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Abstract

Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have
changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the
described species) and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one
representative per subgroup (e.g. family) and thus to maximize diversity (diversified sampling). So far, such complications
have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a
birth-death process with non-constant (time-dependent) diversification rates and diversified taxon sampling. Using
simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium
sized (fewer than 200 taxa). The results show that the diversification rates can be inferred and the estimates are unbiased for
large trees but are biased for small trees (fewer than 50 taxa). Furthermore, model selection by means of Akaike’s
Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death
model is recovered if the extinction rate is large and compared to a pure-birth model). Finally, I applied six different
diversification rate models – ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death
process but excluding any rate shift models – on three large-scale empirical phylogenies (ants, mammals and snakes with
respectively 149, 164 and 41 sampled species). All three phylogenies were constructed by diversified taxon sampling, as
stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric
bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions,
such as homogeneous rates across species or no rate shifts, appear to be violated.
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Introduction

Patterns of biodiversity reflected in phylogenetic estimates

indicate that (1) rates of diversification are not constant over time

or across the tree and (2) taxonomic sampling is both incomplete

and non-random. Furthermore, knowing the sampling strategy is

crucial for unbiased estimation of diversification rates [1–3].

Researchers sample species in a manner that is not uniform.

Instead, taxa are often selected so that the diversity is maximized,

e.g. sampling at least one species per family [4,5]. This strategy is

called diversified sampling [2].

Several extensions have been proposed to model non-constant

diversification rates [6–9] but the combination of incompletely

sampled phylogenies and non-constant rates has attracted less

attention. It is well known how to accommodate uniform taxon

sampling (also called random sampling), where every taxon has the

same probability to be included in the dataset, in inference based

on the birth-death process [6,10]. The birth-death process with

uniform taxon sampling has been extended to time-dependent

rates [8] and diversity-dependent rates [11]. Diversified taxon

sampling has only been considered in the context of constant rates

[2] and, to my knowledge, the corresponding likelihood functions

for non-constant rates have not been available previously.

In the present paper I derive the likelihood function for the

birth-death process with diversified taxon sampling and time-

dependent diversification rates. Thus, the diversification rates may

be defined as any function that only depends on the variable time

e.g. an exponentially decaying speciation rate. The focus of the

paper lies on frequentist inference of the parameters of the birth-

death process by means of Maximum Likelihood Estimation

(MLE) and model selection by means of the Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC).

It has been claimed that MLEs of speciation and extinction rates

are unbiased if the correct model is used for the inference [8,12]

although the MLE is not always an unbiased estimator [13]. I will

investigate by means of simulations if the MLE is biased.

Selection of different birth-death models using the AIC score

has been widely applied and used to reject constant-rate models

[9,14–16] although Rabosky [7] showed that the AIC score may

be misleading. Therefore I investigate the power of the AIC and

BIC scores to recover the true model.

Besides the use in Maximum Likelihood inference as in this

study, the derived likelihood functions are also important for

Bayesian phylogenetic inference. The birth-death process assigns a

probability distribution on phylogenetic trees and divergence

times. Thus, the birth-death process is frequently used in Bayesian

phylogenetic inference as a prior probability distribution [10,17–

20]. This prior probability distribution influences divergence times

estimates and more realistic birth-death models improve the
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estimation of divergence times and rates of molecular evolution

[21–23].

Eventually, I applied six different diversification rate models on

three large-scale phylogenies: an ant phylogeny [24], a mammal

phylogeny [4] and a snake phylogeny [25]. These three

phylogenies have in common that (1) they are relatively large

(149, 164 and 41 sampled taxa), (2) are sparsely sampled (fewer

than 5% of the known species included) and (3) taxa were included

as representatives of different clades (diversified sampling). I

conclude by investigating the adequacy of the used models (model

fit) and discuss model shortcomings and potential model improve-

ments.

Materials and Methods

The birth-death process with non-constant diversification
rates and diversified taxon sampling

Following the notation of Nee et al. [6], I define the birth-death

process with non-constant rates and diversified sampling for

rooted, strictly bifurcating trees. At any given point in time t, the

number of living species is denoted by N(t). The number of

species N(t) is modeled by a Markovian birth and death process

with individual birth and death rates given by l(t) and m(t).

The process starts with two species at time t1 – which is the time

of the most recent common ancestor and therefore N(t1)~2. For

each species, a speciation or an extinction event occurs randomly

with rates l(t) and m(t) respectively. At a speciation event, the

ancestral species splits into two descendant species and at an

extinction event the species dies. The events happen instanta-

neously and speciation and extinction rates are equal for all

species. At the present time T the process is stopped. An example

of this process is illustrated in Figure 1.a. Then, the extinct lineages

are removed because only the extant taxa are observed (see

Figure 1.b). Let m~N(T) denote the number of extant species at

time T in the complete tree (see Figure 1.b) out of which n species

are sampled. Under uniform taxon sampling, every extant species

at the current time T has the same probability r to be sampled

and included in the reconstructed tree (see Figure 1.c). Under

diversified sampling, all species that arose from the last m{n

speciation events are removed (see [2] for a more detailed

description). The process is illustrated in Figure 1 and Figure 2.

Starting with one species at time t (N(t)~1) there are three key

probability functions: the probability of survival (N(T)w0),

exactly k species (N(T)~k) and exactly one species at time T

(N(T)~1) given by [6,26]

P(N(T) w0jN(t)~1)~ 1z

ðT
t

(m(s) exp (r(t,s)))ds

0
@

1
A

{1

ð1Þ

P(N(T)~kjN(t)~1)~(1{P(N(T)w0jN(t)~1) exp (r(t,T)))k{1

|P(N(T)w0jN(t)~1)2 exp (r(t,T)) ð2Þ

P(N(T)~1jN(t)~1)~P(N(T)w0jN(t)~1)2 exp (r(t,T)) ð3Þ

where r(t,s)~
Ð s

t
m(x){l(x)dx. Equation (1) is derived from

Equation (24) in [6] and Equation (2) and Equation (3) are derived

from Equation (3) in [6] (see also Höhna (2013) Equation (2–4)

[27]). These three probability functions are used to define the

probability density of the observed reconstructed tree.

The probability density of all speciation events

ftg~ft1, . . . ,tn{1g in the reconstructed tree under complete

sampling (fC ) is

fC(ftgjN(t1)~2)~P(N(T)~1jN(t1)~1)2

|P
n{1

i~2
(i|l(ti)|P(N(T)~1jN(ti)~1)) ð4Þ

which was derived by Thompson for constant rates (Equation

(3.4.6) though with a different combinatorial factor which

represents the probability of the tree topology)[28]. Additionally,

I modified the likelihood to use the time-dependent rate functions

of [6].

The probability density under diversified taxon sampling can be

derived by recognizing that all speciation events are independent

and identically distributed [2]. The definition of diversified

sampling dictates that all unobserved speciation events leading to

extant species occurred after the last observed speciation event.

Hence, the probability of each unobserved speciation event is

1{F (tn{1jN(t1)~1,t1ƒtn{1ƒT) where

F (tn{1jN(t1)~1,t1ƒtn{1ƒT) is the probability that a speciation

event has occurred prior to tn{1, see Figure 2 for an illustration.

The probability density function of the divergence times for

non-constant rates is (adopted from [27] Equation (8))

Figure 1. Sketches of a tree produced by a birth-death process. The process starts with a single lineage at the origin. At each speciation event
the ancestral lineage is replaced by two descendant lineages. At an extinction event the lineage simply terminates. a) A complete tree including the
extinct lineages. b) The reconstructed tree of tree a) without the extinct lineages. c) A randomly sampled tree of the same reconstructed tree. Every
taxa had the same probability r to be sampled. d) A five-taxon tree where taxa are selected to maximize diversity (diversified sampling).
doi:10.1371/journal.pone.0084184.g001

Birth-Death Process with Incomplete Taxon Sampling
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f (tjN(t1)~1,t1ƒtƒT)~

l(t)P(N(T)~1jN(t)~1)

1{P(N(T)w0jN(t1)~1) exp (r(t1,T))

ð5Þ

and thus the distribution function being

F (tjN(t1)~1,t1ƒtƒT)~

1{
1{P(N(T)w0jN(t)~1) exp (r(t,T))

1{P(N(T)w0jN(t1)~1) exp (r(t1,T))
:

ð6Þ

A short proof of Equation (6) is given in the Appendix.

From [2] Equation (A.1) in a slightly different notation we have

the probability density function of the speciation events in the

reconstructed tree given the time of the most recent common

ancestor (t1) and the total number of species m (sampled and

missing species) at the present time

fD(ftgjN(t1)~2,N(T)~m)~

1

n{1

m{2

n{2

 !
(1{F (tn{1jt1ƒtn{1ƒT))m{n

|P
n{1

i~2
f (tijt1ƒtiƒT)

~
1

n{1

m{2

n{2

� �
(1{F (tn{1jt1ƒtn{1ƒT))m{n

|P
n{1

i~2

l(ti)P(N(T)~1)jN(ti)~1)

1{P(N(T)w0)jN(t1)~1) exp (r(t1,T))
ð7Þ

The probability density conditioned only on the time since the

most recent common ancestor is obtained using Equation (12) in

[27]

fD(ftgjN(t1)~2)~fD(ftgjN(t1)~2,

N(T)~m)|P(N(T)~mjN(t1)~2)

~
m{2

n{2

� �
(1{P(N(T)w0jN(t)~1) exp (r(t,T)))m{n

| P(N(T)w0)jN(t1)~1) exp (r(t1,T))ð Þ2

|P
n{1

i~2
l(ti)P(N(T)~1)jN(ti)~1) :

ð8Þ

In the remainder of the paper I will use Equation (8) for the

computation of the likelihood under diversified taxon sampling.

Equation (4) with the rate function r(t,s)~
Ð s

t
m(x){l(x)dx if

svT and r(t,s)~
Ð s

t
m(x){l(x)dx{ log (r) if tƒTƒs will be

used for the likelihood function under uniform taxon sampling (see

[6] Equation (31)). For the analysis I condition on starting with two

species at the most recent common ancestor and on survival of the

process.

Parameters of the Birth-Death Process
I evaluated six different birth-death models with time-varying

rates, proceeding from the simplest model to the most general and

Figure 2. Illustration of diversified sampling and the probability density. a) A reconstructed tree where three speciation events are sampled
and last three speciation events are not. b) The cumulative probability density of the time of a speciation event. All non-sampled speciation events
occurred some time after the dashed line (tn{1) and thus have the probability 1{F (tn{1).
doi:10.1371/journal.pone.0084184.g002

Table 1. The six different birth-death models with the
corresponding parameters.

Model l(t) m(t)

Model 1 l0 0

Model 2 l1 � exp ({a � t) 0

Model 3 l0 m

Model 4 l0zl1 � exp ({a � t) 0

Model 5 l1 � exp ({a � t) m

Model 6 l0zl1 � exp ({a � t) m

doi:10.1371/journal.pone.0084184.t001

Birth-Death Process with Incomplete Taxon Sampling
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biologically realistic (Table 1). Other models with perhaps more

complex patterns of rate variation over time are possible and could

be of interest in future research. The first three models have been

used previously but the last three models are new contributions.

N Model 1: A constant-rate pure birth process, i.e. the Yule

process [29]. The number of species is monotonically and

exponentially increasing.

N Model 2: A decreasing pure birth process with the speciation

rate declining towards zero. This process is equivalent to the

decreasing rate pure birth process used in Rabosky and

Lovette [14]. The number of species is monotonically

increasing.

N Model 3: A constant-rate birth-death process, as used in

Thompson [28]. The expected number of species increases

exponentially with time.

N Model 4: A pure birth process with a decaying rate of

speciation but a constant, non-zero speciation rate the longer

the process continues (l(t)~l0zl1 � exp ({a � t)). Thus, the

process does not stop producing new species after the initial

burst, as it is the case in Model 2. As for the other two pure

birth processes, the number of species increases monotonically.

N Model 5: A birth-death process with an initial phase of

expansion (higher speciation rate than extinction rate) and

afterwards converging to a critical branching process, i.e. the

speciation rate and the extinction rate are equal

(l(t)~mzl1 � exp ({a � t) and m(t)~m). Although one might

assume the expected number of species to remain constant for

a critical branching process, this does not hold if the process is

conditioned on survival (see Figure 3).

N Model 6: A birth-death process with a constant extinction rate,

a constant part of the speciation rate and a decreasing part of

the speciation rate. It represents the situation when diversity is

continuously increasing starting with rapid radiation, followed

by a steady expansion and some constant species turnover over

time (l(t)~l0zl1 � exp ({a � t) and m(t)~m).

The parametrization of the models can be found in Table 1.

Figure 3 shows the expected number of species (E½N(T)�) alive at

time T . E½N(T)� is obtained analytically using the fact that N(T)
is geometrically distributed, see Equation (5) in [27]. Note that the

process is conditioned on survival and thus E½N(T)� increases even

if l(t)~m(t).

Accuracy of Parameter Estimation
Using simulation, I investigated the accuracy of parameter

estimation under birth-death models – including pure birth models

– and the impact of tree size on the accuracy. Additionally, I tested

the effectiveness of the AIC [30] and BIC [31] for choosing

between models. Finally, I applied the models on three empirical

large-scale phylogenies.

The MLE is an unbiased estimator of the true parameters in the

limit (if the number of observation goes to infinity) which has been

shown using the Central Limit Theorem ([13], Chapter 5, page

118). Hence, for very large trees the MLE of the diversification

rates is unbiased, and may or may not be biased for small samples.

Condamine et al. [12] claimed that extinction rate estimates are

unbiased if the inference model is the same as the simulation

model and refer to [16] and [8]. I numerically investigated if the

MLE is indeed unbiased if the model assumptions hold true. I

simulated 1000 trees under complete taxon sampling for the time

of the process T[f0:25,0:5, . . . ,5g and conditioning on survival of

Figure 3. The six birth-death models used in this study. Each plot shows the speciation rate (dashed) and the extinction rate (dotted) over
time, as well as the expected number of species (E½N(t)�) if the process endured for a time t. Model 1: A constant-rate pure birth process. Model 2: A
decreasing pure birth process with the speciation rate declining towards zero as time continues. Model 3: A constant-rate birth-death process. Model
4: A pure birth process with a constant part of the speciation rate and a decreasing part of the speciation rate. Model 5: A birth-death process with an
initial phase of expansion (higher speciation rate than extinction rate) and afterwards converging to a critical branching process. Model 6: A birth-
death process with a constant extinction rate, a constant part of the speciation rate and a decreasing part of the speciation rate.
doi:10.1371/journal.pone.0084184.g003
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the process under (1) a constant-rate pure birth process (l~1:0) (2)

a constant-rate birth-death process (l~1:6, m~0:8) and (3) a

birth-death process with a decreasing speciation rate

(l(t)~1z4 � exp ({1 � t), m~1). Then, I estimated the model

parameters l, m and a for each tree choosing the true model.

These parameter settings were chosen so that the expected

diversity after time t~5 was approximately 200. Here, I varied the

time of the process and thus also the size of the simulated tree to

study the impact of the tree size on the bias of the estimated

parameters.

I assumed a speciation rate larger than the extinction rate

(l(t)wm(t)). Hence the expected number of species in the

phylogenetic tree (E½N(T)�) increases the longer the process takes.

Therefore, I was able to observe if the bias decreases or increases

with more taxa by running the birth-death process for different

times. The simulations were performed in R using the package

TESS [27].

Model selection using the AIC and BIC
In frequentist inference the best model can be selected out of a

set of (non-nested) candidate models via the AIC [30] and BIC

[31]. The model with the lowest AIC (or BIC) score is selected as

the best model. Here I used the AIC corrected (AICc) for small

sample sizes,

AICc~{2 log (L)z2kz
2k(k{1)

n0{k{1
ð9Þ

where k denotes the number of parameters in the model, n0 the

number of speciation events (n0~n{2) and L the likelihood score

of the MLE [32,33].

The AICc needs the number of observations (sample size) for

the computation. One may ask what the sample size of one

phylogenetic tree is: either just one single observation (i.e. one tree)

or n{2 observations (the number of speciation events except the

root). The choice will strongly influence the AICc score. I argue

that a single phylogenetic tree represents a sample of size n{2.

The number of species alive at time T is geometrically distributed

[6] and all speciation events in the reconstructed tree are

independent and identically distributed (see [28] and [10]). Thus

we have one observation from a geometric distribution and n{2
observation from some other distribution (Equation (6)) but the

n{2 speciation events are dependent on the age of the tree and

the number of sampled taxa. Therefore a single tree from a birth-

death process resembles a sample of size n{2 (see also [34]).

Rabosky [7] showed that the model selection by means of the

AIC can be misleading. In Rabosky’s study up to 50% of the

simulations under a constant-rate birth-death process favored a

more complex, non-constant rate model. Nevertheless, many

analyses of birth-death models have been based on the ability of

the AIC score to distinguish between models [14,15]. Rabosky[17]

used the AIC but Burnham and Anderson[32] showed that the

AIC will favor more complex models for small sample sizes and

the AICc should be used instead because it gives a higher penalty

to more complex models. Similarly, the BIC is more conservative

than the AIC. Therefore, I investigated the performance of the

AICc and BIC to select the true model under which the data were

simulated using the following setup.

I simulated 100 trees with n~100 taxa under (1) a constant-rate

pure birth process, (2) a decreasing-rate pure birth process and (3)

a constant-rate birth-death process with r [ f0:05,0:15, . . . ,0:95g
once under uniform taxon sampling and once under diversified

taxon sampling applied to all three models. For the constant-rate

pure birth process I choose the rate l~1:0; for the decreasing rate

pure birth process I choose the rate function

l(t)~4:0 � exp ({0:5 � t) and for the constant-rate birth-death

process I choose the rates l~1:0 and m~0:75. The tree size

remained fixed for this study to resemble the size of empirical

datasets. For each tree the best model out of the six mentioned

models in Table 1 was selected.

Analysis on Empirical Phylogenies
Sampling to maximize taxonomic representation is an acknowl-

edged common practice in phylogenetic systematics (e.g. system-

atic studies that use a single species per family or genus [35–37]).

However, the prevalence of diversified sampling and its impor-

tance in studies of lineage diversification are not well understood. I

applied the birth-death models on three large-scale phylogenies of:

ants, mammals and snakes. All three phylogenies are examples of

diversified sampling.

Moreau et al. [24] built a phylogeny of extant ants sampled

from nearly half of the described genera (139 of 288). The

phylogeny contains 149 samples of the approximately 11,800

described species which gives a sampling probability of just above

1%. The estimated most recent common ancestor (MRCA) was

168 million years ago (Ma). Moreau et al. [24] did not estimate

diversification rates but observed that most new lineages arose 100

to 70 Ma. I removed duplicate species per genus and the outgroup

species to obtain a phylogeny with sampling as close as possible to

diversified sampling.

Pyron and Burbrink [25] reconstructed a phylogeny of all

known families and subfamilies of snakes. The phylogeny contains

41 samples of the nearly 3,500 snake species which again resulted

into a sampling fraction of just above 1%. Pyron and Burbrink

[25] studied clade-dependent diversification rates and found four

diversification rate shifts. Furthermore, clade ages and diversifica-

tion rates seemed to be negatively correlated.

Meredith et al. [4] constructed a family-level mammal

phylogeny with 1–3 samples per family. The phylogeny contains

164 samples of the approximately 5,400 described species, a

sampling fraction of approximately 3%. Their analysis revealed

two rate increases, at *100 Ma and/or *83 Ma, and a decrease

at *78 Ma. The original analysis only estimated rates until

40 Ma because of the sampling bias. I reduced the sample size so

that exactly one species per family remained.

For each dataset the best model was selected by means of the

AICc score and the BIC score. Each of the six models was applied

under the assumption of uniform sampling and diversified

sampling, giving a total of 12 different models. The empirical

estimates of the sampling probability r were used. The MLEs were

obtained using the optimization routine optim in R repeated 10

times with different initial values to check for convergence. The R

script and the phylogenies are available in the Dryad data

repository at http://doi.org/10.5061/dryad.rd2s3.

Model Adequacy Testing. The adequacy of a model, often

called model fit, is the probability of the observed data under the

model [38]. Analytical computation of the probability of the data

is infeasible in most situation and a simulation method, such as the

parametric bootstrap, is necessary [39]. The parametric bootstrap

computes the probability of the observed data (model adequacy)

by simulating datasets, computing summary statistics for the

simulated datasets and testing whether the summary statistic of the

observed data falls within the 95% interval of the simulated

summary statistics.

For each model and dataset I simulated 10000 trees under the

MLE parameters conditioning on the time of the process equals

the observed age of the tree and another 10000 trees under the

MLE parameters conditioning on the number of taxa being equal

Birth-Death Process with Incomplete Taxon Sampling
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to the number of observed (sampled) taxa. For the first 10000 trees

I computed the empirical distribution of the c{statistic [40] and

the number of taxa sampled and for the second 10000 trees I

computed the empirical distribution of the age of the trees. Finally

I computed the probability of the summary statistics of the

observed tree.

Results and Discussion

Accuracy of Parameter Estimation
Despite the claim of Condamine et al. [12] I observed in the

simulation study that the MLEs were biased (see Figure 4) even

under the true model. As expected, the bias decreased for larger

trees and one may get unbiased estimates if the tree were very

large. Even under a constant-rate pure birth process the MLE was

biased for trees with fewer than 50 taxa compared with the results

of Morlon et al. who found no bias, see Figure S4 in [8].

Specifically, the speciation rate was underestimated (see Figure S1

in File S1). However, under a constant-rate birth-death process the

speciation rate was overestimated and the extinction rate

underestimated (see Figure S2 in File S1).

Under the decreasing speciation rate birth-death model, the

extinction rate m and the rate a at which the speciation rate

declines were also biased (see Figure 4). In these cases, m and a
were overestimated. For small trees, the common observation of

rapid radiations (aw0, see[41]) could be due to the bias in the

maximum likelihood estimates. Rabosky [7] observed this

preference towards more complex models. Nevertheless, the

parameters defining the time-dependent speciation and extinction

rates of a birth-death process can be estimated with trees that are

large enough.

Morlon et al. investigated if the estimated net-diversification

rate (l{m) is biased, which is equivalent to my analysis under the

constant-rate pure birth process. However, the bias is small for the

simpler models, such as the constant-rate pure birth model. It is

therefore conceivable that Morlon et al. attributed the bias to the

rather large uncertainty in the parameter estimate (see the 95%

confidence interval in Figure 4). Nevertheless, using extensive

simulations the bias can be observed and reproduced and is

increasingly important for more complex models.

Unfortunately the bias changes with different models and

parameter values (see Figures S1 and S2 in File S1). A correction

for the bias was not performed in this study because the empirical

phylogenies are relatively large but could be important for smaller

phylogenies or in future research. For a single study it is possible to

simulate under the inferred parameter values and re-estimate the

parameters in order to quantify the bias.

Model Selection by means of AIC
My results indicate that the correct model can be inferred if the

AICc score is used (see Figure 5). For the two constant-rate models

the error rate did not depend on the sampling probability r.

However, with increasing sampling probability the error rate

increased for the decreasing rate pure birth model (Model 2).

These results are more optimistic than the results of [7]. The

improvements are due to the advantage of the AICc over the AIC.

Nonetheless the AICc is not flawless and the accuracy depends on

the sample size and model complexity.

Furthermore, I tested, using the same simulation scheme, if the

correct sampling method could be inferred. The ability to identify

the correct sampling strategy based on a likelihood method has not

been investigated previously. In [2] we only investigated the effect

of the sampling strategy on the inferred parameters. The results

show that the sampling method can clearly be recovered (Figure 6).

The error rate starts to increase sharply only for almost complete

sampling. This is to be expected because uniform taxon sampling

and diversified taxon sampling are identical for r~1 [2].

The same exercise was repeated using the BIC score for model

selection. The results are very similar with the difference that the

error rate of the constant-rate pure birth model was lower and the

error rate of the decreasing rate pure model was higher (see Figure

S3 and S4 in File S1). This result is not surprising because the BIC

is more conservative and thus penalizes the more complex model

(the decreasing rate pure birth model) more intensively.

Empirical Analyses
Diversified sampling was identified as the best-fitting model for

the snake phylogeny. The best model was a constant-rate birth-

death process with rates l~2:3488 and m~2:3488, which

resembles a critical branching process (see Figure 7). Note here

that I conditioned on l§m and with unconstrained parameters the

extinction rate is estimated to be larger than the speciation rate.

The difference in the AICc score between the best model under

uniform sampling versus diversified sampling was DAICc~12:812,

showing strong support for diversified sampling.

The inferred extinction rate being as high as the speciation rate

(l&m) is surprising. Under a critical branching process, the net-

diversification rate l{m~0 and the expected diversity remains

constant. However, the snake clade accumulated as many as 3400

species in 169.7261 million years. The estimated extinction rate

might thus be an artifact of the condition on survival of the

process. Indeed, if the same inference procedure was repeated

without conditioning on survival of the process, the extinction was

estimated to be lower than the speciation rate (data not shown).

Figure 4. The bias in the maximum likelihood estimates of the speciation and extinction rate. The true parameters were l~4, m~1 and
a~1. The figure shows that the bias decreases with larger trees (by simulating trees with a larger time T ). The expected number of species (E½N(T)�)
is presented to illustrate the increase in diversity over time.
doi:10.1371/journal.pone.0084184.g004
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The mammal and the ant phylogenies favored a model with

uniform sampling instead. The best model for the mammal

phylogeny was the constant-rate birth-death model with rates

l~0:1247 and m~0:0637. The best model for the ant phylogeny

was a constant-rate pure birth process with l~0:0567, although a

decreasing rate pure birth process gave a higher likelihood but not

significant improvement (difference in likelihood scores:

DL~1:6837).

Allowing non-constant diversification rates improved the model

fit for the ant phylogeny but not for the mammal and snake

phylogenies. The chosen time-dependent rate functions used in

this study are likely too simplistic, as Meredith et al. [4] observed

first an increase and then a decrease in speciation rates in the

mammal phylogeny, a scenario that was not considered here. The

derived likelihood equations can be used readily for other time-

dependent rate functions. For example, it is possible to use the

derived likelihood equations for a birth-death shift process with

diversified taxon sampling [7,9].

The parametric bootstrap analyses revealed that most models

are not adequate for the observed data and it is very improbable

(p-value smaller than 0.01) that the data were generated under

these models (see Table S1–S3 in File S1). This results emphasizes

that the models are too simplistic and some model assumptions are

violated, e.g. a constant rate function. Only the constant-rate pure

birth model could not be rejected according to its model fit for the

ant phylogeny. Note that the constant-rate birth-death model was

also not rejected but the estimated extinction rate was zero.

However, the constant-rate pure birth model was not the best

model according the AICc and BIC. Thus, the AICc and BIC may

favor a model with a worse fit and a model adequacy test, as

performed here, should always accompany a model selection

procedure.

Possible Model Violations
The mathematical description I used here of diversified taxon

sampling is rather crude. It requires that all speciation events

before a given time are included and all speciation events after this

time are excluded (see Figure 2). A relaxation of this assumption

may yield much better estimates. For instance, very old speciation

events that define splits of families or other higher-order taxa have

a higher probability to be included. Still, the probability of a recent

speciation event to be included is unlikely to be zero and some old

speciation events may occasionally be missed.

For example, Meredith et al. [4] reconstructed the mammal

phylogenetic tree based on 1–3 species per family. Including at

least one species per family is clearly an example of diversified

taxon sampling, although not as strict as in the mathematical

definition used here. The present strict definition of diversified

sampling would require the missing species (more than 5200) to

have speciated after the last sampled speciation event, which was

Figure 5. Sensitivity analysis of the success of the sample-size corrected Akaike Information Criterion to select the correct model.
Trees were simulated under three different models: constant-rate pure birth (solid line), decreasing rate pure birth (dashed line) and constant-rate
birth-death (dotted line). The x-axis shows simulations for different sampling probabilities r.
doi:10.1371/journal.pone.0084184.g005

Figure 6. The sensitivity analysis testing whether the sampling strategy can be inferred. Trees were simulated under three different
models: constant-rate pure birth (solid line), decreasing rate pure birth (dashed line) and constant-rate birth-death (dotted line). The x-axis shows
simulations for different sampling probabilities r.
doi:10.1371/journal.pone.0084184.g006
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6.73 million years ago. Instead, the diversified sampling could be

used as a process for higher-order phylogenies, as described by [42].

A suitable cut-off is needed after which all speciation events are

discarded and then the diversified sampling can be applied. The

advantage of the method in the present paper is that it includes non-

constant diversification rates in contrast to the method in [42].

Figure 7. The estimated diversification rates for the snake, ant and mammal dataset. The plots show the change over time in total
number of surviving lineages (solid black line), the speciation rate (dashed blue line) and the extinction rate (dotted red line) is given.
doi:10.1371/journal.pone.0084184.g007
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A simple test showed that assuming a broader time interval

when the missing speciation events could have occurred improved

the likelihood score enormously. I removed the last 20% of the

speciation events because these are likely to violate the diversified

sampling scheme. Diversified sampling was then preferred over

uniform sampling on these pruned phylogenies (data not shown).

Hence, diversified sampling is very sensitive to small violation of

the sampling procedure. However, this data manipulation is

treacherous and may mislead conclusions.

It seems promising to extend diversified sampling by softening

the constraint that all missing speciation events must have

occurred after the last observed speciation event. A possible

extension is to allow speciation events to be sampled with

probability r1 before some given time tr and with probability r2

after this time. For example, we could have sample 80% of the

speciation event before the last observed speciation event and 0%

after the last speciation event. The diversified sampling method

here is a special case of this extension when r1~1, r2~0 and

tr~tn{1.

Conclusions

In the present paper I derived the probability density function

for a birth-death process with non-constant rates and diversified

taxon sampling. The birth-death process with diversified sampling

allows biologists to analyze diversification rates of large-scale

phylogenies that are sparsely sampled. I analyzed three such

phylogenies including ants, mammals and snakes respectively.

The snake phylogeny supported the diversified taxon sampling

model whereas the mammal and the ant phylogeny supported

uniform taxon sampling. Nevertheless, it was obvious from the

description of both the mammal and the ant study that diversified

taxon sampling had been used but likely in a weaker sense than in

the strict mathematical definition. The models presented in the

current paper show improvements over the currently available

models by allowing for non-constant rates and diversified

sampling. Relaxing the mathematical definition of diversified

taxon sampling used here and finding an intermediate between

diversified taxon sampling and uniform taxon sampling appears to

be the next step in future research.

In a simulation study I showed that the MLE of the

diversification rates is biased, but if the trees are large enough

the effect can be neglected. The AICc and the BIC can select the

correct model and have a low false-negative rate. However, these

results only apply under perfect condition when the true model is

known and the model assumptions are not violated. Thus, it

proved essential to investigate the fit of the models by means of

parametric bootstraps. Here none of the models could provide a

satisfactory fit when simulated trees were compared with the

observed trees. Hence I recommend to simulate trees under the

inferred parameters and compare the simulates tree with the

observed trees instead of relying simply on the AICc and BIC to

choose the best model.

The likelihood functions described in this paper are implement-

ed in the R package TESS [27] and are freely available. The

simulations of reconstructed trees were also performed with TESS

and the R scripts for the model selection are available in the Dryad

data repository at http://doi.org/10.5061/dryad.rd2s3.
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