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A B S T R A C T   

Refractoriness remains as one of the challenges in patients with lymphoma under chemotherapy, and among 
biological regulators in cells driving this type of response are microRNAs (miRNAs). Different genes are 
constantly turned on or off according to the miRNAs expression profiles affecting the drug response in patients 
and their stability in serum and plasma makes them potential prognostic biomarkers in several diseases. Here we 
described a profile of miRNAs in plasma of diffuse large B cell lymphoma (DLBCL) patients. miRNA expression 
arrays were carried using pre-treatment plasma samples of sixteen patients, followed by a comparison between 
the responder and the non-responders. After six cycles of R–CHOP treatment, twelve out of sixteen patients were 
clinically diagnosed with complete response while in four patients no clinical response was observed. Between 
these groups, a signature of fifteen differential expressed miRNAs was found. The circulating miRNAs in plasma 
of patients with no response were related to the drug resistance in other types of cancer, by targeting genes 
involved in cell proliferation and apoptosis, among other cell processes.   

1. Introduction 

DLBCL is the most frequent non-Hodgkin lymphoma (NHL) in the 
United States, corresponding to 65% of the total cases of NHL [1,2], 
whereas in Mexico represent 48% [3]. A combination of chemotherapy 
(cyclophosphamide, doxorubicin, vincristine and prednisone) plus Rit-
uximab (anti-CD20), reaches a response in up to 70% of the cases [4]. 
Nevertheless, a considerable percentage of patients remains refractory 
[5,6]. In this context, several research groups are studying molecular 
markers to predict response to treatment. miRNAs, small non-coding 
RNAs ranging from 17 to 25 bp and capable to regulate gene expres-
sion, started to be related to the drug resistance observed in cancer [7]. 

Because of its function as post-transcriptional regulators, an abnormal 
expression of miRNAs can affect important cellular pathways. Note-
worthy, miRNAs are normally released into the bloodstream and travel 
around the vessels in lipid vesicles, exosomes, or bound to protein 
complexes [7–9]; and due to their stability, particular signatures of these 
circulating miRNAs can be detected and associated with prognosis or 
drug response in pathologies such as cancer [10]. Increased levels of 
miRNAs have been found in serum of patients diagnosed with prostate 
cancer, lung cancer, ovarian cancer, colorectal cancer, among others 
[11]. In this research, we analyzed the miRNA profile in pre-treatment 
plasma samples from a group of patients diagnosed with DLBCL. 
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2. Materials and methods 

2.1. Subjects and plasma samples 

Patients diagnosed with DLBCL at the Hematology service from the 
Instituto Mexicano del Seguro Social (IMSS) were enrolled in the study. 
The diagnosed was based in a combination of clinical, laboratory and 
radiologic findings, followed by an excisional or incisional biopsy of a 
peripheral lymph node to confirm diagnosis [12]. After informed con-
sent, along with medical history and physical exam, blood samples were 
obtained during the first visit. This repository was created the under the 
approval ID “Proteomica”. All samples were collected before treatment 
in heparin tubes (Becton Dickinson) and centrifuged at 1000 rpm for 30 
min at 4 ◦C, plasma was collected and stored at − 80 ◦C for further 
analysis. Patients were staged according to the Ann Arbor criteria and 
the performance status to the Eastern Cooperative Oncology Group scale 
(ECOG) [13]. The clinical evolution was followed according to the 
therapy clinical outcomes as complete remission, partial remission, re-
fractory therapy or mortality [14]. 

2.2. Plasma circulating miRNAs isolation 

Total miRNAs were isolated from plasma samples using the miR-
Neasy Serum/Plasma kit (QIAGEN), following the manufacturer’s in-
structions. Quantity and quality of total RNA were assessed using OD 
260/280 measure in NanoDrop 8000 (NanoDrop Technologies) and the 
Experion Automated Electrophoresis System (Bio-Rad). 

2.3. MicroRNAs expression microarray 

miRNAs samples were processed using the miRNA complete labeling 
and hybridization kit (Agilent) and the miRNA spike-in kit (Agilent). The 
miRNA expression was measured employing microarrays 8 × 15K 
(Agilent) following manufacturer instructions and analyzed using a 
GenePix 4000B scanner (Molecular Devices). 

2.4. Statistical analysis 

Fisher’s exact test was carried out using nominal variables, whereas 
the Mann-Whitney U test was used for numerical variables. A p-value ≤
0,05 was considered statistically significant. Wilcoxon test was used for 
each miRNA expression signal. The results were generated using Rstudio 
Software with R version 3.6.2. 

2.5. In silico predictions of genes from miRNAs 

The impact of miRNAs on overall pathways was predicted using 
DIANA-microT web server [15] which allows miRNA target predictions 
and DIANA-mirPath for pathway discovery [16]. The predicted target 
genes for the up- and downregulated miRNAs were obtained from the 
microRNA Data Integration Portal [17]. The map presenting interaction 
between miRNAs and the predicted target genes was created using 
Cystoscope software [18]. 

3. Results 

Blood samples were collected from 16 patients diagnosed with 
DLBCL, with an average age of 45.3 ± 18.8 years and being mostly 
women (n = 11, 68.8%). Regarding the clinical characteristics of the 
patients, 56% of them (n = 9) presented B symptoms at the initial 
diagnosis, whereas 68.7% (n = 11) were in a good status performance 
(ECOG 0 and 1) before chemotherapy, 43% (n = 7) had extranodal 
disease and bone marrow infiltration was found in 18.7% (n = 3) of the 
patients. Ann Arbor criteria were as following: two patients were stage 
1, five patients were stage 2, six patients were stage 3, and three patients 
were stage 4. 

Of a total of 16 patients recruited, 75% (n = 12) of them responded 
adequately to R–CHOP therapy (complete remission), since no disease 
was detected 6 months after treatment, whereas in the remaining 25% 
(n = 4) of the patients a partial or refractory response was observed after 
the R–CHOP scheme (Table 1). 

After the bioinformatic processing of miRNA array data, up- and 
down-regulated genes were clustered according the clinical response. 
Overexpression of 9 miRNAs (miR-105-5p, miR-186-5p, miR-19a-3p, 
miR-572, miR-1267, miR-555, miR-205-5p, miR-490-5p, miR-520d-3p) 
was observed in pre-treatment DLBCL patients serum samples with no 
clinical response observed after treatment compared with patients with 
complete response, all 9 upregulated miRNAs were statistically signifi-
cant (p < 0.003). On the other hand, 6 miRNAs (miR-100-5p, miR-1910- 
5p, miR-24-3p, miR-628-3p, miR-766-3p, miR-615-3p) were down- 
regulated in the refractory response group (Fig. 1). 

In order to find out an explanation for the achieved clinical outcome 
by identifying genes targeted by the dysregulated miRNAs, a target 
prediction was carried out using the mirDIP database, followed by the 
creation of an interaction map using Cytoscape (Fig. 2). To increase the 
probability of real affectation of genes by the mRNAs here reported, for 
the upregulated miRNAs, target genes regulated by three or less miRNAs 
where eliminated (Fig. 2A). Interestingly, one gene (ZNF652) was pre-
dicted to be targeted by 6 miRNAs, whereas 14 genes were targeted for 5 
miRNAs and 75 genes were predicted to be recognized by 4 miRNAs. On 
the other hand, for the downregulated miRNAs, only target genes 
regulated by three miRNAs were included since genes sharing four or 
more miRNAs were not present and target genes regulated by two or less 
were eliminated (Fig. 2B). After this filtering, 12 genes were predicted to 
be affected by the downregulated miRNAs. 

Next, the biological impact of the significant dysregulated miRNAs, 
was predicted carrying out a pathway enrichment analysis from the 
target genes using DIANA-miRPath. In this fashion, DIANA-miRPath 
first predicts the miRNA target genes and then estimates the pathways 
and ontologies that are statistically over-represented. For the 9 upre-
gulated miRNAs, among the KEGG (Kyoto Encyclopedia of Genes and 
Genomes) annotated pathways affected by more than one miRNA are the 
TGF-beta signaling, proteoglycans in cancer, estrogen signaling and 
mTOR signaling (Fig. 3A). Other pathways were also significant but 
affected by less miRNAs such as ErbB signaling. In both cases, these 
pathways have been reported in cancer development, whereas the bio-
logical effect of these 9 miRNAs, in the Gene Ontology (GO) annotated 
categories (Fig. 3B), showed that the most significant process were: ion 
binding, organelle, cellular protein modification, biosynthetic, cellular 
nitrogen metabolic compounds, protein binding transcription factor 
activity, neurotrophin TKR receptor signaling pathway, epidermal 
growth factor receptor signaling pathway, cellular lipid metabolic pro-
cess, molecular function and among others. Same approach was carried 
out for the 6 downregulated miRNAs and only three pathways were 

Table 1 
Clinical features between the grouped DLBCL patients.    

Responders Non-responders p-value 

N  12 4  

Age  41,5 ± 19,14 57,0 ± 13,71 N.S. 
Gender Female 8 3  

Male 4 1 N.S. 
Clinical stage I/II 4 2  

III/IV 8 2 N.S. 
LDH Normal 4 1  

High 8 3 N.S. 
ECOG 0, 1 10 1  

2, 3, 4 2 3 N.S. 
Extranodal lesion <2 11 4  

≥2 1 0 N.S. 
B symtoms Yes 9 0  

No 3 4 0,019a  

a p-value ≤0,05 N.S.: not significant. 
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affected: the metabolism of xenobiotics by cytochrome P450, the Wnt 
signaling and the glycosaminoglycan biosynthesis-heparan sulfate, in 
the KEGG annotated pathways (Fig. 3C), whereas in the GO annotated 
categories, the pathways affected where very similar to the pathways 
affected for the up-regulated miRNAs, such as ion binding, organelle, 
cellular nitrogen compound metabolic process, as well as biosynthetic 
process (Fig. 3D). 

4. Discussion 

Refractoriness is still present in some DLBCL patients along with poor 
prognosis even after autologous stem cells transplantation (salvage 
therapy) [19]. Therefore, it is important to investigate new approaches 
to detected chemoresistance, accelerating the administration of more 
aggressive schemes that could be crucial for the patients. 

In this research, 9 significant up-regulated miRNAs were found in the 
group of patients with clinical chemoresistance, whereas the same group 
of patients presented downregulation in 6 miRNAs in plasma before 
treatment. 

The analysis of predicted target genes affected by the upregulated 
miRNAs showed some genes related to cancer development and other 
processes. Interestingly, the ZNRF3 gene, predicted to be targeted by 
four upregulated miRNAs (miR-1267, miR-186-5p, miR-19a-39 and 
miR-520d-3p) is a negative modulator of the oncogenic Wnt/β-catenin 
signaling, a well-known pathway involved in chemoresistance in several 
types of cancer [20,21], aligned with the clinical resistance observed in 
this study. In the other hand, the analysis of the predicted genes to be 
affected by the downregulated miRNAs, resulting in their over-
expression, showed 12 genes affected by 3 miRNAs, among them was 
APOBEC3F (target by miR-24-3p, miR-766 and miR-1910-5p). This gene 
has been reported to be highly expressed in lymphoma cells and to 
promote an efficient repair of genomic DNA double-strand breaks (DNA) 
[22], leading to a protective phenotype against the DNA damage caused 
by chemotherapy [23,24]; which is aligned with the results found in this 
report, where the plasma circulating miRNAs targeting APOBEC3F were 
downregulated in the group with no response to R–CHOP, a therapeutic 
scheme known to cause DNA damage. 

To not only investigate affected genes, but also processes regulated 
by the miRNAs, an enrichment analysis with their predicted target genes 
was carried out and several pathways associated to cancer development 
observed. For instance, proteoglycans and glycosaminoglycans biosyn-
thesis related pathways have been reported to be involved in cancer 

Fig. 1. Heat map. showing the miRNAs relative expression and the clustering 
based on the clinical outcome after treatment. 

Fig. 2. miRNA-target networks. (A) An interaction map between the upregulated miRNAs (red circles) and their target genes (green circles) was created after 
eliminating genes targeted by three or less miRNAs. Size of the green circles is related to the number of miRNAs targeting the genes (4, 5 or 6 miRNAs). (B) Same map 
was created for downregulated miRNAs (blue circles), but only genes targeted by three miRNAs were used since no target genes were share for 4 or more RNAs. 
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development [25,26]. Another pathway regulated by miRNAs here 
described is the mTOR signaling, an intracellular member of the acti-
vator cascade within the BCR pathway, a well-known cascade respon-
sible for cellular proliferation, survival, differentiation and migration of 
normal and malignant B cells [27,28]. In addition, pathways and pro-
cesses associated to drug resistance were regulated as well by the miR-
NAs here found, such as the fatty acid biosynthesis and metabolism. 
Fatty acid receptor GPCR120, has been described as responsible to 
up-regulate ABC transporters and trigger chemoresistance in breast 
cancer [29], and the fatty acid synthase was reported to be involved in 
DLBCL progression [30]. In addition, the neurotrophin TRK receptor 
signaling has also found to be regulated by these miRNAs, being asso-
ciated to a more aggressive DLBCL phenotype, rituximab-resistance and 
pro-survival response to chemotherapeutic agents [31–35]. Wnt 
signaling, as previously mentioned involved in the response to drug 
therapy in DLBCL, was regulated by the miRNAs here found [36,37]. 

Overall, the predicted target genes to be regulated by plasma circu-
lating miRNAs here described, are involved in pathways related to drug 
resistance, and some of them specifically in DLBCL and the rituximab 
treatment. 

Additionally, some of the miRNAs found in this study have been 

previously reported as biological markers for cancer development, cell 
survival, prognosis and response therapy. With respect to the up- 
regulated miRNAs here reported, mir-105 was found to be elevated in 
plasma of triple negative breast cancer patients and reported as pre-
dictive marker for stemness, drug resistance and metastasis [38,39]; 
miR-19a-3p was associated to chemoresistance by modulation of the 
PTEN expression in hepatocellular carcinoma [40]; mir-572 was re-
ported to be responsible for cell proliferation in ovarian cancer by tar-
geting genes such as SOCS, p2 and PPP2R2C [41,42]; miRNA-205-5p is 
capable to induce chemoresistance in hepatocellular carcinoma cells by 
targeting PTEN/JNK/ANXA3 pathway, as well as to induce the resis-
tance to paclitaxel in endometrial cancer by downregulating FOXO1 
[43,44], a pro-apoptotic transcription factor in DLBCL cells, associated 
to a doxorubicin-resistant phenotype [45]. 

Of note, mir-520d-3p, also up-regulated in patients with no response, 
is one of five miRNAs described as signature for a non-invasive 
biomarker to predict the clinical outcome in DLBCL patients under the 
R–CHOP scheme [46], in a similar research carried out for different 
group; suggesting an consistent role in the chemoresistance to R–CHOP 
therapy. 

Regarding the downregulated miRNAs, a low expression of miR-24- 

Fig. 3. Predicted biological functions to be the most impacted by the dysregulated miRNAs included in the signature. (A, B) The impact of the 9 upregulated miRNAs 
on the KEGG and Gene Ontology (GO) biological pathways, respectively, predicted with DIANA microT-CDS tool. (C, D) The impact of the 6 downregulated miRNAs 
on the KEGG and Gene Ontology (GO) biological pathways, respectively, predicted with DIANA microT-CDS tool. Heatmap representation of the pathways and the 
significance (determined from log (p-values)) with each miRNA with red indicating the highest level of significance and yellow the lowest level of significance. 
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3p have been observed in the paclitaxel-resistant prostate cancer cell 
(PCa) [47], and associated to etoposide (VP16) and cisplatin (DDP) 
resistance in small cell lung cancer [48–50]. In the case of miRNA-628 
and mir-766-3p, they have been implied with tumor suppressor func-
tions in leukemia [51,52] and hepatocellular carcinoma [53,54], 
respectively. 

5. Conclusion 

In this study, a miRNA signature (9 up-regulated and 6 down- 
regulated) was found to be related to the chemoresistance in the 
R–CHOP scheme, and although further experiments are needed to 
validate its capacity to function as a predictive tool for the clinical 
outcome, previous reports are aligned to the findings here described. 
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