. These results showed consis-

tency with histological evidence of the lack of layered structure in malignant airways.

3.3 Classification results

The RF classifier was used for classification of normal and malignant airway tissues. A total of

1703 images were used in this experiment, out of which 70% were used for training while 30%

were used for testing. Fig 2 showed the ROC curves for testing sets. The average classification

Table 2. Attenuation coefficient and image features of normal and malignant airway tissues with significant p-values.

Features Normal Malignant P Value

Optical Properties Attenuation Coefficient 0.055±0.018 0.050±0.019 P = 0.044

Image Features Statistical Features Mean 19.015±2.907 16.883±1.444 P = 0.022

Variance 7.347±3.301 4.683±2.347 P = 0.024

Standard Deviation 27.741±2.650 25.044±1.113 P = 0.002

Kurtosis 7.667±1.224 6.530±0.932 P = 0.012

Fractal Dimension Texture Analysis H2 0.268±0.021 0.255±0.010 P = 0.046

Fourier Power Spectrum Radial Sum 22329.124±2636.736 20062.536±1094.022 P = 0.007

Angular Sum 7459.190±782.468 6654.144±751.668 P = 0.014

Spatial Gray Level Difference matrices Mean of Angular Second Moment 0.104±0.024 0.130±0.025 P = 0.012

Range of Angular Second Moment 0.008±0.002 0.010±0.002 P = 0.031

Mean of Contrast 79.518±10.863 70.401±5.743 P = 0.011

Range of Contrast 29.222±4.691 25.297±2.306 P = 0.010

Mean of Sum of Squares 788.191±117.119 642.880±37.404 P<0.001

Range of Sum of Squares 0.644±0.061 0.545±0.065 P<0.001

Mean of Inverse Difference Moment 0.420±0.039 0.452±0.036 P = 0.037

Mean of Sum Average 40.072±5.902 35.795±2.940 P = 0.023

Range of Sum Average 0.052±0.008 0.046±0.004 P = 0.021

Mean of Sum Variance 3073.25±459.95 2501.12±148.29 P<0.001

Range of Sum Variance 26.649±4.642 23.116±2.357 P = 0.018

Range of Entropy 0.128±0.013 0.120±0.008 P = 0.049

Mean of Difference Variance 50.765±5.608 46.476±3.189 P = 0.021

Range of Difference Variance 18.408±2.571 16.476±1.521 P = 0.024

Gray Level Difference matrices Contrast 79.509±10.862 70.392±5.742 P = 0.011

Energy 0.163±0.023 0.187±0.023 P = 0.017

Mean 5.273±0.633 4.809±0.387 P = 0.029

Neighborhood Gray Tone Difference Matrix Contrast 0.490±0.101 0.401±0.054 P = 0.008

Complexity 42023.943±4392.033 36220.977±2731.785 P<0.001

Statistical Feature Matrix coarseness 12.196±1.288 13.486±1.116 P = 0.011

Laws Texture Energy Measures LL 109129.317±10433.990 98313.561±4480.171 P = 0.002

LE 6658.034±820.816 5960.603±406.741 P = 0.009

https://doi.org/10.1371/journal.pone.0260600.t002
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accuracy was up to 83.5%, and the average sensitivity and specificity were found to be 90.4%

and 77.9% respectively.

4. Discussion

To the best of our knowledge, this is the first study to show the feasibility of automated identi-

fication of malignant pulmonary nodules in EB-OCT images via machine learning algorithm.

Besides, this is the first report evaluating the quantitative image features of EB-OCT scans and

investigating their significant differences between normal and malignant lesions. Importantly,

the quantitative analysis from in vivo EB-OCT images was associated with clinically proven

histopathological diagnosis. The prediction of automated classification was validated by the

follow-up examinations of all patients.

Every year, millions of patients have an incidental pulmonary nodule identified on chest

CT imaging, and the number of patients will only increase with implementation of lung cancer

screening [39, 40]. However, the vast majority of patients cannot benefit from the detection of

a pulmonary nodule since most of nodules are ultimately determined to be false-positive find-

ings for lung cancer [41]. Therefore, it is important to develop strategies to determine if a

small nodule is malignant when first identified. However, the traditional imaging test, such as

CT and R-EBUS, cannot provide sufficient information to detect malignant lesions accurately

[42–44]. For example, the CT images of 5 cases of patients in this study showed ground glass

nodules (GGO). Unlike solid lung nodules, even if the probe of EBUS was performed inside

the GGO nodules accurately, only the "blizzard-like" ultrasound images could be observed

Fig 2. The ROC curve of the testing set of the classifier. Classification accuracy reached up to 81.4%, and sensitivity

and specificity were 76.4% and 84.8% respectively.

https://doi.org/10.1371/journal.pone.0260600.g002
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[45]. The features of these kind of images were too similar to that of inflammation and normal

lung tissues to be identified [46]. Another example, Fig 3 showed pulmonary nodules of differ-

ent cases on CT scan and corresponding OCT images (an OCT image for healthy trachea was

provided in S1 Fig). Although final pathology confirmed that they were different type lesions,

including pneumonia (A&B), adenocarcinoma (C&D), squamous cell carcinoma (E&F) and

small cell lung cancer (H&I), they have similar manifestations on CT scan. To overcome these

issues, an alternative imaging technique is needed which will perform the real-time, noninva-

sive and rapid screening with high resolution.

Near infrared-based OCT is a novel imaging technique that combined with bronchoscopy

generates highly detailed images of the airway wall [8]. The feasibility of EB-OCT to identify

the human airway wall areas in total and in sublayers has been demonstrated in several pilot

work [4, 47]. In addition, the comparison of ex vivo and in vivo OCT images with histology in

human airways has been investigated [6, 7, 48]. However, the quantitative analysis of image

features derived from airway OCT scans and the correlation with specific lesion are remain

unknown. In this study, we investigated attenuation coefficient and other 56 image features

extracted from A-line and B-scan OCT images. The p-value obtained from the student’s t-test

suggested that there are significant differences of attenuation coefficient and 29 image features

between normal and malignant tissues. Further analysis was performed to evaluate the associa-

tion between the image features and histopathological subtypes (such as inflammatory) of the

lesions (Table 3). One-way ANOVA test was carried out to examine if significant differences

exist among EB-OCT images on three groups (normal, malignant and inflammatory). It was

found that 7 features, including SF kurtosis, GLDS variance and NGTDM entropy, were signif-

icantly different (p<0.05) in these three groups. Remarkably, there was no significant differ-

ence in the optical property, i.e., the attenuation coefficient, among the three groups, which

suggested that more specific image features should be addressed in the quantitative analysis of

EB-OCT images of inflammatory patients.

Although the quantitative information from EB-OCT images that capture the features of

malignant pulmonary nodules has been revealed, it is difficult for physicians to distinguish the

normal and malignant lesions based on these features [9, 48] (also see Fig 3B, 3D, 3F and 3I).

Automated image analysis methods by using artificial intelligence algorithm can provide a

robust and accurate diagnosis independent of visual interpretation limitations. In order to

involve complete information of one given patient, the training set and the testing set used in

the current machine learning algorithm were classified according to different patient groups.

One advantage of this setting is that the result deviation due to sampling bias could be avoided

as much as possible since there was no intersection of OCT images between the training set

and the testing set. All the quantitative features extracted from the EB-OCT images were used

for classification of normal and malignant pulmonary nodules in RF algorithm. The average

sensitivity, specificity, and accuracy were found to be 90.41%, 77.87% and 83.51%, respectively,

for the testing datasets, which significantly outperforms the traditional clinical diagnosis of

malignant pulmonary nodules with R-EBUS guided biopsy [38].

The current preliminary study has several limitations. Firstly, the training and testing

results were based on a limited sample pool, and more data needs to be acquired for further

validation. Secondly, the performance of the classification based on image features may be

enhanced by further image processing, such as background or baseline corrections, updating

the feature weights or filtering the noise attributes. In addition, the classification performance

may be improved by employing a more robust learning algorithm, e.g., using deep convolu-

tional neural networks, which does not need a manual or handcraft extraction of features [13].

Thirdly, the patients whose peripheral pulmonary nodules were less than 1 cm were excluded

in this study, since they cannot be biopsied via bronchoscopy. However, these patients with
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small pulmonary nodules could benefit the most from the early identification of malignant

lesions. For example, the surgeon would suggest surgical resection if the malignant rate of this

kind of nodules is diagnosed to be high according to quantitative analysis of EB-OCT images

associated with automated assessment by a well-trained classifier. Fourthly, the diameter of the

EB-OCT catheter in this study was 1.7 mm. Due to the limitation of the physical properties of

the catheter, it was difficult for the catheter to reach the lung lesions with large angles through

the working channel of bronchoscope, e.g., the nodules located in the superior segment (S6).

Therefore, only 2 cases of patients with superior segmental lesions were included in this study.

Further investigation is necessary to recruit more patients to perform randomized controlled

study, to validate the results and findings of this work with more clinically proven lung

nodules.

In conclusion, quantitative features were extracted from 1703 EB-OCT images of pulmo-

nary nodules of 31 patients, and the significant differences of image features between normal

and malignant lesions were demonstrated. Using a RF classifier model, a sensitivity of 90.41%,

specificity of 77.87% and accuracy of 83.51% was achieved to automated distinguish the nor-

mal and malignant pulmonary nodules. The promising results indicate that the EB-OCT com-

bined with the machine leaning algorithm can potentially be a useful diagnostic tool for low

cost identification of malignant pulmonary nodules. With more image data and addition of

pathological information will make the system more robust and support in clinician decisions.

We envision that our proposed method in future will assist specialists with early diagnosis, risk

stratification, and prognosis of lung cancer patients.

Supporting information

S1 Checklist. STROBE statement—checklist of items that should be included in reports of

observational studies.

(DOCX)

S1 Fig. An OCT image of healthy trachea.

(DOCX)

Fig 3. Pulmonary nodules of different cases on CT scan and corresponding OCT images. Although final pathology

confirmed that they were different type lesions, including pneumonia (A&B), adenocarcinoma (C&D), squamous cell

carcinoma (E&F) and small cell lung cancer (H&I), they have similar manifestations on CT scan (Black arrows point to

lesions). OCT images demonstrated that normal lesion appeared homogeneous and had clear structure (B). In OCT

images of malignant lesions (D F I), the lesions appear as unevenly distributed areas of high backscatter, resulting in

the loss of layer structure and glandular tissue. Red arrows indicate the lesion areas.

https://doi.org/10.1371/journal.pone.0260600.g003

Table 3. Image features of normal, malignant and inflammatory airway tissues with significant p-values.

Features Normal Malignant Inflammatory P-Value

Image Features Statistical Features Standard deviation 28.36±2.03 25.52±0.61 25.94±0.84 P = 0.048

Skewness 2.22±0.21 2.0±0.18 1.93±0.11 P = 0.029

Kurtosis 8.02±1.19 6.42±0.82 6.28±0.5 P = 0.007

Fourier Power Spectrum Angular Sum 7840.45±606.53 6737.52±554.16 7468.83±901.72 P = 0.049

Neighborhood Gray Tone Difference Matrix Entropy 42398.74±2479.9 37595.91±2148.07 36320.06±969.14 P = 0.025

Laws Texture Energy Measures LL 111776.83±8124.23 100160.81±2589.38 101742.17±3658.35 P = 0.045

Gray Level Difference Statistics Variance 810.13±119.39 653.6±30.78 675.45±44.24 P = 0.011

https://doi.org/10.1371/journal.pone.0260600.t003
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S1 Video. Video from radial endobronchial ultrasound.

(MP4)

S2 Video. Video from OCT.

(AVI)

S1 Text. Detailed definition and formulas of these image features.

(DOCX)
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