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A B S T R A C T   

Nonpharmaceutical interventions for minimizing indoor SARS-CoV-2 transmission continue to be critical tools 
for protecting susceptible individuals from infection, even as effective vaccines are produced and distributed 
globally. We developed a spatially-explicit agent-based model for simulating indoor respiratory pathogen 
transmission during discrete events taking place in a single room within a sub-day time frame, and used it to 
compare effects of four interventions on reducing secondary SARS-CoV-2 attack rates during a superspreading 
event by simulating a well-known case study. We found that preventing people from moving within the simu
lated room and efficacious mask usage appear to have the greatest effects on reducing infection risk, but multiple 
concurrent interventions are required to minimize the proportion of susceptible individuals infected. Social 
distancing had little effect on reducing transmission if individuals were randomly relocated within the room to 
simulate activity-related movements during the gathering. Furthermore, our results suggest that there is potential 
for ventilation airflow to expose susceptible people to aerosolized pathogens even if they are relatively far from 
infectious individuals. Maximizing the vertical aerosol removal rate is paramount to successful transmission-risk 
reduction when using ventilation systems as intervention tools.   

1. Introduction 

Understanding transmission mechanisms is necessary to generate 
evidence-based guidance for controlling infectious diseases. Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative 
agent of Coronavirus Disease 2019 (COVID-19), is primarily spread 
through infectious respiratory droplets and aerosols of varying size 
(CDC, 2021). These media are expelled when an individual speaks, 
coughs, sneezes, or otherwise expectorates (Atkinson et al., 2009; 
Stadnytskyi et al., 2020). Pathogen transmission can occur when these 
virion-containing particles are inhaled by, or otherwise come into con
tact with the mucosae or conjunctiva (i.e., mouth, nasal membranes, or 
eyes) of a susceptible person (WHO, 2020). Aerosol transmission has 
proven to be an important transmission pathway, particularly for large 
clusters associated with superspreading events (Hamner et al., 2020; 
Qian et al., 2020; Leclerc et al., 2020; Park et al., 2020; Wang et al., 
2021). 

Transmission of SARS-CoV-2 is more likely in indoor settings than 
outdoors (Qian et al., 2020; Leclerc et al., 2020). Households are the 

most common venue linked to transmission, but healthcare facilities, 
religious venues, food processing plants or prisons are also likely to be 
associated with large clusters of COVID-19 cases (Leclerc et al., 2020). 
Recommended nonpharmaceutical interventions to reduce indoor 
transmission include: social distancing, use of face coverings, increased 
ventilation, and reduced group sizes (CDC, 2021). 

Some mathematical models have been built to support individual- 
level risk assessment of indoor transmission and analyze aerosol con
tributions to past outbreaks. Chande et al. (2020) created a tool to assess 
the U.S. County level probability that someone infected with 
SARS-CoV-2 will attend events of varied sizes. Their tool is useful for 
estimating the probability that SARS-CoV-2 transmission could occur 
during any gathering, but provides no direct measure of transmission 
risk from infectious individuals during events and no way to assess the 
impact of intervention strategies other than reducing group sizes. Other 
models have sought to determine the role that aerosolized infectious 
droplets play in indoor SARS transmission relative to larger droplets that 
are unlikely to be inhaled, and quantify the transmission risk attribut
able to aerosols in varied environments (Bhagat et al., 2020; Chen et al., 
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2020; Lelieveld et al., 2020; Miller et al., 2020; Sun and Zhai, 2020). 
These models are primarily based on Wells-Riley equations for esti
mating aerosol-attributable risk, which assume homogenous spatio
temporal mixing of air constituents and exposure to infectious agents 
(Riley et al., 1978). Mathematical indices and parameter values in these 
models can be adjusted to simulate effects of intervention strategies like 
social distancing (Sun and Zhai, 2020) and increased ventilation rates 
(Bhagat et al., 2020; Lelieveld et al., 2020; Miller et al., 2020; Sun and 
Zhai, 2020), but are insufficient for capturing or accounting for any 
behavior- or environment-mediated spatiotemporal heterogeneity in 
transmission risk. Shao et al. (2021) used a fluid dynamics model to 
simulate ventilation effects on SARS-CoV-2 transmission while allowing 
for heterogenous droplet movement behaviors. Their findings highlight 
the need to account for within-room spatial heterogeneity when study
ing indoor transmission risk, as phenomena like ventilation can increase 
infection risk to individuals in one area of a room or building while 
simultaneously mitigating risk in another. 

Here, we present a spatially-explicit agent-based model (ABM) for 
simulating within-room respiratory pathogen transmission to inform 
policy-making decisions aiming to mitigate indoor transmission and 
implementing individual-level nonpharmaceutical interventions. By 
simulating spatiotemporal droplet dynamics (e.g., emission of varying 
droplet size and subsequent distribution in the environment) as well as 
allowing for dynamic movement and positioning of infectious and sus
ceptible individuals, our model allows virion exposure rates to vary 

within indoor settings. We use our model to estimate effects of proposed 
COVID-19 intervention strategies for indoor environments (i.e., 
increased airflow, limiting contact durations, wearing masks, and 
increased interpersonal spacing). For benchmarking purposes, we 
simulate the outbreak that took place during a choir practice in Skagit 
County, WA in March 2020 (Hamner et al., 2020). This event was 
characterized by the spread of an early SARS-CoV-2 variant from one 
infectious person to 53 susceptible individuals during the 150-min 
rehearsal (Hamner et al., 2020), and is a well-documented case study 
on SARS-COV-2 superspreading within in a fully susceptible population 
at an indoor gathering. Additionally, we further investigate potential 
drivers of superspreading events, like the Skagit County example, by 
characterizing and comparing how different aspects of indoor gather
ings (i.e., population density, duration, quanta production by infectious 
individuals, and ventilation effects) impact transmission risk. Through 
these analyses we provide guidance for minimizing SARS-CoV-2 trans
mission during indoor gatherings. 

2. Methods 

2.1. Model Description 

We developed a spatially-explicit, stochastic ABM to simulate both 
direct-droplet and airborne respiratory pathogen transmission in indoor 
settings. This model was created and executed using the open-source 

Fig. 1. Model droplet dynamics. A) Infectious individuals expel droplets of different sizes. B) Relatively large droplets fall out of the air quickly post expectoration. C) 
Smaller droplets remain aerosolized for longer time periods and move throughout the simulated room via diffusion and forced airflow effects. D) Distribution of 
droplet sizes during expectoration events. Distributions of size classes during coughing and speaking events are based on findings of Chao et al. (2009), and represent 
mean observed droplet-size measurements they recorded 60 mm away from individuals’ mouths immediately following these activities. 
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modeling software, NetLogo (Ver. 6. 1. 1 – Wilensky, 1999) and is 
available for download at https://github.com/lanzaslab/droplet-ABM. 
In Supplemental Materials 1 we provide a detailed description of our 
model in accordance with standards outlined by (Grimm et al., 2020). 
We present a limited summary of the model design below. When 
describing infectious media in our model, we use the term “droplet” to 
refer to respiratory droplets of any size. 

Agents in our model represent people congregating in a fixed space (e. 
g., students in a classroom, diners in a restaurant, etc.). Patches (i.e., grid 
cells in the NetLogo model interface) represent 1 × 1 m2 areas, and the 
spatial extent can range from 1 to ∞ m2. The model time step is 1 min. 
Droplets ranging from 3 to 750 μm in diameter are expelled by infectious 
agents (Fig. 1A). Subsequently, droplets can be inhaled, fall out, diffuse to 
nearby patches, move via directed airflow, and decay at fixed rates over 
the course of a simulation. Infection in our model is driven by exposure to 
virions contained in these droplets, and the number of virions per droplet 
scales with droplet size. The rate at which droplets fall out (i.e., are 
removed from circulating air flows) of the simulation is based on the 
calculated terminal velocity falling speed for droplets, and therefore 
varies with droplet size (Fig. 1B). Droplet sizes incapable of settling on the 
ground within one minute are allowed to move between patches via 
ventilation- and diffusion-induced airflow (Fig. 1C). Thus, risk of expo
sure and subsequent infection for susceptible individuals varies by space 
and time during the simulation. We recognize that the ability of forced air 
ventilation systems to reduce local respiratory pathogen transmission is 
linked to their ability to move aerosolized droplets away from susceptible 
individuals in three dimensions (Bhagat et al., 2020; Shao et al., 2021). 
Though this effect is not explicitly tied to airflow inputs in our model, 
which only allows airflow in two dimensions, we can effectively simulate 
ventilation-induced aerosolized droplet movement to heights outside of 
individuals’ inhalation ranges by increasing the decay rate when venti
lation effects are simulated. In addition to controlling the number of in
dividuals present and the size of the simulated world, users can dictate 
infectiousness parameters and other scenario-specific variable values (e. 
g., number of infectious individuals, probability that infectious in
dividuals are asymptomatic, cough frequency, number virions per mL of 
droplet fluid, risk of infection given exposure to 1 virion, etc.), ventilation 
parameters (e.g., direction and speed of airflow, droplet filtration prob
ability, etc.), and adherence to transmission-risk-reduction guidelines (e. 
g., mask usage, local social distancing, etc.). 

This ABM is intended to simulate pathogen transmission during events 
lasting < 1 day. The underlying transmission model is based on a 
Susceptible-Exposed-Infectious-Recovered (SEIR) framework, but due to 
the limited duration of simulations we make the assumption that no in
dividuals exist long enough to exceed pathogen latent or infectious periods. 

2.2. Testing SARS-CoV-2 transmission reduction strategies 

2.2.1. Case scenario and model inputs 
In March 2020, there was a probable SARS-CoV-2 superspreading 

event during a choir practice taking place at a church in Skagit County, 
Washington, USA (Hamner et al., 2020). Sixty-one people were in 
attendance, one attendee was experiencing flu-like symptoms at the 
time and later tested positive for COVID-19 (Hamner et al., 2020). This 
individual likely infected 53 other attendees over the course of the event 
(Hamner et al., 2020). We describe our rationale for setting 
scenario-specific input values to simulate this case in our model below, 
with additional details given in Supplemental Materials 2. Supplemental 
Materials 3 describes how sensitive simulated infection risk is to varia
tions in select model parameters. 

Because this superspreading event is thought to be the result of 
transmission from a single infectious individual (Hamner et al., 2020), 
all simulations contained only one infectious person. The infectious 
person was assumed to be symptomatic during the choir practice. We 
assumed all droplets were expelled from this individual at a height of 
1.7 m, the approximate mean height of U.S. adults (Fryar et al., 2018). 

We make the assumption that the cough frequency for a symptomatic 
COVID-19 patient is equal to that of individuals with a chronic cough 
condition. Therefore, every minute our infectious individual had a 19% 
probability to expel droplets through coughing (Lee et al., 2012), and an 
81% chance to expel droplets through an unspecified other activity (e.g., 
speaking, singing, etc.). Using the procedure described by Railsback and 
Grimm (2011), droplet travel distances for coughing and non-coughing 
expectoration events were randomly drawn from log-normal distribu
tions with known means and standard deviations. Travel distances for 
coughing events were drawn from a distribution with a mean of 5 m and 
standard deviation of 0.256 m (Bourouiba et al., 2014). Travel distances 
for non-coughing events were drawn from a distribution with a mean of 
0.55 m and standard deviation of 0.068 m (Das et al., 2020). The angle 
of droplet spread during coughing and non-coughing expectorations 
were 35º and 63.5º, respectively, in accordance with median values of 
mouth-angle ranges described by Kwon et al. (2012). We calibrated the 
risk of infection for susceptible individuals given exposure droplets 
expelled by the simulated infectious person, and the number of droplets 
expelled by this person to reflect the estimated infectiousness of the 
symptomatic individual in the case study using linear regression 
methods described in Appendix S2. We set the inhalation rate for 
simulated individuals to 0.023 m3 air/min, a rate consistent with adults 
participating in light activity (Adams, 1993). 

We know from the Hamner et al. (2020) case report that the choir 
practice lasted 150 min in total, split into 4 distinct time intervals lasting 
40, 50, 15, and 45 min. During the first time interval, all 61 attendees 
practiced together in the 180 m2 main hall for 40 min. In the second 
interval, the group split into two subsets of unspecified sizes. One subset 
rearranged themselves within the main hall, and the second subset 
moved into a separate room. The subsets rehearsed separately for 
50 min. The third time interval was a 15-min break period when in
dividuals mixed freely. During the final time interval, all attendees 
returned to the main hall to practice as a single group once more for 
45 min. When practicing as single group during intervals 1 and 4, in
dividuals sat in assigned seats (Miller et al., 2020) with chairs spaced 
15.24–25.4 cm apart (Hamner et al., 2020). In our simulations, we 
decided to rearrange agents in our model after 40, 90, and 105 min to 
recreate mixing associated with changing time intervals. At timestep 
105, individuals moved back to their initial placements, representing 
their adherence to assigned seating during interval 4 (i.e., minutes 
105–150). The seating chart has not been shared due to privacy concerns 
(Miller et al., 2020) however, from the spacing estimate we can assume 
that a maximum of 2 people could be within 1-m2 patches in our model 
scenario. Our ability to simulate mixing rates during specific time in
tervals was limited to this extent because we do not know specific 
seating arrangements, subset size or configuration, secondary room size, 
or interaction rates during the break period. 

We assume that airborne droplets naturally diffuse throughout the 
simulated environment at a fixed rate of 1.5e-3 m3/min (Castillo and 
Weibel, 2018) regardless of size, and decay at a rate of 1.05% /min (van 
Doremalen et al., 2020). Additionally, we know that the ventilation 
system in the main hall of the church consists of three supply vents that 
push a mixture of outdoor and recirculated air towards a single return 
vent on the opposite wall, though the true direction of forced airflow (e. 
g., North to South) is unclear from reports (Miller et al., 2020). Because 
it is uncertain whether or not the forced-air system was turned on during 
the choir practice (Miller et al., 2020), however, we decided to run our 
simulations in two sets: ventilation-on (i.e., both forced-air effects and 
natural diffusion moved droplets between patches) and ventilation-off 
(i.e., only natural diffusion moved droplets between patches). In the 
ventilation-on set, we additionally assume that droplets move from 
supply vents towards the return vent at a fixed rate of 0.043%/min 
(Miller et al., 2020), and that 90% of droplets were filtered prior to 
recirculation (Miller et al., 2020). Because we do not know the true 
direction of forced airflow, we simulated both North-to-South and 
East-to-West forced airflow movement in the ventilation-on set (Fig. 2). 
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In addition to modeling the baseline scenario, we modulated values 
of inputs related to group-level nonpharmaceutical intervention strate
gies (i.e., limited population, limited contact durations, mask usage, and 
meter-level social distancing) between simulations in order to assess the 
efficacy of each strategy on reducing the number of susceptible in
dividuals infected. Regarding mask usage, we assumed face coverings 
have both source-prevention and wearer-protection effects, and reduced 
global droplet exposure/exhalation rates by 0%, 25%, 50%, 75% and 
90%. The upper range here is intended to simulate the use of N95 and 
simple surgical masks, which are estimated to reduce aerosol emission 
rates by approximately 90% and 74%, respectively (Jefferson et al., 
2008; Asadi et al., 2020). Lower values are intended to simulate the use 
of single- and multi-layered fabric masks, for which a wide range of 
aerosol-filtration efficacies have been reported (O’kelly et al., 2020). 
When simulating mask usage, we assumed that all individuals were 
wearing masks and that all masks had the same efficacy. Table 1 outlines 
the model input values for our superspreading-scenario simulations. 

2.2.2. Running simulations and analyses 
We set up a factorial simulation run within the NetLogo Behavior

Space using our specified input levels. We ran 1000 replicates of all 
input set combinations, ultimately resulting in 1,080,000 simulations. 
Simulations were aggregated into a single data set prior to analysis. 

We used a beta regression model with a fixed unknown precision 
parameter, ϕ, (Ferrari and Cribari-Neto, 2004) to estimate effects of 
interventions on the mean proportion of susceptible individuals infected 
in our full simulation set, μ. Beta regression models are employed to 
analyze proportion data (Ferrari and Cribari-Neto, 2004; Cribari-Neto 
and Zeileis, 2010). We chose to use this method because the potential 
number of infected individuals in each simulation was limited by the 
simulated group size, which was a predictor variable of interest, and 
because preliminary analysis suggested that fitting our data to a beta 
distribution better explained observed variation than other regression 
models. We therefore determined it was more appropriate to evaluate 
effect sizes in terms of the relative proportion of susceptible people 
infected rather than their total number. We fit our data to the model: 

ln
(

μ
1 − μ

)

= β0 + β1(Gathering duration) + β2(Mask use)

+ β3(Mask efficacy) + β4(Group size) + β5(Social distancing)
+ β6(Ventilation) + β7(Movement) + β8(Mask use ∗ Group size)
+ β9(Mask use ∗ Social distancing)
+ β10(Group size ∗ Social distancing)
+ β11(Mask use ∗ Group size ∗ Social distancing),

where Gathering duration, Mask efficacy, and Group size are intervention- 
strategy variables relating to: minutes of simulated interaction between 

individuals, the efficacy of worn face masks for reducing expectoration 
and inhalation of infectious droplets, the simulated population size, and 
attempted meter-level social distancing in each realized simulation, 
respectively. The variables Mask use, Movement, and Ventilation are 
known confounders related to: reduced droplet spread distance from 
expectorating infectious individuals wearing masks, the number of times 
individuals were rearranged within simulations to reflect mixing of 
event attendees, and movement of infectious aerosols throughout the 
simulated space due to a forced-air ventilation system, respectively. 
Mask use is a binary variable taking the value of 1 when simulated in
dividuals are masked (i.e., Mask efficacy > 0), and 0 when they are not. 
Movement takes any one value within the range of 1-to-4, dependent on 
Gathering duration. Ventilation is a binary variable taking the value of 1 
for simulations in the “ventilation-on” subset, and 0 for those in the 
“ventilation-off” subset. Because we used a logit link function to fit this 
model, β estimates represent the additive effect of 1-unit increases in 
associated predictor variables on the log-odds of the susceptible popu
lation proportion infected, and the mean proportion of susceptible in
dividuals infected for any given parameter space i can be calculated 

using the equation μi =
exT

i β

1+exT
i β (Ferrari and Cribari-Neto, 2004). 

Because beta regression procedures assume all dependent variable 
values fall between 0 and 1, we used the data transformation procedure 
described by (Cribari-Neto and Zeileis, 2010) to reconstruct our pro
portion data without these extremities. All analysis and plotting was 
carried out using functions from the “betareg” R package (Ferrari and 
Cribari-Neto, 2004) in RStudio (v. 1.1.463, RStudio Team, Boston, MA) 
(RStudio Team, 2018) running R (v. 3.6.2, R Foundation for Statistical 
Computing, Vienna, Austria) (R Core Team, 2020). We calculated a 
pseudo-R2 (Ferrari and Cribari-Neto, 2004) to assess goodness of fit for 
our regression model. 

2.3. Evaluating drivers of transmission in indoor gatherings 

To assess the relative contribution of environmental conditions to 
SARS-CoV-2 transmission risk, we conducted a sensitivity analysis to 
ascertain relative effects of population density, gathering duration, 
quanta production by infectious individuals, and ventilation on SARS- 
CoV-2 infection risk beyond the conditions tested in the Skagit County 
case. In addition, we quantified the ability of different ventilation sys
tem aspects (i.e., air-change rate, filtration rate, and effective three- 
dimensional droplet removal rate) to reduce SARS-CoV-2 transmission 
risk. Table 2 describes the model input values for these indoor- 
gathering-risk-assessment simulations. 

We set up a factorial simulation run within the NetLogo Behavior
Space using our specified input levels. We ran 1000 replicates of each 
parameter set combination when the Forced air parameter was set to 
“on” and when it was “off.” We ran these sets separately in order to save 

Fig. 2. Airborne infectious droplets in North-to-South and East-to-West forced airflow schemas have different maximum travel distances due to the shape of the 
simulated world. 
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computation time as there were many inputs that only changed when 
forced airflow was simulated. Ultimately, we produced 144,000 “off” 
simulations, and 20,160,000 “on” simulations. In both sets, we identi
fied simulations when transmission occurred (i.e., simulations where ≥
1 susceptible person was infected), and recorded this occurrence as the 
binary variable yi so that 

yi =

{
1 if transmission was observed
0 if no transmission occurred

}

for each realized simulation, i. 
We aggregated simulation data into a single data set and carried out a 

logistic regression analysis to estimate effects of variable inputs on 
observed differences in the probability of observing ≥ 1 infections. We 
chose to use a logistic regression here instead of another beta regression 
to simplify the interpretability of our results. Though we lose the ability 

to comment on mean attack rates, we can still estimate environmental 
effects on transmission risk using a logistic regression. We fit our data to 
the model: 

ln
(

Pr(yi = 1)
Pr⁡(yi = 0)

)

= β0 +β1(Population density)+β2(Gathering duration)

+β3(Quanta per hour)+β4(Excess droplet removal rate)
+β5(Air change rate)+β6(Air filtration rate),

where Population density is given by n
m2 , and the Excess droplet removal 

Table 1 
Parameter descriptions for simulations of the Skagit County, WA March 2020 
SARS-CoV-2 transmission case study. *Simulated worlds were 10 m × 18 m. 
†Standard deviations are given in parentheses. ‡Zero-percent mask efficacy is 
equivalent to no mask use. §Das et al. (2020) estimated the average travel dis
tance of a 100-micrometer droplet expelled from a height of 1.7 m at a velocity 
of 0.5 m/s to be 0.55 m. They also found that the majority of 100-μm droplets 
will fall 0.55–2.35 m away from the expelling individual, depending on initial 
velocity, but droplets may settle up to 3.2 m away very rarely. a random draw of 
10,000,000 samples from a log-normal distribution parameterized using 1.7-m 
and 0.2095-m droplet spread distance mean and standard deviation values, 
respectively, generated a distribution in line with this finding. The standard 
deviation we use in simulations for non-coughing expectoration is proportionate 
to the one used in this random draw.  

Parameter/Model Input Value (s) Reference (s) 

Infectiousness parameters   
Cough frequency (coughs/min) 0.19 Lee et al., 2012 
Droplet count (droplets/ 

expectoration) 
9.7e5 (3.9e5)† Miller et al., 2020,  

Appendix S2 
Droplet spread angle – coughing 

(º) 
35 Kwon et al., 2012 

Droplet spread angle – not 
coughing (º) 

63.5 Kwon et al., 2012 

Droplet travel distance – 
coughing (m) 

5 (0.256)† Bourouiba et al., 2014 

Droplet travel distance – not 
coughing (m) 

0.55 (0.068)†§ Das et al., 2020 

Scenario environment and individual behavior inputs 
Area (m2) 180* Hamner et al., 2020 
Expectoration height (m) 1.7 Fryar et al.m, 2018 
Inhalation rate (m3 air/min) 0.023 Adams, 1993 
Maximum people in a single 1- 

m2 patch (people) 
2 Hamner et al., 2020 

Number of symptomatic 
individuals (people) 

1 Hamner et al., 2020 

Scenario virion behavior inputs   
Virion count (virions/mL fluid) 2.35e9 Wölfel et al., 2020 
Virion decay rate (%/min) 1.05 van Doremalen et al., 

2020 
Virion infection risk (%/inhaled 

virion) 
6.24 Appendix S2 

Scenario airflow inputs   
Diffusion rate (m3/min) 1.5e-3 Castillo and Weibel, 2018 
Forced air on, off – 
Forced air direction North-to-South, 

East-to-West 
– 

Air change rate (%/min) 4.3 Miller et al., 2020 
Re-circulated air filtration 

(%/min) 
90 Miller et al., 2020 

Scenario intervention inputs   
Attempted social distancing (m) 0, 1, 2, 3 – 
Contact duration (min) 20, 40, 60, 90, 

105, 150 
– 

Mask efficacy (%) 0‡, 25, 50, 75, 90 Jefferson et al., 2008; 
Asadi et al., 2020 

Population (people) 10, 50, 61 –  

Table 2 
Parameter descriptions for ventilation-system effect evaluations. *All simulated 
worlds were square-shaped. †Based on linear modeling described in Appendix 
S2, these values equate to 1 (SD = 0) and 970 (SD = 390) quanta/hr. ‡Standard 
deviations are given in parentheses. §Das et al. (2020) estimated the average 
travel distance of a 100-micrometer droplet expelled from a height of 1.7 m at a 
velocity of 0.5 m/s to be 0.55 m. They also found that the majority of 100-μm 
droplets will fall 0.55–2.35 m away from the expelling individual, depending on 
initial velocity, but droplets may settle up to 3.2 m away very rarely. a random 
draw of 10,000,000 samples from a log-normal distribution parameterized using 
1.7-m and 0.2095-m droplet spread distance mean and standard deviation 
values, respectively, generated a distribution in line with this finding. The 
standard deviation we use in simulations for non-coughing expectoration is 
proportionate to the one used in this random draw. ¶These parameter values 
were only used when the Forced air parameter value was set to “on.” #These 
parameter values were only used when the Forced air parameter value was set to 
“off.” **All patches on the east side of the simulated world acted as supply vents. 
All patches on the west side acted as return vents. ††Zero-percent mask efficacy is 
equivalent to no mask use. ‡‡Instead of specifying a fixed number of individuals 
in simulations, we scaled the simulated population with world size.  

Parameter/Model Input Value (s) Reference (s) 

Infectiousness parameters   
Cough frequency (coughs/min) 0.19 Lee et al., 2012 
Droplet count (droplets/ 

expectoration)†
1000 (0)‡, 9.7e5 

(3.9e5)‡
Miller et al., 2020, 
Appendix S2 

Droplet spread angle – coughing (º) 35 Kwon et al., 2012 
Droplet spread angle – not coughing 

(º) 
63.5 Kwon et al., 2012 

Droplet travel distance – coughing 
(m) 

5 (0.256)‡ Bourouiba et al., 
2014 

Droplet travel distance – not 
coughing (m) 

0.55 (0.068)‡§ Das et al., 2020 

Scenario environment and individual behavior inputs 
Area (m2)* 9, 36, 81 – 
Expectoration height (m) 1.7 Fryar et al., 2018 
Inhalation rate (m3 air/min) 0.023 Adams, 1993 
Maximum people in a single 1-m2 

patch (people) 
2 Hamner et al., 2020 

Number of infectious individuals 
(people) 

1 – 

Proportion of infectious individuals 
that are symptomatic (%) 

0, 100 – 

Scenario virion behavior inputs   
Virion count (virions/mL fluid) 2.35e9 Wölfel et al., 2020 
Virion decay rate (%/min) 1.05, 5¶, 10¶, 25¶, 

50¶, 75¶, 90¶ 
van Doremalen 
et al., 2020 

Virion infection risk (%/inhaled 
virion) 

6.24 Appendix S2 

Scenario airflow inputs   
Diffusion rate (m3/min) 1.5e-3 Castillo and Weibel, 

2018 
Forced air on, off – 
Forced air direction** East-to-West – 
Air change rate (%/min) 0#, 1¶, 5¶, 10¶, 25¶, 

50¶ 
– 

Re-circulated air filtration (%/min) 0#,1¶, 5¶, 90¶, 100¶ – 
Scenario intervention inputs   
Attempted social distancing (m) 0 – 
Contact duration (min) 10, 30, 60 – 
Mask efficacy (%) 0†† – 
Population density (people/m2)‡‡ 0.333, 0.667, 1, 

1.667 
–  
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rate (%/min) represents the increased removal of aerosols due to 
ventilation-induced 3-dimensional droplet movement. It is given by the 
equation: (Virion decay rate − 1.05). The 1.05 here represents the gen
eral SARS-CoV-2 decay rate (i.e., 1.05%/min) as reported by (van Dor
emalen et al., 2020). Subtracting this baseline value from the simulated 
Virion decay rate gives us an excess removal rate that we use as a proxy 
for 3-dimensional droplet removal attributable to forced airflow move
ment. When no forced airflow is simulated, excess droplet removal, air 
change, and filtration rates all equal 0. We calculated the Tjur (2009) 
pseudo-R2 for our logistic regression model to assess goodness of fit. 

3. Results and discussion 

We developed a stochastic and spatially-explicit ABM for studying 
indoor individual-level respiratory pathogen transmission, and used it to 
demonstrate the potential effectiveness of multiple intervention strate
gies for reducing SARS-CoV-2 transmission in an indoor group setting 
mimicking that of a known superspreading event. We were able to 
effectively recreate the empirical proportion of susceptible individuals 
likely infected during the Skagit County superspreading event by 
simulating the gathering without implementing any intervention stra
tegies (Fig. 3). 

Our beta regression model for estimating intervention efficacy had a 
pseudo-R2 of ≈ 0.43. Given the number of stochastic processes in our 
ABM, the explanatory power of the model is acceptable. As shown in  
Fig. 4, duration limits and efficacious mask usage appear to have the 
greatest effects on reducing the proportion of susceptible individuals 
infected, but multiple concurrent interventions are required to minimize 
the proportion of susceptible individuals infected (Table 3, Fig. 4). 
However, it is important to note that observed proportional differences 
are more meaningful for relatively large groups than for smaller ones, as 
demonstrated by the positive β estimates for interaction terms including 

the Group size variable (Table 3). The effectiveness of limiting the 
duration of gatherings for reducing the proportion of infected in
dividuals appears to largely result from reducing the confounding 
movement effect that increases over time, thereby reducing the proba
bility that susceptible individuals will move from uncontaminated space 
to areas with greater concentrations of infectious aerosols or nearby to 
infectious individuals where they may be exposed to large virion- 
containing droplets (Table 3). The regression model suggests that the 
effect of each random relocation event on the log-odds of the susceptible 
population proportion infected is ≈ 41 times that of each passing minute 
in the simulation (Table 3). We show that simply by limiting the time 
spent rehearsing in our simulations to 40 min, minimizing random 
mixing between attendees by ending the event prior to splitting into 
disparate groups (Hamner et al., 2020), the proportion of people 
infected could have been reduced by 70 – 88% even without imple
menting any other intervention strategies (Fig. 4). Therefore, imposing 
movement restrictions could be a more effective intervention than strict 
duration limits. 

We found that mask usage and social distancing interventions are 
relatively more effective for reducing proportional infection rates in 
small groups than in large ones. Our findings suggest that in the Skagit 
County choral case, duration limits with implied movement restrictions 
and mask usage would have been the most-effective intervention stra
tegies for reducing SARS-CoV-2 infection rates, but multiple in
terventions would have needed to be deployed simultaneously to reach 
near-zero rates (i.e., mean rate < 0.5 people / gathering duration) 
(Fig. 4). Infection rates generally increased with group size and 
decreased with mask efficacy, and we found that when movement rates 
were minimized (i.e., gathering durations ≤ 40) we could minimize 
infection rates with relatively-low mask efficacy or even no mask usage 
in some cases. Our results support recent evidence suggesting that even 
wearing masks with relatively low droplet-filtering abilities around 

Fig. 3. In the absence of interventions to reduce transmission risk, the proportion of susceptible people infected in simulations can reflect the case study value (i.e., 
0.88) and is more likely to do so when forced airflow is included. 
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others can help to reduce exposure to infectious agents (Agrawal and 
Bhardwaj, 2020; O’kelly et al., 2020). Attempted social distancing up to 
3 m had little effect on transmission rates relative to other intervention 
strategies (Fig. 4). That said, because social distancing generally had a 
greater effect on proportional infection rates when group size was 
limited to 10 people, and 2-m social distances reduced the mean number 
of infections in larger groups, we can intuit that the relatively small 
overall effect of social distancing was likely due to the presence of 
physical barriers (e.g., edges of the simulated world) or the physical 
arrangement of nearby individuals impeding agents’ attempts to social 
distance, rather than due to far-reaching droplet spread that makes 

social distancing irrelevant. This is supported by the significant in
teractions between the Group size and Social distancing variables, which 
indicate that social distancing becomes less effective at preventing sec
ondary infections as the number of attendees increases (Table 3). 

Conclusions regarding social distancing effects are further supported 
by our logistic regression model results that describe the relative effects 
of population density, gathering duration, quanta production, and 
ventilation on the probability of indoor SARS-CoV-2 transmission from a 
single infectious individual (Table 4). This model had a pseudo-R2 value 
of 0.25 and demonstrated that among the considered variables, popu
lation density was the most-important contributor to SARS-CoV-2 
transmission risk. Additionally, increases in gathering duration, infec
tious aerosol production, and horizontal air movement all escalate the 
probability that transmission will occur during gatherings, though the 
effect is much lesser than that of increasing population density. The 
relatively small effects of quanta production and duration on trans
mission risk suggest that once individuals are exposed to infectious 
agents, they are likely to become infected quickly. Thus, minimizing 
susceptible people’s exposure to infectious media is of paramount 
importance for controlling COVID-19 incidence. 

Regarding observed effects of ventilation in our beta and logistic 
regression models, our results suggest that in spite of some evidence that 
forced-air ventilation systems can reduce risk of respiratory pathogen 
infection from indoor aerosols (Escombe et al., 2007; Smieszek et al., 
2019), there is potential for forced airflow to expose susceptible people 
to aerosolized pathogens even if they are relatively far from infectious 
individuals, and therefore increase transmission risk. We show that, 
though filtering re-circulated air can lower transmission risk (Table 4), 
increasing this effect is unlikely to compensate for the elevated risk 

Fig. 4. Predicted mean proportion of susceptible populations infected with SARS-CoV-2 for varied parameter sets suggest that concurrent deployment of multiple 
interventions is required to achieve near-zero transmission rates. 

Table 3 
Logit scale estimates associated with 1-unit increases in covariate values given 
by our beta-regression model for evaluating intervention effects. Wald 95% 
confidence intervals are given in parentheses.  

Coefficient β Estimate p 

Intercept -2.927 (− 2.940, − 2.914) – 
ϕ  5.808 (5.791, 5.824) – 

Gathering duration (min) 0.012 (0.012, 0.012) < 0.001 
Mask efficacy (%) -0.015 (− 0. 015, − 0.015) < 0.001 
Mask use -0.949 (− 0.964, − 0.935) < 0.001 
Movement (No. rearrangements) 0.491 (0.485, 0.497) < 0.001 
Group size (people) 0.001 (0.001, 0.001) < 0.001 
Social distancing (m) -0.250 (− 0.256, − 0.243) < 0.001 
Ventilation 0.898 (0.895, 0.902) < 0.001 
Mask use : Group size 0.014 (0.013, 0.014) < 0.001 
Mask use : Social distancing -0.018 (− 0.025, − 0.010) < 0.001 
Group size : Social distancing 0.004 (0.004, 0.004) < 0.001 
Mask use : Group size : Social distancing 1.923e-4 (3.039e-5, 3.542e-4) 0.020  
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attributable to increased horizontal air-change rates (Table 3 & 4). It 
appears that maximizing rates of three-dimensional aerosol removal is 
the key to successful transmission-risk reduction when using forced-air 
ventilation systems as intervention tools. Our results are therefore 
consistent with the findings of (Bhagat et al., 2020), who advise that 
“displacement” ventilation systems, those designed to vertically stratify 
indoor air by temperature and remove warmer air, are likely able to 
reduce local SARS-CoV-2 transmission risk. “Mixing” ventilation sys
tems, designed to distribute temperature and aerosols equally 
throughout the space, are likely insufficient for preventing transmission 
and may even facilitate it (Bhagat et al., 2020). Providing additional 
indoor airflow by opening doors/windows may reduce SARS-COV-2 
exposure risk by expediting the removal of aerosolized virions and 
altering the movement trajectory of these particles within the room 
(Ahmadzadeh et al., 2021; Pirouz et al., 2021). However, Ahmadzadeh 
et al. (2021) advise that individuals nearby to ventilation outlets will 
likely be at increased risk for exposure to aerosolized virions due to the 
concentration of these particles in these spaces. 

Given our findings, we maintain that in areas where COVID-19 
prevalence remains high, holding events associated with relatively- 
increased mixing rates between individuals (e.g., social gatherings, 
sporting events, etc.) should be avoided even if attendance rates are 
presumed to be low. Such events are likely to be associated with SARS- 
CoV-2 transmission if ≥ 1 infectious individual(s) were to attend, the 
probability of which increases linearly with group size (Chande et al., 
2020). It is important to note however, that though our results provide 
insight into mechanisms for reducing SARS-COV-2 transmission rates, 
given the effect that model parameters can have on simulation outcomes 
(see Appendix S3), our findings may not be reasonably extrapolated to 
accurately predict transmission in scenarios dissimilar from those we 
modeled here (e.g., ≥ 2 infectious individuals, fewer aerosolized virions 
produced during expectorations, etc.). Regardless, we can still conclude 
that imposing mask usage requirements, group size restrictions, dura
tion limits, and social distancing policies have additive, and in some 
cases multiplicative protective effects on individual-level SARS-CoV-2 
infection risk during gatherings, and can be particularly efficacious in
terventions when deployed simultaneously. 

A detailed list of assumptions of limitations of our ABM design can be 
found in the Design Concepts section of Appendix S1. It is worth noting 
that the temporal and spatial scale of our ABM (i.e., < 1 day, and within 
a single room) limits the applicability of our model for simultaneously 
simulating transmission in large populations, across separate-but- 
connected spaces (e.g., rooms in a house or healthcare facility, class
rooms in school, etc.), and on larger time scales. However, with some 
modifications our ABM may be used as a base framework for models 
seeking to evaluate indoor pathogen transmission in these cases. 

In addition to model-specific limitations, there are some simulation- 
related assumptions that we must acknowledge. First and foremost, all 
of our simulations only included a single infectious individual, and all 
other individuals were completely susceptible to SARS-CoV-2 infection. 
Given the ongoing worldwide COVID-19 vaccine rollout it is likely that 
at least some people attending indoor gatherings will have a level of 
protection from infection, and we address this further in Farthing and 
Lanzas (2021). The findings presented herein are still important though, 
because transmission to and within unvaccinated groups remains a 
prominent issue (Christie et al., 2021). Secondly, we simulate only 
limited activity-specific behaviors related to movement within indoor 
gatherings. For the most part, simulated individuals were unmoving and 
they never engaged in specific direct contact-related activities with 
others (e.g., hugging, close-talking, etc.) during which SARS-CoV-2 
transmission risk may be elevated. This means that our simulations 
may oversimplify transmission mechanisms, and limits our ability to 
generalize our findings to specific real-world events. Nevertheless, we 
feel that our model is sufficiently accurate to highlight general trends in 
indoor SARS-CoV-2 transmission risk to susceptible populations. 

4. Conclusions 

Our results suggest SARS-CoV-2 infections can occur quickly 
following exposure to infectious respiratory droplets. To maximize 
nonpharmaceutical intervention efficacy, we must understand and ac
count for drivers of indoor exposure to infectious droplets and aerosols 
(e.g., people moving from virion-free space into contaminated areas 
within the room, ventilation systems pushing infectious aerosols to
wards susceptible individuals, etc.), so that individuals may actively 
take steps to avoid high-risk behaviors and environments. The ability to 
study these drivers is what differentiates our ABM from other models 
designed to study indoor SARS-CoV-2 transmission, but that do not 
incorporate spatiotemporal heterogeneity in agent behavior and envi
ronmental conditions. 
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