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Introduction. In retrospective studies, the effect of a given intervention is usually evaluated by using statistical tests to compare
data from before and after the intervention. A problem with this approach is that the presence of underlying trends can lead to
incorrect conclusions. ,is study aimed to develop a rigorous mathematical method to analyse temporal variation and overcome
these limitations.Methods. We evaluated hip fracture outcomes (time to surgery, length of stay, andmortality) from a total of 2777
patients between April 2011 and September 2016, before and after the introduction of a dedicated hip fracture unit (HFU). We
developed a novel modelling method that fits progressively more complex linear sections to the time series using least squares
regression. ,e method was used to model the periods before implementation, after implementation, and of the whole study
period, comparing goodness of fit using F-tests. Results. ,e proposed method offered reliable descriptions of the temporal
evolution of the time series and augmented conclusions that were reached by mere group comparisons. Reductions in time to
surgery, length of stay, and mortality rates that group comparisons would have credited to the hip fracture unit appeared to be due
to unrelated underlying trends. Conclusion. Temporal analysis using segmented linear regression models can reveal secular trends
and is a valuable tool to evaluate interventions in retrospective studies.

1. Introduction

,e National Health Service has a strong culture of quality
improvement [1]. A good evidence base is needed to drive
this process, and these data are often derived from retro-
spective studies and audits [2].

An important part of the audit cycle is comparison of
data before and after a given intervention [3]. Typically,
mean values or ranks of outcome measures before and after
the intervention are compared, and differences are tested
statistically for significance. ,is method assumes statio-
narity of data which is often not the case. Nonstationarity of
data is difficult to distinguish from causal change, and group
comparisons are unable to distinguish underlying (secular)
trends from intervention-induced change. ,is can lead to
erroneous conclusions [4–6] and is illustrated by a simulated

example shown in Figure 1. ,is shows a hypothetical in-
tervention that made no contribution to a change. Group
comparison would attribute this to the intervention
(p � 0.0002). While this is obvious in this example, more
subtle trends obscured by highly variable data are more
challenging to identify. Researchers attempt to limit the
influence of trends by selecting data closer to the point of the
intervention, but this does not annul the effect of a secular
trend when one is present [6]. It also sacrifices much of the
data, although it should be noted that data spanning long
time intervals are more susceptible to confounding pa-
rameters that are external to the purpose of the study.

Alternative approaches that accommodate trends use
interrupted linear or higher-order regression, but these
suffer from bias because the interruption is chosen at the
point of the intervention [7, 8]. Randomised controlled trials
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avoid many of these issues but are often expensive and time
consuming. Consequently, any method that can improve the
reliability of retrospective studies has wide potential ap-
plication to the wealth of data that such studies make
available at relatively low cost.

,e aim of this study was to describe a novel method of
modelling the temporal variation of a time series of data to
help identify secular trends in retrospective studies. Such a
method should reliably reveal underlying trends spanning the
entire study period, without bias to the intervention. Im-
portantly, there should be a mathematically robust technique
to determine whether a trend in the data is significant or due
to random variation. We developed and applied a novel
method to analyse the temporal variation in hip fracture
outcomes in a retrospective study that aimed to evaluate the
implementation of a dedicated hip fracture unit (HFU).

2. Methods

2.1. Hip Fracture Unit. In July 2015, a level 1 Major Trauma
Centre (MTC) in the United Kingdom established a dedi-
cated HFU to free up beds within the MTC. ,e HFU was
located in a nearby district general hospital. Services were
reconfigured to include ambulance triage, daily consultant-
led dedicated theatre lists for proximal femoral fractures,
and coordination of the necessary multidisciplinary team of
staff at the district hospital. ,ese changes were all instituted
simultaneously on July 1st, 2015.

2.2. Study Group. We studied 2777 patients who sustained
proximal femoral fragility fractures. Of these, 2117 patients
(2176 fractures) sustained their fractures prior to com-
mencement of the HFU (study period April 2011–June

2015), and 660 patients (671 fractures) were treated after the
introduction of the HFU (study period July 2015–September
2016).

2.3. Data. From a retrospective review of patient notes, the
following data were obtained:

(1) Time to surgical intervention (hours from time of
admission)

(2) Median length of hospital stay in days (LOS)
(3) Mortality rate at 30 days, 120 days, and 365 days

Patient demographic data were also collected. Both
hospitals were part of the same trust, and as such the same
sources of data collection were used: “e-Oasis” and “Sym-
phony” databases.

2.4. Statistical Analysis. Data before and after the in-
tervention (introduction of the HFU) were compared. ,e
data were analysed using both conventional statistical tests
and temporal analysis using a novel model-fitting method.
MATLAB (Natick, MA, USA) was used to apply segmented
least squares regression to determine parameters of the
nested models that are fitted to the time series [9, 10]. ,e
models were compared for goodness of fit using F-tests to
determine the best-fitting model. ,e large number of data
points (n> 2800) helped overcome limitations arising from
the non-normality of data to validate the use of F-tests to
compare nested models [11].

For conventional statistical tests, continuous variables
(time to surgery and length of stay) were compared using
Mann–Whitney tests while categorical data (30-day, 120-
day, and 365-day mortality rates) were compared using
Fisher’s exact tests. Demographic data were compared using
Mann–Whitney tests (age) and chi-squared tests (gender,
pathological fracture, ASA grade, and re-operation). ,ese
tests were applied using theMedCalc software suite (Ostend,
Belgium) [12]. Statistical significance was set at p< 0.05.

2.5. SegmentedLinearRegressionModelFitting. In this study,
we used an adaptation of a segmented linear regression
technique previously published by one of the authors (EMV)
in the context of learning curve modelling [9, 13].

We used least squares regression to fit a set of four
progressively more complex models to data of the time
series. Our models ranged from a simple plateau to two
adjoining straight lines (linear splines) with a single knot at
the point in time that minimised the sum of the square of
residuals. ,is range of models accommodates a respectable
degree of complexity that can capture changing trends in the
study period but also maintains simplicity and meaning-
fulness in the descriptions of trends.

,e four models, in increasing order of complexity, are
as follows:

(i) Plateau model. ,is is the simplest model. It is a
horizontal line (plateau) at the average value of the
outcome measure over the study period.
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Figure 1: Gaussian noise superimposed on a mildly decreasing
trend highlights a situation where the mean of pre-intervention
measure is significantly different from that of the post-intervention
measure (p � 0.0002) when the change is entirely due to the trend
and not the intervention. ,e dashed vertical line separates the two
groups. ,e blue line represents the line of regression of the mean
value of the simulated variable.

2 Computational and Mathematical Methods in Medicine



y � y, (1)

where y � 􏽐iyi/n.
(ii) Line model. ,e next model is a straight line de-

termined by least squares regression of the variable
(y) on the time (t):

y � mt + c, (2)

where m � 􏽐itiyi/􏽐it
2
i is the gradient and

c � (􏽐iyi/n)− (m􏽐iti/n) is the y-axis intercept.
(iii) Line-plateau (or plateau-line) model. ,is model is

made up of two sections: a straight line adjoining a
horizontal plateau at the kth value of t(t � tk) or
vice versa. ,e parameters of each section (gradient
and intercept) are determined by least squares re-
gression while the adjoining point (t � tk) is de-
termined as that which minimises the sum of
squares of residuals (Appendix A).
,e line-plateau model is given by yi �mkti + ck for
i� 1 to k and yj �Yk for j� k+ 1 to nwheremk and ck
are the gradient and y-axis intercept of the straight
line, respectively, and Yk the value of the plateau.
,e plateau-line model is given by yi � ck for i� 1
to k and yj �mk (tj – tk)+ ck for j� k+ 1 to n where
mk is the gradient of the straight line and ck the value
of the plateau.

(iv) Line-line model. ,is model is made up of two
sections: a straight line adjoining a second straight
line at the kth value of t (t� tk). ,e two straight
lines are determined by least squares regression of
the variable (y) on the time (t) using a closed form.
,e adjoining point (t� tk) is determined as that
which minimises the sum of squares of residuals
(Appendix B).

,e resulting lines have equations yi �m1kti + ck (i� 1 to
k) and yj �m2k (tj– tk)+ yk (j� k+ 1 to n) where m1k and ck
are the gradient and y-axis intercept of the first line andm2k
is the gradient of the last straight line.

After all four models have been fitted, we select the best
model as the simplest one unless a more complex one fits the
data significantly better. Significance is confirmed by F-tests
that compare the sum of the squares of residuals between
models. A simple tabular method listing the p values of F-
tests conducted pairwise between all four models helps select
the best model. ,is method is illustrated in Table 1. ,is
technique (F-test as applied to nested models) accounts for
and prevents, the risk of overfitting whereby higher-order
models (e.g., line-line) will always demonstrate improved fit,
but at the expense of additional parameters [14].

2.6. Application of the Method to the Study. Our proposed
method for selecting the best model was applied over three
distinct periods of time: (i) before the intervention (pre-
HFU), (ii) after the intervention (post-HFU), and (iii) the
entire time series (including both pre-HFU and post-HFU
periods). ,e model describing the entire time series was

subsequently compared to the models for the separate pre-
HFU and post-HFU periods using F-tests to determine
whether separate models offered a significantly better fit.

3. Results

3.1. Time to Surgery. Conventional tests: median time to
surgical intervention decreased after introduction of the
HFU. ,is change was not significant (21.51 hours pre-HFU
to 20.75 hours post-HFU, Mann–Whitney test: p � 0.150).

Temporal analysis: the best-fittingmodel for the entire data
set was the line-plateau (Figure 2), illustrating that time to
surgery decreased during the initial period of the study, well
before the introduction of the HFU. ,e line-line model was
the best model for the period pre-HFU and showed a de-
creasing trend followed by an increasing trend.,e best model
post-HFU was the plateau, taking a value at about the average
plateau of the line-plateau model fitted on the entire study
period. Separate models for the periods before and after the
intervention did not offer a better fit compared to using a
single model for the entire time series (p � 0.100). As a result,
a single model over the entire period offered the best temporal
description, suggesting that a decrease in the time to surgery
occurred early in the study period, well before the intervention.

3.2. Lengthof Stay. Conventional tests: median length of stay
(LOS) decreased after introduction of the HFU, though not
significantly (15 days pre-HFU to 14 days post-HFU,
Mann–Whitney test: p � 0.410).

Temporal analysis: the best-fittingmodel for the entire time
series was the line-line model (Figure 3). It demonstrated a
slowly decreasing rate in LOS followed by a sharply decreasing
rate in LOS that started about half a year after the introduction
of the HFU. ,e onset of this sharp change in the rate
explained the difference in median LOS pre- and post-HFU.
Separate pre-HFU analysis and post-HFU analysis demon-
strated the single line to be the best model in both. Separate
models offered a better fit than the overall model (p � 0.017)
confirming that the intervention (HFU) contributed to change
by causing an acceleration in the decrease of LOS.

3.3. 30-Day Mortality. Conventional tests: 30-day mortality
rate decreased significantly after introduction of the HFU
(5.47% pre-HFU to 3.13% post-HFU, Fisher’s Exact test:
p � 0.014).

Table 1: A tabular illustration of the results of F-tests between
models.

Plateau Line Line⟷plateau
Line pline/plateau
Line⟷plateau pline-plateau/

plateau

pline-plateau/
line

Line-line pline-line/plateau pline-line/line
pline-line/line-

plateau

,e best model is the one that has a row of uninterrupted significant p

values (p< 0.05) stretching furthest to the right. In the case of a tie, the
lower-order model is preferred. If no significant p values feature in the table,
the plateau is chosen as the best model.
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Temporal Analysis: ,e single line model was the best
model when analysing the entire time period, suggesting that
30-day mortality rate followed a declining trend throughout

the study period (Figure 4). Separate pre-HFU and post-
HFU analysis demonstrated that the plateau fit best in both.
Separate models did not offer a better fit compared to the
overall model (p � 1.000). We concluded that 30-day
mortality most probably followed a declining trend over the
entire study period which appeared to be responsible for the
significant reduction found using group comparison. ,is
means that the significant reduction in mortality rates from
pre-intervention to post-intervention cannot be simply
credited to the intervention.

3.4. 120-Day Mortality. Conventional tests: 120-day mor-
tality rate decreased, but not significantly, after introduction
of the HFU (12.68% pre-HFU to 10.13% post-HFU, Fisher’s
Exact test: p � 0.078).

Temporal analysis: the single line was the best model for
the entire time period (Figure 5). Separate pre-HFU and
post-HFU analysis demonstrated the line model fit best for
both. Separate models did not offer a better fit compared to
the model for the entire period (p � 0.187). ,e 120-day
mortality rate appeared to follow a declining trend that
spanned the entire study period, and the HFU did not appear
to have caused a reduction in this measure.

3.5. 365-Day Mortality. For this outcome measure, post-
HFU data are limited to a smaller sample (n � 316 instead of
n � 677) due to fewer patients having been followed-up.

Conventional Tests: ,ere was a small and non-signif-
icant decrease in 365-day mortality (21.46% pre-HFU to
20.57% post-HFU, Fisher’s Exact test: p � 0.769)

Temporal Analysis: ,e single line model fits the entire
time series best (Figure 6). Separate pre-HFU and post-HFU
analysis demonstrated the best fit models were the line and
plateau, respectively. Separate models did not offer a better
fit when compared to the overall model (p � 0.380). ,is
suggests that a change in one-year mortality was not due to
the intervention. Instead, temporal analysis suggested that it
followed a decreasing trend that spanned the entire study
period. Other causal factors may be implicated in the
background changes in 30-day, 120-day, and 365-day
mortality rates (Discussion).

3.6. Patient Demographics. Patient demographics were
analysed before and after implementation of the HFU
(Table 2). ,ere were two statistically significant differences:
post-HFU, the rate of pathological fracture was less and the
distribution of ASA grade was different. ,ese are likely
confounding variables which may have also influenced
secular trends, further emphasising the importance of
temporal analysis in retrospective studies.

4. Discussion

In this study, temporal analysis provided important insight
into the observed changes before and after the intervention.
Importantly, it demonstrated that some of the changes in the
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Figure 3: Length of stay versus time t in days from the start of the
study. ,e vertical dashed line marks the onset of the HFU. ,e
black line shows the line-line model as the best-fitting linear model
for entire time period: first line y�−0.0012t+ 20.2556 and second
line y�−0.0150 (t− 1698) + 18.2532 with delimiting time at 1698.
,e dashed blue lines are the best-fitting linear models for the pre-
HFU and post-HFU periods. ,e best model for the pre-HFU
period is the single line with equation y� –0.0021t+ 20.7696, and
best model for post-HFU is the single line with equation
y� –0.01769 (t− 1550) + 48.8532.
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Figure 2: Time to surgery versus time t in days from the start of the
study. ,e vertical dashed line marks the onset of the HFU. ,e
black line shows line-plateau as best-fitting linear model for entire
period: the line has equation y�−0.0414t+ 40.1868; plateau at
y� 24.7033 reached after 375 days. Dashed blue lines are best-fitting
linear models for pre-HFU and post-HFU periods. For pre-HFU
period, the best model in line-line model with first line y�

−0.0172t+ 35.8863 and second line y� 0.0120 (t− 894) + 20.5137
with delimiting time 894 days. For post-HFU period, the best
model is the plateau at y� 24.7359.
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outcome measures were likely due to trends that occurred
over a longer time period, independent of the intervention.

In modelling the temporal effect of patient mortality, we
used simple linear regression instead of logistic regression.
We did this because the latter is better suited when de-
pendence on a number of covariates is sought. As we were
evaluating the time dependence of mortality rate, simple

linear regression offered the advantage of yielding results in
a directly interpretable form.

We retrospectively investigated factors that could ex-
plain the observed trends as this would help us in evaluating
the reliability of the modelling method. We found several
factors which are listed below:

(1) Tariff. ,e Best Practice Tariff (BPT) was imple-
mented nationwide in April 2010. One criterion was
time to surgery within 36 hours (decreased from
48 hours previously) [15]. ,is could explain the
falling trend in time to surgery observed in the early
phase of the study in 2011 and 2012.

(2) Orthogeriatrician. ,e first orthogeriatrician was
appointed to the trust in 2006.,ree more have since
been appointed and are supported by junior staff.

(3) Implant use. We discontinued the use of both the
dynamic condylar screw (in 2009) and the Austin
Moore hemiarthroplasty implant (in 2011). Modular
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Figure 6: 365-day mortality versus time t in days from the start of
the study. ,e vertical dashed line marks the onset of the HFU.,e
black line shows the single line as the best-fitting linear model for
the entire period: equation y�−0.00004t+ 0.2497. ,e dashed blue
lines are the best-fitting linear models for the pre-HFU and post-
HFU periods. ,e best model for the pre-HFU period is the single
line with equation y�−0.00006t+ 0.2586, and the best model for
the post-HFU period is the plateau at y� 0.2063. Data points 0 or 1
for dead or alive in red.
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Figure 4: 30-day mortality versus time t in days from the start of the
study. ,e vertical dashed line marks the onset of the HFU. ,e
single line (black) is the best-fitting linearmodel for the entire period:
equation y�−0.00002t+0.0720.,e dashed blue lines show plateaus
are the best-fitting linear models for the pre-HFU (y� 0.0547) and
post-HFU (y� 0.0314) periods. Data points 0 or 1 for dead or alive in
red.
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Figure 5: 120-day mortality versus time t in days from the start of
the study. ,e vertical dashed line marks the onset of the HFU.,e
black line shows single line as the best-fitting linear model for the
entire period: equation y�−0.00003t+ 0.1529. ,e dashed blue
lines are the best fitting linear models for the pre-HFU and post-
HFU periods. ,e best model for the pre-HFU period is the single
line with equation y�−0.00003t+ 0.1519, and the best model for
the post-HFU period is the single line with equation y�−0.00025
(t−1550) + 0.1497. Data points 0 or 1 for dead or alive in red.

Table 2: Patient demographics before and after implementation of
the HFU.

Factor Pre-HFU
(n � 2176)

Post-HFU
(n � 671)

p

value
Age 84 85 0.0635
Gender F:1575M:601 F:477M:194 0.5463
Pathological fracture 59 6 0.0091

ASA grade (1, 2, 3, 4, 5) 91, 574, 1178,
302, 3

12, 201, 378,
76, 1 0.0094

Reoperation 31 15 0.2035
Significant p values are in bold.
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hemiarthroplasty was preferred in our trust after
2010 and was shown to decrease length of stay in a
separate study [16].

(4) Clerking proforma. A dedicated proximal femoral
fracture clerking proforma was introduced in 2011
[17].

(5) ;eatre prioritisation. Proximal femoral fractures
became prioritised cases on theatre lists in 2011.
Prior to this, other cases often took precedence over
fractured neck of femur surgery.

(6) Anaesthetic use. Anaesthetic practice gradually im-
proved, including introduction of a new anaesthetic
proforma in 2012 (lower anaesthetic doses and in-
creased use of regional anaesthesia).

,e decline in time to surgery that occurred during the
initial phase of the study period (long before the HFU) was
responsible for the detected drop in median time to surgery
from pre-HFU to post-HFU. Temporally, this coincided
with the introduction of the Best Practice Tariff in 2010 and
introduction of a neck of femur clerking proforma and
theatre prioritisation in 2011, whichmay have contributed to
the observed trend. Conventional statistical tests would have
misattributed this to the HFU.

Temporal analysis demonstrated that the HFU signifi-
cantly accelerated the rate of decrease in length of stay, yet
this was missed in group comparisons using rank tests. ,e
change in use of hip implants at our trust between 2009 and
2011 has been shown to decrease length of stay [16], possibly
explaining the underlying improvement in this variable
before the introduction of the HFU. Improvements in an-
aesthetic use may have also contributed to this.

,e underlying decreasing trend in 30-day mortality
represented by the single line model over the entire study
period and the fact that separate models did not offer a
significantly better fit meant that the decrease in 30-day
mortality was probably due to a secular trend. Using group
comparison tests alone would have misattributed this to the
HFU. Temporal analysis of 120-day and 365-day mortality
rates similarly demonstrated that an underlying decrease
throughout the entire study period was the reason for any
observed reduction when using group comparison tests.
Interestingly, the post-HFU model for 120-day mortality
showed a rapid decline possibly because of a small initial rise
subsequently regressing to its normal trend.

,e secular trends demonstrating improvement in
mortality rate may have been a result of some or all of the
aforementioned improvements, although other changes not
identified here may have contributed as well.

4.1. Evaluation of the Proposed Method. ,e chosen set of
models balance simplicity with the complexity that is required
if a single straight line cannot capture underlying trends. ,e
decision to enforce joined segments in models (iii) (line-
plateau) and (iv) (line-line) accounted for the expectation that
any change within the fitted period is expected to be gradual.

Discontinuity in the variable, such as when an in-
tervention results in a sudden change, can be accommodated

by fitting separate models in the phases before and after the
intervention. By using linear segments (as opposed to
higher-order curves), our models yield meaningful pa-
rameters such as plateau values and rates of change. Fur-
thermore, the models are nested which allows statistical
comparison with a rigorous tabular method for selection of
the best model. ,e best model offers the most reliable
description of the temporal variation of the data.

Our method examined whether the intervention was
significant by considering the periods before and after an
intervention as separate but also as part of the whole study
period. If separate models fit the data significantly better, we
concluded that the intervention was significant in bringing
change.

4.2. Comparison with Other Methods. ,e simplest form of
temporal analysis is a visual inspection of the data of the time
series, though this is of little practical value when change is
small and obscured by data featuring high variability. Re-
gression analysis is more reliable in revealing the presence
of trends and has been used extensively in time series
analysis [18].

An adaptation to linear regression is the interrupted time
series (ITS) analysis where separate regressions are
attempted for the periods before and after the intervention,
allowing for discontinuities that could be due to the in-
tervention [19]. ,is is a well-established method to test the
hypothesis that an intervention causes a significant change
in the outcome measure over time. However, fitting separate
models before and after the intervention biases the method
toward finding change at the intervention, and this may not
offer the most effective description of how the time series
evolved and what secular trends existed (or how these
changed) throughout time. Most applications of the ITS
method do not compare separate pre- and post-intervention
lines with a single model for the entire time period, nor do
they envisage using more than one linear segment for each
section. ,is can miss more complex trends [7, 18]. For
example, a change in the outcome measure that occurs well
before or after the intervention, can be missed by ITS, which
would credit the change to the intervention.

To contrast our proposed method with the ITS, we
applied ITS analysis to one of our outcome variables: the
time to surgery (Figure 7). ,e resulting intercept change
and slope change of the ITS at the intervention marginally
miss significance (change in slope (p � 0.0532) and change
in intercept (p � 0.0812)). Nonetheless, as ITS focuses its
attention at the intervention, the analysis would have
deemed the HFU ineffective while missing the important
reduction in time to surgery early in the study. F-tests
demonstrated significantly improved goodness of fit when
using our proposed method, compared to the ITS
(p< 0.0001). ,is is not surprising given that our method
enabled model change at different time points, yielding a
lower sum of the square of residuals. In this scenario (time to
surgery), our method concurred with the conclusion when
using ITS analysis, but the two methods are fundamentally
different, and their conclusions may not agree in all cases.
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Indeed, our method did not solely evaluate the effect of an
intervention (as the ITS does) but described the overall
trends within the study period, as well as providing amethod
to test the significance of change at the intervention.

4.3. Limitations. ,e first limitation of the proposed
method is that it cannot capture change that is more
complex than envisaged by two adjoining segments, (for
example, multiple segmental trends or exponential
trends) [18, 20]. In principle, the method can be extended
to incorporate three or more segments, but in embracing
higher complexity, one risks yielding unnecessary and
meaningless information. Expanding to more complex
models should be undertaken with caution.

Second, the method requires dedicated computer
programming, as most statistical and spreadsheet software
do not envisage the fitting of segmented linear regression
with variable adjoining points between the segments.
Consequently, a basic level of computer programming is
required, which limits its use to more advanced healthcare
analysts.

Another important limitation is in using F-tests to
compare the goodness of fit of the various models when
residuals do not meet the assumption of being normally
distributed [11]. While this may have an effect on the
reliability of p values that are obtained from the F-dis-
tribution, particularly when applying the method to
mortality rates, it affects all models equally and should not
decrease the effectiveness of the method in selecting the
best model. Indeed, setting significance at 5% is imposing
an arbitrary threshold which affects model selection, and
different significance levels will undoubtedly yield differ-
ent best models in marginal situations.

5. Conclusion

We proposed a novel, systematic method to model the
temporal variation of a time series based on segmented
linear regression. Its application to a real healthcare in-
tervention demonstrated the method’s ability to identify and
describe trends over the study period, without bias to the
intervention. We described a mathematically rigorous
technique to determine whether trends are significant. ,e
method offers a reliable tool in evaluating interventions and
in detecting change, improving the information that can be
drawn from retrospective studies.

Appendix

A. Derivation of the Least Squares
Parameters for the Line-Plateau and Plateau-
Line Models

,e line-plateau model is a straight line yi �mkti + ck for i� 1
to k adjoining to a plateau yj �Yk for j� k+ 1 to n. mk and ck
are the gradient and y-axis intercept of the straight line,
respectively, and Yk the value of the plateau. For each k from
k� 1 to n, parameters mk and ck are found so as to minimise
R, the sum of the squares of residuals:

R � 􏽘

n

i�1
yi − 􏽢yi( 􏼁

2
� 􏽘

k

i�1
yi −m · ti − c( 􏼁

2

+ 􏽘
n

i�k+1
yi −m · tk − c( 􏼁

2
,

(A.1)

where yi are the ordinates of the points of the data series
(ti, yi) and 􏽢yi are the predicted values of the model yi �

m · ti + c, i � 1 to k and yi � Y, i � k + 1 to n.
Least squares fitting requires that zR/zm � 0 and

zR/zc � 0 which together give the following matrix
equation:

A B

B n
􏼠 􏼡

m

c
􏼠 􏼡 �

E

F
􏼠 􏼡, (A.2)

where A � 􏽐
k
i�1t

2
i + (n− k)x2

k, B � 􏽐
k
i�1ti + (n− k)xtk, E �

􏽐
k
i�1tiyi + xtk · 􏽐

n
i�k+1yi, and F � 􏽐

n
i�1yi.

Equation (A.2) can be solved by linear algebra to yield
values for m and c while Y (the plateau) is a constant value
obtained from Y�m · tk+ c.

,e best line-plateau model is that which yields a
minimum value of R for different k (k� 1 to n):

[mk, ck, k] � min
k

[􏽐i(yi − 􏽢yi)
2]; the derivation of the

plateau-line model is very similar. Here a plateau yi � c, i �

1 to k adjoins a straight line. yi � m · (ti − tk) + c, i � k

+1 to n.
,en, equation (A.2) becomes

R � 􏽘
k

i�1
yi − c( 􏼁

2
+ 􏽘

n

i�k+1
yi −m · ti − tk( 􏼁− c􏼂 􏼃

2
. (A.3)

Least squares fitting requires that zR/zm � 0 and
zR/zc � 0 which yields the following matrix equation:
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Figure 7: Interrupted time series analysis for time to surgery
versus t days. ,e line of best fit pre-HFS (solid black line) was y �

− 0.0056t + 30.97. Extrapolation of the pre-HFU trend is shown as
the dashed line.,e line of best fit post-HFU (solid black line) was
y � 0.0029 (t − 1550) + 19.59. Slope change � +0.0085. Intercept
change � +1.862. Change in slope: p � 0.0532; change in in-
tercept: p � 0.0812.
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G H

H n
􏼠 􏼡
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L

F
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where G � 􏽐
n
i�k+1t

2
i − 2tk · 􏽐

n
i�k+1tk + (n− k)t2k, H � 􏽐

n
i�k+1ti

− (n− k)tk, L � 􏽐
n
i�k+1tiyi − tk · 􏽐

n
i�k+1yi, and F � 􏽐

n
i�1yi.

Equation (A.4) can be solved by linear algebra to yield
values for the plateau c and the slope of the adjoining straight
line m that joins the plateau at the kth data point. Once all
values of k have been tried, the best plateau-line model is the
one which yields a minimum value of R for different values
of k (k� 1 to n):

mk, ck, k􏼂 􏼃 � min
k

􏽘
i

yi − Yk( 􏼁
2

+ 􏽘
j

yj − 􏽢yi􏼐 􏼑
2⎡⎢⎢⎣ ⎤⎥⎥⎦. (A.5)

B. Derivation of the Least Squares
Parameters for the Line-Line Model

In the line-line model, a first straight line with equation
yi �m1kti + ck (i� 1 to k) adjoins a second straight line with
equation yj �m2k (tj– tk)+ yk (j� k + 1 to n).

For each value of k, parameters m1, c, and m2 are found
that minimise R:

R � 􏽘
k

i�1
yi −m1 · ti − c( 􏼁

2

+ 􏽘
n

i�k+1
yi −m2 · ti − tk( 􏼁−m1 · tk − c( 􏼁

2
.

(B.1)

Least squares fitting requires that zR/zm 1 � 0,
zR/zm 2 � 0 and zR/zc � 0 which results in the following
linear equation:
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where B � 􏽐
k
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Equation (B.2) can be solved using linear algebra to yield
values for m1, m2, and c and the process is repeated for all k
to find the set of values [m1k, ck, k, m2k] that yields the s
minimum value of R for k� 1 to n.

m1k, ck, k, m2k􏼂 􏼃 � min
k

􏽘

k

i�1
yi − 􏽢yi( 􏼁

2⎡⎣ ⎤⎦. (B.3)
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