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RNF43 truncations trap CK1 to drive
niche-independent self-renewal in cancer
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Abstract

Wnt/b-catenin signaling is a primary pathway for stem cell
maintenance during tissue renewal and a frequent target for
mutations in cancer. Impaired Wnt receptor endocytosis due to
loss of the ubiquitin ligase RNF43 gives rise to Wnt-hypersensi-
tive tumors that are susceptible to anti-Wnt-based therapy.
Contrary to this paradigm, we identify a class of RNF43 truncat-
ing cancer mutations that induce b-catenin-mediated transcrip-
tion, despite exhibiting retained Wnt receptor downregulation.
These mutations interfere with a ubiquitin-independent suppres-
sor role of the RNF43 cytosolic tail that involves Casein kinase 1
(CK1) binding and phosphorylation. Mechanistically, truncated
RNF43 variants trap CK1 at the plasma membrane, thereby
preventing b-catenin turnover and propelling ligand-independent
target gene transcription. Gene editing of human colon stem
cells shows that RNF43 truncations cooperate with p53 loss to
drive a niche-independent program for self-renewal and prolifer-
ation. Moreover, these RNF43 variants confer decreased sensitiv-
ity to anti-Wnt-based therapy. Our data demonstrate the
relevance of studying patient-derived mutations for understand-
ing disease mechanisms and improved applications of precision
medicine.
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Introduction

Aberrant activation of Wnt/b-catenin signaling is a key oncogenic

event that confers an undifferentiated state and allows cancer cells

to thrive outside their native niche constraint (Fujii et al, 2016;

Nusse & Clevers, 2017; Zhan et al, 2017). In adult stem cells, Wnt

signaling is curbed by the negative feedback regulators RNF43 and

ZNRF3, two homologous transmembrane ubiquitin ligases that

induce removal of the Wnt receptors FZD and LRP6 from the cell

surface via ubiquitin-mediated endocytosis and lysosomal degrada-

tion (Hao et al, 2012; Koo et al, 2012). Within the stem cell niche,

the activity of RNF43/ZNRF3 is counterbalanced by secreted

proteins of the R-spondin (Rspo) family that form a complex with

Leucine-rich repeat-containing G-protein-coupled receptor 4/5

(Lgr4/5) to mediate membrane clearance of RNF43/ZNRF3,

promote Wnt receptor stabilization, and enhance Wnt responsive-

ness of stem cell populations (Carmon et al, 2011; de Lau et al,

2011; Chen et al, 2013; Peng et al, 2013a,b; Zebisch et al, 2013;

Kabiri et al, 2014; Zebisch & Jones, 2015).

Mutational loss of RNF43 and/or ZNRF3 is observed in human

malignancies of the colon, pancreas, stomach, ovary, endometrium,

and liver (Furukawa et al, 2011; Wu et al, 2011; Ong et al, 2012;

Jiang et al, 2013; Ryland et al, 2013; Zou et al, 2013; Giannakis

et al, 2014). Inactivation of RNF43/ZNRF3-mediated feedback leads

to an increased abundance of Wnt receptors at the cell surface,

which renders cells hypersensitive to Wnt ligands in their environ-

ment (Koo et al, 2012). The resulting Wnt-dependent growth state

drives tumorigenesis and generates a druggable addiction to Wnt

ligands in these cancer subsets (Wu et al, 2011; Koo et al, 2012;

Jiang et al, 2013; Ryland et al, 2013; Zhou et al, 2013; Lannagan

1 Department of Cell Biology and Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
2 Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
3 Department of Molecular Biology and Oncode Institute, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The

Netherlands
4 Central European Institute of Technology, Masaryk University, Brno, Czech Republic
5 Hubrecht Organoid Technology, Utrecht, The Netherlands
6 Laboratory for Experimental Oncology and Radiobiology and Oncode Institute, Center for Experimental and Molecular Medicine, Amsterdam UMC, Cancer Center

Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
7 Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria

*Corresponding author. Tel: +31 88 75 57574; E-mail: m.m.maurice@umcutrecht.nl
†These authors contributed equally to this work

ª 2020 The Authors. Published under the terms of the CC BY 4.0 license The EMBO Journal 39: e103932 | 2020 1 of 15

https://orcid.org/0000-0002-8593-0447
https://orcid.org/0000-0002-8593-0447
https://orcid.org/0000-0002-8593-0447
https://orcid.org/0000-0003-3599-7931
https://orcid.org/0000-0003-3599-7931
https://orcid.org/0000-0003-3599-7931
https://orcid.org/0000-0001-7865-2816
https://orcid.org/0000-0001-7865-2816
https://orcid.org/0000-0001-7865-2816
https://orcid.org/0000-0003-4850-9933
https://orcid.org/0000-0003-4850-9933
https://orcid.org/0000-0003-4850-9933
https://orcid.org/0000-0002-3660-504X
https://orcid.org/0000-0002-3660-504X
https://orcid.org/0000-0002-3660-504X
https://orcid.org/0000-0001-9920-2937
https://orcid.org/0000-0001-9920-2937
https://orcid.org/0000-0001-9920-2937
https://orcid.org/0000-0001-6954-1620
https://orcid.org/0000-0001-6954-1620
https://orcid.org/0000-0001-6954-1620
https://orcid.org/0000-0003-3045-2924
https://orcid.org/0000-0003-3045-2924
https://orcid.org/0000-0003-3045-2924
https://orcid.org/0000-0002-9136-5085
https://orcid.org/0000-0002-9136-5085
https://orcid.org/0000-0002-9136-5085
https://orcid.org/0000-0002-4134-8033
https://orcid.org/0000-0002-4134-8033
https://orcid.org/0000-0002-4134-8033
https://orcid.org/0000-0003-0836-6894
https://orcid.org/0000-0003-0836-6894
https://orcid.org/0000-0003-0836-6894
https://orcid.org/0000-0001-6885-5361
https://orcid.org/0000-0001-6885-5361
https://orcid.org/0000-0001-6885-5361


et al, 2019). Indeed, blocking Wnt ligand biogenesis by small-

molecule inhibitors of the O-acyltransferase Porcupine (PORCN)

suppresses the growth of RNF43-deleted pancreatic and small

intestinal tumors in preclinical models (Chen et al, 2009; Jiang et al,

2013; Koo et al, 2015). This vulnerability has offered an opportunity

to treat human cancers that are genetically defined by RNF43 muta-

tions with PORCN inhibitors. Currently, five small-molecule PORCN

inhibitors are evaluated in clinical trials for cancer treatment

(ClinicalTrials.gov, NCT01351103, NCT02278133, NCT02521844,

NCT03447470, NCT02675946, NCT03901950, and NCT03507998).

Clearly, mutational inactivation of RNF43 is a prerequisite for

Wnt-dependent growth (Koo et al, 2015). Recent cancer genome

sequencing efforts, however, revealed a large diversity of genetic

lesions within the RNF43 locus of various human cancer types

(www.cBioportal.org; Forbes et al, 2015). This mutational variabil-

ity poses a challenge to unambiguously distinguish driver from

passenger mutations and predict which mutations truly generate a

Wnt-dependent growth state that can be exploited by targeted treat-

ment. Insight in the mechanisms by which individual RNF43 muta-

tions contribute to cancer development and progression therefore is

vital for the understanding of patient-specific disease mechanisms

and the development of precision oncology strategies.

Here, we uncover a class of RNF43 truncating mutations that

drive inappropriate Wnt pathway activation by a mechanism

distinct from RNF43 Loss Of Function (LOF) mutations. Through

capturing Casein kinase 1 (CK1) at the plasma membrane, these

RNF43 mutants interfere with the turnover of the transcriptional

coactivator b-catenin, promoting the transcriptional activation of

Wnt target genes. When introduced in primary human colon stem

cells, truncated RNF43 mutants induce a state of oncogenic stress

and require prior inactivation of TP53 to drive a niche-independent

program for self-renewal and proliferation. Importantly, expression

of oncogenic RNF43 mutations, unlike conventional LOF RNF43

mutations, reduces the potency of anti-Wnt-based therapy. Our

results reveal the functional heterogeneity of cancer driver muta-

tions in a single gene and demonstrate the importance of examining

patient-derived mutations to uncover disease mechanisms, allow for

improved patient stratification and applications of targeted therapy.

Results

Loss of the C-terminus endows the tumor suppressor RNF43 with
oncogenic properties

RNF43 comprises a single-span transmembrane E3 ubiquitin ligase

of 783 amino acids (Fig 1A). Binding and ubiquitination of Wnt

receptors map to the N-terminal half of the RNF43 protein, including

the extracellular (ECD), transmembrane (TM), and RING domains.

These domains are followed by an extended C-terminal tail that

contains conserved Ser-, His-, and Pro-rich regions to which no role

has been assigned (Fig 1A). Notably, a third of reported RNF43

cancer variants comprise nonsense or frameshift mutations that

prospectively yield expression of C-terminally shortened RNF43

proteins for which functional consequences remain unknown

(www.cBioportal.org; Giannakis et al, 2014; Forbes et al, 2015). To

address this issue, we expressed RNF43 cancer variants carrying

incremental C-terminal truncations in HEK293T cells and monitored

their impact on Wnt-induced b-catenin-mediated transcription.

Strikingly, RNF43 variants truncated between residues K514-Q563

strongly induced b-catenin-mediated transcription, independent of

supplementation with Wnt (Fig 1B). Unlike a well-defined LOF

missense variant (I48T; Tsukiyama et al, 2015), these RNF43

mutants fully retained their ability to downregulate FZD receptors

while strongly increasing cytosolic b-catenin levels (Figs 1C–F and

EV1A) indicating a gain of oncogenic activity. Wnt pathway activa-

tion by the representative oncogenic variant RNF43 R519X remained

unaffected by PORCN inhibitors, while these compounds fully

suppressed Wnt signaling activity induced by the LOF cancer

mutant I48T or by RNF43/ZNRF3 deletion (Figs 1G and EV1B)

(Jiang et al, 2013). Thus, in contrast to LOF mutations, RNF43

R519X induces pathway activation in a ligand-independent manner.

Furthermore, RNF43 R519X strongly induced Wnt pathway activa-

tion in an RNF43/ZNRF3-knockout background, indicating that these

mutants do not operate via a dominant-negative mechanism

(Fig EV1B). Hence, truncated RNF43 variants gain competence to

drive basal Wnt signaling and are functionally distinct from classical

LOF mutations.

Premature termination codons within the oncogenic region of
RNF43 avoid nonsense-mediated decay

More precise mapping of the oncogenic region using designed

RNF43 truncations revealed that truncations located within D504-

Q563 unleash b-catenin-mediated transcription, indicating that

oncogenic activity requires retention of the Ser-rich region and loss

of the Pro-rich region (Figs 1B and EV1C). Mutations introducing

premature termination codons (PTC) within this RNF43 region

occurred in various cancer types, including pancreas, endometrium,

ovarium, and colon (Appendix Table S1). Expression of inappropri-

ately truncated proteins is commonly limited due to nonsense-

mediated decay mRNA surveillance pathways (Lykke-Andersen &

Jensen, 2015; Lindeboom et al, 2016). To investigate this issue, we

employed CRISPR/Cas9 to introduce biallelic RNF43 PTCs in SW480

APC-mutant colorectal cancer cells, in which RNF43 is actively tran-

scribed (Fig EV2A and B). Mutant RNF43 mRNAs (V520fs/D516fs)

were expressed even at increased abundance compared with

parental cells (Fig EV2C and D), indicating that these transcripts

are stable.

Truncated RNF43 cancer variants interfere with downstream
Wnt signaling events

Next, we aimed to identify the molecular requirements for the onco-

genic activity of truncated RNF43 variants. Conventional wild-type

RNF43 tumor suppressor activity relies on the RING-type E3 ligase

domain that marks FZD for ubiquitin-mediated endocytosis and

lysosomal turnover (Fig 1C and D; Hao et al, 2012; Koo et al,

2012). The introduction of RING domain-inactivating mutations still

allowed for RNF43 R519X-mediated induction of basal b-catenin
transcription, while responses to Wnt were further enhanced, likely

due to the FZD stabilizing effects of this catalytically inactive RNF43

variant (Fig 2A; Koo et al, 2012). Furthermore, RNF43 R519X

retained its ability to drive basal Wnt pathway activation when the

ECD and TM domains were substituted by those of the unrelated

transmembrane proteins CD16 and CD7 (Fig 2B and C). Similar

2 of 15 The EMBO Journal 39: e103932 | 2020 ª 2020 The Authors

The EMBO Journal Maureen Spit et al

http://www.cBioportal.org
http://www.cBioportal.org


B

lu
ci

fe
ra

se
 a

ct
iv

ity

RNF43:
0

500

1000

1500

2000

2500
W

T

R
65

0X

Q
56

3X

Y5
58

X

R
51

9X

D
51

6f
s

K5
14

fs

V4
90

fs

R
37

1X

-

C

- W
T

R
51

9X

D
51

6f
s

V4
90

fs

I4
8T

100-

75- Flag
(RNF43)

V5

IB:
RNF43:

V5-FZD5

50- 

D

E

control RNF43 R519XRNF43 WT
SNAP-FZD5

F

DMSO
C59

+Wnt3a

0

500

1000

1500

2000
-

W
T

R
51

9X

I4
8TRNF43:

lu
ci

fe
ra

se
 a

ct
iv

ity

G

Actin

β-catenin

cytoplasmic

IB:
RNF43:

100-

50-

W
T

R
51

9X

-
control

RNF43 I48T

RNF43 WT

RNF43 V490fsRNF43 D516fs

RNF43 R519X
β-catenin

A

CN
SP PA TM RING

DIR SRR HRR PRR

45 197 313

504 563

783 1 129 218 272 325 443 503 547 569 760560

Wnt3a
no Wnt3a

Figure 1. Cancer truncations endow RNF43 with oncogenic properties.

A Schematic representation of the RNF43 protein. SP; signal peptide, PA; protease-associated domain, TM; transmembrane domain, RING; E3 ligase catalytic domain,
DIR; Dishevelled-interaction region, SRR; Serine-rich region, HRR; Histidine-rich region, PRR; Proline-rich region. The region in which oncogenic truncations occur (aa
504–563) is indicated.

B b-catenin-mediated reporter activity in HEK293T cells expressing the indicated RNF43 cancer mutants. Cells were treated with control medium (no Wnt3a) or Wnt3a-
conditioned medium (Wnt3a) overnight. Average b-catenin-mediated reporter activities � s.d. in n = 2 independent wells are shown.

C Western blot analysis showing the effect of RNF43 cancer mutants on V5-FZD5 expression in HEK293T cells. Open and closed arrows indicate mature (post-Golgi) and
immature (ER-associated) FZD5, respectively.

D Confocal microscopy of surface labeled SNAP-FZD5 in HEK293T cells upon expression of RNF43 WT or R519X. Cells were chased for 30 min. Scale bars represent
10 lm.

E Confocal microscopy of b-catenin localization in HEK293T cells expressing the indicated RNF43 cancer mutants. Scale bars represent 10 lm.
F Western blot analysis of RNF43 WT and R519X for cytoplasmic b-catenin levels.
G b-catenin-mediated reporter activity in HEK293T cells expressing Wnt3a and WT RNF43, oncogenic RNF43 (R519X) or a LOF RNF43 variant (I48T) after o/n treatment

with DMSO or the PORCN inhibitor C59 (1 lM).

Data information: IB; immunoblot, WT; wild-type.
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replacements in full-length RNF43 resulted in failure to downregu-

late FZD5 and loss of Wnt inhibitory activity (Fig 2C; Jiang et al,

2015). Thus, the truncated RNF43 cytosolic tail is required and suffi-

cient to drive oncogenic b-catenin-dependent transcription by a

mechanism independent of the ECD and RING domains. In line with

this observation, RNF43 R519X-induced b-catenin-mediated tran-

scription was insensitive to expression of Dishevelled (Dvl)-1 DEP-C,

a Dvl fragment that binds the FZD cytosolic domains and blocks

Wnt-mediated receptor activity (Fig 2D and Appendix Fig S1B;

Tauriello et al, 2012). By contrast, expression of a dominant-

negative variant of TCF4 (DN-TCF4), a nuclear b-catenin-binding
partner (van Noort & Clevers, 2002), inhibited b-catenin-mediated

transcription induced by oncogenic RNF43 truncations (Fig 2E). We

conclude that truncated RNF43 cancer variants affect a molecular

step positioned downstream of the Wnt receptors and upstream of

b-catenin-mediated transcription.

Truncated RNF43 variants retain CK1 at the plasma membrane to
drive b-catenin-mediated transcription

We next investigated whether truncated RNF43 interferes with the

b-catenin destruction complex, which provides a central point for

Wnt pathway regulation and is commonly targeted by inactivating

mutations in cancer (Polakis, 2012; Zhan et al, 2017). BioID proxim-

ity labeling revealed interactions of WT RNF43 with destruction

complex members Axin1, CK1a, CK1e, and APC (Fig 3A;
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Figure 2. Oncogenic RNF43 variants activate Wnt signaling downstream of the receptor complex and upstream of b-catenin.

A b-catenin-mediated reporter activity in HEK293T cells expressing WT RNF43 and oncogenic RNF43 (R519X) harboring mutations C290S/H292S in the RING domain
(M1). Cells were treated with control medium (no Wnt3a) or Wnt3a-conditioned medium (Wnt3a) overnight. Average b-catenin-mediated reporter activities � s.d. in
n = 2 independent wells are shown.

B Schematic of RNF43 constructs in which the extracellular and transmembrane domains (ECD and TM) are replaced by those of the unrelated CD16 and CD7,
respectively. CCR; CD16-CD7-RNF43.

C b-catenin-mediated reporter activity in HEK293T cells expressing the indicated RNF43 constructs. Cells were treated with control medium (no Wnt3a) or Wnt3a-
conditioned medium (Wnt3a) overnight. Average b-catenin-mediated reporter activities � s.d. in n = 2 independent wells are shown.

D b-catenin-mediated reporter activity in HEK293T cells co-expressing oncogenic RNF43 (R519X) and the Dishevelled DEP-C tail. Cells were treated with control medium
(no Wnt3a) or Wnt3a-conditioned medium (Wnt3a) overnight. Average b-catenin-mediated reporter activities � s.d. in n = 2 independent wells are shown.

E b-catenin-mediated reporter activity in HEK293T cells co-expressing oncogenic RNF43 (R519X) and dominant-negative DN-TCF4. Cells were treated with control
medium (no Wnt3a) or Wnt3a-conditioned medium (Wnt3a) overnight. Average b-catenin-mediated reporter activities � s.d. in n = 2 independent wells are shown.

Data information: WT; wild-type.
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Appendix Table S2). Strikingly, interactions of truncated oncogenic

RNF43 variants with endogenous Axin1 and CK1a/e were increased

in comparison with RNF43 WT (Figs 3B and EV3A and B), while

interactions with APC and GSK3b were not noticeably altered or

even decreased (Figs 3B and EV3A, C and D). Moreover, expression

of RNF43 R519X, but not WT or the non-oncogenic R371X variant,

prompted a redistribution of Axin1, as well as endogenous CK1a
and CK1e, from cytosol to the plasma membrane (Figs 3C and D,

EV3E and F). The interaction of CK1a/e and RNF43 remained unaf-

fected by depletion of Axin1 and its close homologue Axin2

(Fig EV3G), suggesting that CK1 interacts directly with the RNF43

cytosolic tail. Binding of CK1a/e mapped to an intermittent region

in the RNF43 C-terminus, composed of T483-Q488 and G492-S494

(Fig EV4A and B). Moreover, levels of CK1 binding correlated with

Wnt pathway-activating ability of RNF43 R519X (Fig EV4B and C).

These findings imply that retention of CK1 by RNF43-truncated

cancer variants is essential for their oncogenic mode of action.

The observed increase in CK1 binding upon truncation suggests

that downstream elements in the RNF43 tail normally regulate CK1

binding. As the RNF43 Q588X mutant performs normal suppressor

activity (Fig EV4D), we evaluated a regulatory role of the Pro-rich

region spanning Q563-Q588, located immediate adjacent to the

oncogenic region. Indeed, the RNF43 DW564-P587 deletion variant

displayed increased binding to CK1a/e and, accordantly, was

capable of driving oncogenic pathway activation (Fig EV4E and F).

Thus, the W564-P587 sequence in the PRR normally regulates inter-

actions of RNF43 with CK1, suggesting that these interactions are

dynamic. Loss of this sequence is a requirement for enhanced CK1

binding and oncogenic activity.

CK1-mediated phosphorylation of the truncated RNF43 cytosolic
tail confers oncogenic Wnt pathway activation

To investigate whether RNF43 is a target for phosphorylation, we

analyzed the phosphorylation status of RNF43 WT upon treatment

with Wnt3a or Wnt3a/Rspo1. Upon Wnt3a treatment, overall Ser/

Thr phosphorylation of RNF43 WT was reduced, while addition of

Rspo1 increased phosphorylation status. These findings indicate that

RNF43 phosphorylation is a regulated event during Wnt signaling

(Appendix Table S3). In comparison with RNF43 WT, RNF43 R519X

displayed an overall increase in basal phosphorylation, consistent

with its ability to trap endogenous CK1 (Appendix Table S4).

Furthermore, co-expression of CK1a, but not CK1e, induced an

increase in RNF43 WT phosphorylation, suggesting that CK1a is the

preferred kinase for functional cooperation. Moreover, the majority

of Rspo1-induced phospho-sites in RNF43 WT also became modi-

fied upon CK1a overexpression (Appendix Tables S3 and S4),

suggesting that Rspo1 treatment might regulate CK1a activity

toward RNF43.

We identified a non-canonical CK1 SLS target sequence at resi-

dues S500-S503 (SLSS) (Marin et al, 2003). Loss of this sequence

(RNF43 S499X) abolished the ability of truncated RNF43 to induce

b-catenin-mediated transcription (Fig EV1C), indicating it performs

an essential role in driving oncogenic activity. In addition, Ala

substitution of the SLSS motif (SLSS > ALAA) in full-length RNF43

abolished pathway suppression, while introduction of phospho-

mimetic residues (SLSS > DLDD) promoted suppressor activity

(Fig EV4G). In accordance, an RNF43 cancer variant carrying a

CK1-binding site deletion (DS486-G489>R; cBioportal) displayed

LOF effects (Fig EV4G). The combined results thus indicate that

RNF43 WT normally employs CK1 kinase activity to perform its

tumor suppressor role. Importantly, the SLSS motif and CK1 binding

are not required for FZD targeting, as both RNF43 ALAA and DS486-
G489>R variants were still able to downregulate mature FZD5 simi-

lar to WT RNF43 (Fig EV4H).

Introduction of SLSS>ALAA or deletion of the CK1-binding site

fully abrogated the capacity of RNF43 R519X to induce basal Wnt

pathway activation, while SLSS>DLDD R519X mediated increased

tumorigenic activity (Fig 3E). In line with its role as a CK1 target

motif, mutation of the acidic region downstream of SLSS (residues

504–506) also affected the oncogenic activity of RNF43 R519X

(Fig EV4C) (Marin et al, 2003). Thus, truncated RNF43 employs

CK1 binding and phosphorylation to drive oncogenic Wnt pathway

activation.

Oncogenic RNF43 mutations induce a TP53-dependent growth
arrest in human colon organoids

Next, we investigated the impact of oncogenic RNF43 truncations

on epithelial homeostasis, using human colon organoids (Jung et al,

2011; Sato et al, 2011). Introduction of CRISPR/Cas9-mediated

frame shift mutations within the oncogenic region of the endoge-

nous RNF43 locus (onco-RNF43) yielded only a limited number of

small organoid clones that failed to thrive, reminiscent of a senes-

cent phenotype (Fig EV2A and Appendix Fig S2A; Ocadiz-Ruiz et al,

2017). Genotyping of a slowly expanding clone confirmed the pres-

ence of a mono-allelic onco-RNF43 mutation (Appendix Fig S2B).

This phenotype is strikingly different from RNF43 LOF mutations

that are well tolerated in intestinal organoids (Koo et al, 2012; Eto

et al, 2018). We wondered how onco-RNF43 induces epithelial

growth arrest. In line with our model of onco-RNF43-mediated CK1

sequestration, ablation of Csnk1a1 (CK1a) from the mouse intestinal

epithelium was shown previously to trigger massive Wnt pathway

activation accompanied with p53-mediated cellular senescence

(Elyada et al, 2011). Combined ablation of Csnk1a1 and Tp53 insti-

gated formation of highly invasive carcinomas (Elyada et al, 2011).

Similarly, we noted a co-occurrence of oncogenic RNF43 frameshift

mutations with mutations in TP53 or senescence-associated genes in

human cancer (Appendix Table S1), suggesting that TP53 inactiva-

tion might be required to bypass an oncogenic stress-induced

growth arrest. Indeed, combined onco-RNF43/TP53KO mutant

clones rapidly appeared after CRISPR/Cas9 targeting, thrived in

large numbers and allowed for the occurrence of biallelic onco-

RNF43 mutations (Appendix Fig S2A and B). Thus, loss of TP53

creates a permissive cellular state for onco-RNF43 expression.

Onco-RNF43 variants drive niche-independent growth in human
colon organoids and confer decreased sensitivity to
anti-Wnt-based therapy

A key feature of cancer pathway driver mutations is their ability to

confer niche-independent growth, which is examined by depleting

stem cell growth factors from the organoid culture medium (Sato

et al, 2011; Fujii et al, 2016). We wondered if the ability of onco-

RNF43 to drive basal b-catenin-mediated transcription alleviates the

need for supplementation of colon organoids with Wnt and/or Rspo,
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a Wnt-potentiating niche factor that induces membrane clearance

of RNF43/ZNRF3 and allows for enhanced Wnt responsiveness of

stem cell populations (Carmon et al, 2011; de Lau et al, 2011;

Chen et al, 2013; Peng et al, 2013a,b; Zebisch et al, 2013; Zebisch

& Jones, 2015). Omitting Wnt readily compromised viability of

both WT and TP53KO organoid lines, as reported earlier (Sato

et al, 2011; Yan et al, 2017), while onco-RNF43/TP53KO organoid

growth remained largely unaffected (Fig 4A and Appendix Fig

S3A). Although instant removal of Rspo was not tolerated by any

of the organoid lines, onco-RNF43/TP53KO organoids displayed

much greater tolerance to a step-wise decrease in Rspo concentra-

tions when compared to WT and TP53KO organoid lines (Fig 4A

and Appendix Fig S3A). We conclude that onco-RNF43 mutations

confer decreased dependence on Wnt and Rspo niche factors, a

hallmark of cancer cell growth.

To investigate the impact of onco-RNF43 mutations on gene

expression in colon epithelial cells, we performed RNA sequencing

of WT, TP53KO, and onco-RNF43/TP53KO organoid lines grown in

high Wnt/Rspo (20%) or no Wnt/low Rspo (0.2%) medium. Unsu-

pervised clustering of significantly changing genes revealed four

distinct clusters of gene expression dynamics (Fig EV5A). Onco-

RNF43-mediated transcriptome alterations were markedly enhanced

in no Wnt/low Rspo growth conditions (Fig EV5A and B). There-

fore, we focused on 1448 genes that were differentially expressed in

TP53KO versus onco-RNF43/TP53KO organoid lines grown in no

Wnt/low Rspo (Fig EV5A and B). Of the 966 downregulated genes
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A Volcano plot showing proteins enriched after streptavidin pull-down of biotin-treated HEK293 cells stably expressing dox-inducible RNF43-BirA*. Striped line
demarcates the empirical 0.01 False discovery rate (FDR) cutoff. Significantly enriched Wnt/b-catenin pathway components are highlighted in red and RNF43 in
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B Western blot analysis of endogenous destruction complex components that co-precipitated with the indicated RNF43 cancer variants expressed in HEK293T cells.
Oncogenic RNF43 truncations are indicated in red.

C, D Confocal microscopy analysis of the subcellular localization of Axin1-GFP (C) and endogenous CK1a (D) upon expression of WT or oncogenic RNF43 (R519X). Scale
bars represent 10 lm. RNF43 is visualized by Flag staining. Asterisks indicate RNF43-expressing cells.

E b-catenin-mediated reporter activity in HEK293T cells expressing non-mutated RNF43 R519X (SLSS) or the ALAA, DLDD, and DS486–G489>R mutants. Average b-
catenin-mediated reporter activities � s.d. in n = 2 independent wells are shown.

Data information: IP; immunoprecipitation, IB; immunoblot, WT; wild-type.
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in onco-RNF43/TP53KO organoids, a minor group of 123 genes was

traced back to loss of TP53. The remaining 843 genes were specifi-

cally and consistently downregulated by onco-RNF43 expression.

Conversely, 482 genes were significantly increased in onco-RNF43-

expressing organoids. Noticeably, this gene set was also upregulated

in high Wnt/Rspo-treated organoids (Fig EV5A, right heatmap),
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indicating that onco-RNF43 confers a signature normally provided

by the stem cell niche. Gene set enrichment analysis (GSEA) using

MSigDB (Liberzon et al, 2015) revealed significant enrichment for

Myc and E2F targets, Wnt signaling, DNA damage response and cell

division by onco-RNF43 expression (Fig 4B). A lentiviral Wnt GFP

reporter (Fuerer & Nusse, 2010) confirmed sustained Wnt signaling

in onco-RNF43-expressing organoids in no Wnt/low Rspo growth

conditions (Fig 4C, Appendix Fig S3B and C). Furthermore, differen-

tiated cell type signatures (Haber et al, 2017) were lost in onco-

RNF43-expressing organoids while profiles of transit-amplifying

cells were notably enriched (Fig 4D). In summary, onco-RNF43

induces expression of a stem cell-like transcriptome in colonic

epithelial cells and these effects are intensified in conditions where

Wnt and Rspo are scarce.

The ability of onco-RNF43 mutations to drive Wnt-independent

signaling stands in stark contrast to the previously described role

of RNF43 LOF mutations that promote a Wnt-dependent growth

state. Importantly, our findings predict differential sensitivity of

these RNF43 mutational classes to treatment with PORCN inhibi-

tors, Wnt antagonists that are currently evaluated for clinical treat-

ment of RNF43-mutant cancer patients (Janku et al, 2015; Zhan

et al, 2017; Rodon et al, 2018; Zhang & Lum, 2018). In line with

retained Rspo-dependency, prolonged culturing in the presence of

PORCN inhibitor C59 was not tolerated by any of the organoid

lines. However, a large fraction of onco-RNF43/TP53KO organoid

clones survived and recovered after 1 week of C59 treatment,

while no viable clones were obtained for WT and TP53KO orga-

noids (Fig 5A and B, and Appendix Fig S3D). These results indi-

cate that onco-RNF43 expression reduces sensitivity to PORCN

inhibitors. In line with these findings, onco-RNF43-expressing

organoids accumulated a higher relative fraction of active, non-

phosphorylated b-catenin under Wnt-depleted conditions, thus con-

firming compromised destruction complex activity (Appendix Fig

S3E and F). Taken together, onco-RNF43 expression confers

reduced sensitivity of human colon organoids to PORCN inhibitor

treatment by promoting downstream b-catenin-mediated transcrip-

tion.

Discussion

Inappropriate Wnt/b-catenin signaling in cancer is achieved by two

major mutational driver routes. Inactivation of the destruction

complex is well studied and exemplified by the prominent driver

role of APC mutations in colorectal cancer (Zhang & Shay, 2017).

More recently, misregulation of Wnt receptor abundance emerged

as an alternative oncogenic pathway (Jiang & Cong, 2016; Zhan

et al, 2017). RNF43 mutations, found in ~19% of colorectal cancer

cases, are mutually exclusive to APC mutations and considered a

prime hallmark of Wnt-hypersensitive cancer subsets (Jiang et al,

2013; Giannakis et al, 2014; Koo et al, 2015). A primary and causal

event for generation of a Wnt-hypersensitive state is the mutation-

induced loss of RNF43/ZNRF3-mediated ubiquitination and endocy-

tosis of Wnt receptors (Koo et al, 2015). As this Wnt receptor

suppressor activity of RNF43 locates to its membrane-proximal

regions, the functional relevance of truncating cancer mutations

that remove more distal parts of the cytosolic tail thus far has

remained unclear.

In this study, we uncover that the RNF43 C-terminus performs

an additional tumor suppressor role, by regulating the activity of the

downstream b-catenin destruction complex. We show that the

cytosolic tail of RNF43 interacts with all core components of the

destruction complex, in a highly regulated manner. We identify CK1

as a prominent interaction partner that binds the Ser-rich region and

phosphorylates the RNF43 tail, which promotes RNF43-mediated

tumor suppressor activity independent of FZD downregulation. A

short sequence within the adjacent Pro-rich region inhibits CK1

binding, indicating that these interactions are normally dynamically

regulated. Together, these findings lead to a model in which

membrane-proximal parts of RNF43 act upon membrane-bound

Wnt receptors, while more distant regions of the RNF43 tail are

involved in dynamic regulatory interactions with components of the

cytosolic destruction complex that are recruited to the receptors

under Wnt-stimulated conditions (Fig 5C; Mao et al, 2001; Cliffe

et al, 2003; Tamai et al, 2004; Zeng et al, 2005; Bilic et al, 2007;

Li et al, 2012).

Importantly, our findings unveil a class of RNF43 truncating

cancer mutations that interfere with this second suppressor role to

drive inappropriate Wnt pathway activation, by employing a mecha-

nism distinct from that of RNF43 LOF or APC mutations. Due to loss

of the Pro-rich region, these mutants selectively acquire an

increased binding capacity for both CK1 and Axin1. By a mechanism

that involves trapping of CK1 at the membrane and hyperphospho-

rylation of the truncated tail, these RNF43 mutants interfere with

b-catenin destruction complex activity in the cytosol, leading to the

stabilization of non-phosphorylated b-catenin and the transcrip-

tional activation of Wnt target genes (Fig 5C). Our data further

reveal that loss of the RNF43 C-terminus is required and sufficient

to fulfill this oncogenic activity, while both the extracellular domain

and E3 ligase activity are dispensable.

In support of their oncogenic role, the activity of these onco-

RNF43 variants does not require inactivation of the paralogue

ZNRF3 (Koo et al, 2012). Different from APC or RNF43 LOF

mutations (Jiang et al, 2013; Giannakis et al, 2014; Drost et al,

2015), introduction of onco-RNF43 mutations in human colon

organoids induces a state of oncogenic stress and requires prior

◀ Figure 4. Onco-RNF43/TP53KO organoids display an oncogenic transcriptional profile that drives self-renewal and niche-independent growth.

A Bright-field microscopy images of WT, TP53KO, and onco-RNF43/TP53KO human colon organoid lines grown in medium with high Wnt/Rspo (20% conditioned
medium (CM)) or without Wnt/Rspo (20, 2 or 0.2% CM). Images were taken 6 days after splitting. Scale bars represent 1,000 lm. Non-cystic, non-proliferative
organoids are indicated with red asterisks.

B Bar plot showing the enrichment scores of significantly enriched MSigDB hallmark gene sets in onco-RNF43/TP53KO compared to TP53KO organoids (FDR < 0.05).
C Bright-field microscopy and fluorescence microscopy pictures of WT, TP53KO, and onco-RNF43/TP53KO human colon organoid lines grown in two different media and

transduced with the TOP-GFP reporter. Images were taken 6 days after splitting. Scale bars represent 1,000 lm.
D Gene Set Enrichment Analysis of onco-RNF43/TP53KO compared to TP53KO organoids in medium without Wnt/low Rspo (0.2%). Significantly changed intestinal cell-

type gene sets from Haber et al (2017) are shown (FDR < 0.05).
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inactivation of TP53 to exert their oncogenic role. Moreover, we

show that onco-RNF43 mutations inhibit differentiation, increase

the number of stem cell progenitors, and drive a transcriptional

program for proliferation, thus imposing a self-renewal pheno-

type onto cancer cells. Furthermore, these onco-RNF43-expressing

organoids withstand treatment with PORCN inhibitors much

better than WT or TP53KO organoids.

In summary, we identified a class of RNF43 mutations that medi-

ate a tumor suppressor-to-oncogene switch to drive downstream

Wnt pathway activation. Unlike LOF mutations, the expression of
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Figure 5. Onco-RNF43 confers reduced sensitivity of colon organoids to Porcupine inhibitors.

A Top: Schematic experimental set-up of the clonogenic assay. Bottom: Bright-field microscopy images of WT, TP53KO, and onco-RNF43/TP53KO human colon organoid
lines at days 2 and 14. Scale bars represent 1,000 lm.

B Relative outgrowth of WT, TP53KO, and onco-RNF43/TP53KO organoid lines treated with the PORCN inhibitor C59 (1 lM) for 7 days. Graph shows the number of
organoids at 5 days after splitting (day 14) relative to the number of organoids at day 2. Error bars represent � s.d. of the mean of n = 3 experiments.

C Model for mode of action RNF43 LOF and onco-RNF43 variants. (Left) RNF43 performs a bifunctional tumor suppressor role by (I) targeting Wnt receptors for
endocytosis and lysosomal degradation, and (II) by transiently interacting with the destruction complex to reconstitute its activity in the cytosol and re-establish Wnt
pathway inhibition. This second suppressor role involves CK1-mediated phosphorylation and an unknown molecular activity of the flexible cytosolic tail of RNF43.
(Middle) Classical loss-of-function (LOF) mutations prevent RNF43 function at the plasma membrane, leading to Wnt receptor overexpression and, consequently,
hypersensitivity of cancer cells to Wnt. (Right) Onco-RNF43 truncated variants are stably expressed at the plasma membrane and retain E3 ligase-dependent Wnt
receptor downregulating activity. However, due to loss of the cytosolic tail, these mutants selectively trap CK1 and Axin1 at the plasma membrane, which prevents
destruction complex assembly and drives uncontrolled b-catenin-mediated transcription of target genes.

Data information: WT; wild-type, LOF; loss-of-function, b-cat; b-catenin.
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onco-RNF43 variants predicts prolonged survival in Wnt-depleted

conditions and thus may decrease effectiveness of Wnt- or receptor-

inhibiting treatment strategies. Our findings further imply that WT

RNF43 performs a bifunctional tumor suppressor role, mediating

ubiquitin-dependent Wnt receptor downregulation (Hao et al, 2012;

Koo et al, 2012) as well as ubiquitin-independent regulation of

destruction complex activity (Fig 5C). Our study demonstrates the

importance of examining patient-derived mutations to identify novel

tumorigenic molecular mechanisms, obtain a broader comprehen-

sion of signaling pathways in normal and cancer cells, and improve

applications of precision cancer medicine.

Materials and Methods

Cell culture and transfection

Human Embryonic Kidney (HEK) 293 cells, HEK293T cells, and

SW480 were cultured in RPMI or DMEM high glucose (Invitrogen),

respectively, supplemented with 10% fetal bovine serum (GE

Healthcare), 2 mM UltraGlutamine (Lonza), 100 units/ml penicillin,

and 100 lg/ml streptomycin (Invitrogen). Cells were cultured at

37°C in 5% CO2. Wnt3a-conditioned medium (CM) was obtained

from L-cells stably expressing and secreting Wnt3a (Tauriello et al,

2010) cultured in DMEM low glucose (Invitrogen). Rspo- and

Noggin-CM were produced as described before (Fenderico et al,

2019). For b-catenin-mediated reporter assays, HEK293T cells were

stimulated overnight (o/n) and for protein expression experiments

cells were stimulated for 3 h with Wnt3a-CM. Transfections were

performed using either FuGENE 6 (Promega) according to manufac-

turer’s protocol for b-catenin-mediated reporter assays and micro-

scopy or polyethylenimine (PEI) for Western blot analysis. siRNA

transfection was performed using LipofectamineTM RNAiMAX

(Thermo Fisher) according to manufacturer’s protocol at 50 nM for

4 days. Control (#1) siRNA were obtained from Ambion (Thermo

Fisher) and the Axin1 SMARTpool of siRNA from Dharmacon

(Horizon). For co-transfection, plasmids were transfected 1 day

before analysis.

Plasmids and antibodies

Flag-Dishevelled1 DEP-C, TOPFlash, and FOPFlash luciferase

reporter plasmids were described previously (Tauriello et al, 2010,

2012). Myc-b-catenin, DN (aa 1–32)-TCF4, and mouse Wnt3a

were a kind gift of Hans Clevers (Hubrecht Institute, Utrecht,

Netherlands). RNF43–2×Flag–HA and RING mutants were described

previously (Koo et al, 2012). Plasmid for expression of human

Axin1-GFP was described previously (Anvarian et al, 2016). Flag-

APC-V5 was subcloned in pcDNA4 by PCR. All mutants were gener-

ated by either site-directed mutagenesis or by PCR-subcloning using

Q5 High-Fidelity 2× Master Mix (NEB). All constructs were sequence

verified. The following primary antibodies were used for

immunoblotting (IB), immunofluorescence (IF), or immunoprecipi-

tation (IP): goat anti-Axin1 (R&D systems), goat anti-CK1e (Santa

Cruz), goat anti-CK1a (Santa Cruz), rabbit anti-GSK3b (Cell Signal-

ing), mouse anti-b-catenin (BD Transduction laboratories), mouse

anti-Active-b-catenin (Millipore), rabbit anti-APC (Santa Cruz),

rabbit anti-FLAG (Sigma-Aldrich), rat anti-HA (Roche), mouse

anti-HA (BioLegend), rabbit anti-V5 (Sigma-Aldrich), mouse anti-

FLAG (M2; Sigma-Aldrich), mouse anti-V5 (Genscript), mouse anti-

GFP (Roche), rabbit anti-TCF4/TCF7L2 (Cell Signaling), and mouse

anti-Actin (MP Biomedicals). Primary antibodies were diluted

conform manufacturer’s instructions. Secondary antibodies used for

IB or IF were used 1:8,000 or 1:300, respectively, and obtained from

either Rockland or Invitrogen.

b-catenin-mediated reporter assays

HEK293T cells were seeded in 24-well plates and transfected the

next day with 30 ng of reporter construct TOPFlash or FOPFlash,

5 ng of thymidine kinase (TK)-Renilla and the indicated constructs.

Cells were stimulated 6-h post-transfection with Wnt3a-CM o/n,

then cells were lysed in Passive lysis buffer (Promega) for 20 min at

room temperature (RT). IWP-2 (R&D systems) or C59 (Tocris) was

used o/n at 5 or 1 lM respectively. Levels of Firefly and Renilla luci-

ferase were measured using the dual-luciferase kit (Promega)

accordingly to the manufacturer’s instructions on a Berthold lumi-

nometer Centro LB960. Lysates were analyzed by Western blotting.

For DN-TCF4, detection on Western blot was not feasible and

instead expression is shown by microscopy (Appendix Fig S1A).

Cell lysis and immunoprecipitation

HEK293T cells were transfected with PEI. 24 h post-transfection,

cells were washed and collected in ice-cold PBS, and subsequently

lysed in lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 0.5% Triton

X-100, 5 mM EDTA, 1 mM DTT, 50 mM sodium fluoride, and

protease inhibitors) for 30 min on ice followed by 30-min centrifuga-

tion at 16,100 g at 4°C. Supernatants were used for immunoprecipi-

tations (IPs) using 1 lg of the indicated antibody. Samples were left

tumbling for 1 h at 4°C, followed by 1-h incubation with protein A or

G beads (RepliGen and Millipore, respectively). For FLAG IPs, 15 ll
pre-coupled FLAG M2 agarose (Sigma-Aldrich) was added for 1.5 h

at 4°C while tumbling. Agarose beads were washed six times with

lysis buffer and proteins were eluted in SDS sample buffer by 5 min

boiling, or for FZD samples, incubated for 45 min at 37°C.

Cell fractionation

24 h post-transfection, HEK293T cells were washed and collected in

PBS and subsequently incubated for 10 min on ice in fractionation

buffer (10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM

DTT, and protease inhibitors) to allow the cells to swell. Cells were

homogenized by 25–50 strokes in a Douncer after which the homog-

enization was visually evaluated by microscopy. The homogenate

was centrifuged at 500 g at 4°C for 10 min to obtain the nuclear

pellet. The supernatant was subsequently centrifuged at 100,000 g at

4°C for 1 h to separate the membrane fraction from the

cytosolic fraction.

Western blotting

Western blotting was performed using standard procedures with

Immobilon-FL PVDF membranes (Millipore). In short: after protein

transfer, the membranes were blocked for 1 h at RT in 1:1 ratio

Odyssey blocking buffer (LI-COR): PBS. Primary antibodies were
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incubated o/n at 4°C and secondary antibodies for 1 h at RT in the

dark. The LI-COR Odyssey or Typhoon (GE Healthcare)

infrared imaging systems were used for immunoblot analysis.

Quantifications were performed using ImageQuant TL 8.2 (GE

healthcare).

Immunofluorescence and SNAP labeling

HEK293T cells were grown on laminin-coated glass coverslips in 24-

well plates and transfected after 24 h. For SNAP labeling, cells were

labeled with 1 lM SNAP-surface549 (Bioke) for 15 min at RT, washed

and subsequently chased for 30 min at 37°C. Cells were fixed in 4%

paraformaldehyde or ice-cold methanol and blocked in PBS contain-

ing 2% BSA and 0.1% saponin. Primary and secondary antibody

incubations were performed in blocking buffer for 45 min – 1 h at

RT. Cells were mounted in ProLong Gold (Life Technologies) and

analyzed using a Zeiss LSM510 or LSM700 confocal microscope.

BioID for RNF43 interacting proteins

For the identification of RNF43-binding proteins, a previously

described protocol was used (Roux et al, 2012). Briefly, pcDNA4-TO-

RNF43-BirA*-HA was obtained by cloning RNF43 into pcDNA3.1

MCS-BirA(R118G)-HA (a gift from Kyle Roux; Addgene # 36047),

which was subcloned into pcDNA4-TO. pcDNA4-TO-RNF43-BirA*-HA

was transfected into T-RExTM-293 cells and selected with 200

lg/ml of zeocin to obtain a stable RNF43 TetON -RExTM-293 BioID

cell line. Ten days after transfection, single cells were plated in 96-

wells and grown in the presence of 100 lg/ml zeocin and 5 lg/ml

of blasticidin. For validation, the selected clones were analyzed by

Western blot and immunofluorescence for tetracycline (1 lg/ml,

Santa Cruz Biotechnology) induced expression of RNF43-BirA*-HA

fusion protein and enzyme activity of BirA* by biotin supplementa-

tion (50 lM, Santa Cruz Biotechnology). To identify RNF43 inter-

acting proteins, TetON -RExTM-293 BioID cells were seeded in 15cm

dishes and were treated o/n with tetracycline and biotin. Non-

induced cells were used as a negative control. Cells were lysed in

2 ml of lysis buffer containing 2% TX-100, 500 mM NaCl, 0.2% SDS,

50 mM Tris, pH 7.4 supplemented with protease inhibitors (Roche),

phosphatase inhibitors (Calbiochem), 1 mM DTT, and PIC (Roche).

Lysates were collected, sonicated, and cleared by centrifugation at

16,500 g for 15 min at 4°C. Streptavidin beads (Streptavidin

Sepharose High Performance, GE Healthcare) were added to the

lysates and incubated for 16-h tumbling at 4°C. Subsequently, beads

were washed four times with lysis buffer and two times with 50 mM

Tris, pH 7.4. Next, beads were washed with ammonium bicarbonate

buffer and proteins were reduced with DTT and alkylated with

iodoacetamide. Trypsin digestion on beads was performed o/n at

37°C. Resulting peptides were transferred into LC-MS vials and

concentrated to 15 ll. LC-MS/MS analysis was performed on an

RSLCnano coupled to an Orbitrap Elite system. MS/MS data process-

ing was performed using Proteome Discoverer (version 1.4). Hits are

classified as proteins with a minimum of two unique peptides

present in at least two out of three replicates. Proteins were filtered

using the cRAP contaminant database and proteins interacting with

the BirA* tag or present in the negative control were subtracted. For

volcano plot analysis, only proteins identified in at least all three

replicates of either the control or the BioID sample were considered.

By using Perseus 1.5.5.3 (Tyanova et al, 2016) with default settings,

missing values were imputed from a semi-random normal distribu-

tion around the lower detection limit of all detected proteins. False

discovery rates (FDR) are calculated by a modified t-test (in Perseus)

followed by Benjamini–Hochberg FDR adjustment.

Identification of phosphorylation sites by mass spectrometry

Two methods were used for phosphorylation analysis by mass spec-

trometry. To analyze RNF43 phosphorylation upon Wnt3a and

Rspo1 stimulation, HEK293T cells were seeded in 15-cm dishes and

transfected at 80% of confluency with empty vector or RNF43–

2×Flag–HA using PEI. 6 h after transfection half the medium was

replaced with either control L-cell medium, Wnt3a-CM or 50%

Wnt3a-CM/50% Rspo1-CM. After 20 h, cells were lyzed on ice for

30 min in 2 ml of lysis buffer containing 0.5% TX-100, 100 mM

NaCl, 50 mM Tris, pH 7.5, 10% glycerol, 50 mM NaF freshly supple-

mented with 10 mM Na3VO4, 10 lM leupeptin, 10 lM aprotinin,

and 1 mM PMSF and a phosphatase inhibitor cocktail (PhosSTOP,

Sigma-Aldrich). Lysates were cleared by centrifugation at 16,100 g

for 20 min at 4°C. Next, 45 ll of equilibrated M2-Flag beads (Sigma)

was added and incubated 16-h tumbling at 4°C. Subsequently, beads

were washed five times with lysis buffer and three times with

Ammonium Bicarbonate 50 mM (pH 8). Bound proteins were then

eluted off the beads first with 100 ll of 0.5% RapiGest SF (Waters),

followed by 100 ll of 2.5% SDC; both dissolved in ammonium bicar-

bonate. Eluted proteins were reduced with 1 mM DTT and alkylated

with 5.5 mM iodoacetamide. Samples were diluted threefold with

ammonium bicarbonate before protein digestion. Proteins were first

digested with endoproteinase Lys-C (Wako Chemicals) at 37°C for

2 h followed by trypsin (Promega) for 4 h and the tryptic peptides

were subsequently digested with chymotrypsin (Roche) o/n.

Protease digestion was stopped by addition of formic acid (FA) to a

final concentration of 5% and any precipitates were removed by

centrifugation. Peptides were desalted using an Oasis HLB 96-well

plate (Waters). Phosphorylated peptides were enriched using Fe(III)-

NTA cartridges (Agilent Technologies) in an automated fashion

using the AssayMAP Bravo Platform (Agilent Technologies).

Enriched samples were resuspended in 20 mM citric acid with 2%

FA and analyzed with an UHPLC 1290 system (Agilent Technologies)

coupled to an Orbitrap Q Exactive HF mass spectrometer (Thermo

Scientific). The mass spectrometer was operated in data-dependent

mode. Full-scan MS spectra from m/z 375–1,600 were acquired at a

resolution and up to 12 most intense precursor ions were selected for

HCD fragmentation. Raw files were processed using Proteome

Discoverer (version 2.3.0.523). The database search was performed

against the human Swissprot database using Mascot as search

engine. Filtering was done at 1% false discovery rate (FDR) at the

protein and peptide level. Only peptides with at least 6 amino acids

and Mascot ion score above 20 were considered. Label-free quan-

tification was performed using the Minora Feature Detector node.

The phosphoRS feature was used for phosphorylation localization

(minimum 98% site probability filter was applied). Quantified data

were log10-transformed and normalized.

For the analysis of CK1-mediated phosphorylation, a different

protocol was used. HEK293 cells were seeded in 15-cm dishes and

transfected at 80% of confluency with the indicated plasmids using

PEI. Cells were lysed in 2 ml of lysis buffer containing 1% NP-40,
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150 mM NaCl, 50 mM Tris, pH 7.5 supplemented with protease

inhibitors (Roche), phosphatase inhibitors (Calbiochem), 1 mM

DTT, and 10 mM NEM (N-ethylmaleimide) (Sigma-Aldrich). Lysates

were collected, sonicated, and cleared by centrifugation at 16,100 g

for 20 min at 4°C. Next, 2 lg HA-11 antibody (BioLegend) was

added and samples were incubated for 1-h tumbling at 4°C. Then,

45 ll of equilibrated G-protein sepharose beads (GE Healthcare)

was added to the sample and incubated 16-h tumbling at 4°C. Subse-

quently, beads were washed six times with lysis buffer, mixed with

50 ll of 2× Laemmli buffer, boiled for 5 min and loaded on 8% SDS-

PAGE gels and separated. Gels were fixed with 50% methanol, 10%

acetic acid, stained with 0.1% Coomassie brilliant blue (Sigma-

Aldrich) in 20% methanol, 10% acetic acid for 2 h and destained

using fixation solution. Next, corresponding 1-D bands were excised

and processed for mass spectrometry analysis. Protein in gel pieces

were alkylated, digested by trypsin, and subsequently cleaved by

chymotrypsin. Digested peptides were extracted from gels. 1/10 of the

peptide mixture was directly analyzed, and the rest of the sample was

used for TiO2 phosphopeptide enrichment. Both peptide mixtures

were separately analyzed on LC-MS/MS system (RSLCnano connected

to Orbitrap Elite; Thermo Fisher Scientific). MS data were acquired in

a data-dependent strategy selecting up to top 10 precursors based on

precursor abundance in the survey scan (350–2,000 m/z). High-reso-

lution HCD MS/MS spectra were acquired in Orbitrap analyzer. The

analysis of the mass spectrometric RAW data files was carried out

using the Proteome Discoverer software (Thermo Fisher Scientific;

version 1.4) with in-house Mascot (Matrix Science, London, UK;

version 2.4.1) search engine utilization. The phosphoRS feature was

used for phosphorylation localization and manually confirmed.

Peptides with Mascot score > 20, rank 1 and with at least 6 amino

acids were considered. Quantitative information assessment was done

in Skyline software. Normalization of the data was performed using

the set of phosphopeptide standards (added to the sample prior phos-

phoenrichment step; MS PhosphoMix 1, 2, 3 Light, Sigma) and by

non-phosphorylated peptides identified in direct analyses. Clusters

were analyzed by Orbitrap Script 2.0.

smRNA FISH

SW480 cells were grown on coverslips for 24 h. For smFISH, samples

were prepared as previously described (Lyubimova et al, 2013).

Briefly, cells were fixed for 10 min with 4% Formaldehyde solution

(Sigma-Aldrich) and 70% Ethanol o/n. Samples were then hybridized

with Quasar 670 labeled RNF43 probes (Stellaris, Biosearch Technolo-

gies) and mounted to microscopy slides using Prolong Diamond Anti-

fade (Invitrogen). Images were acquired using a deconvolution

system (DeltaVision RT; Applied Precision) using 60× lens.

gRNAs and genotyping

The pSpCas9(BB)-2A-Puro was obtained from Addgene (48139).

gRNAs were generated as previously described (Ran et al, 2013).

gRNA: Onco-RNF43- AGGCTGCATGTCCACTCGCT or TAGGGCTG

CAGTACACTAGG; RNF43 KO- ATTGCACAGGTACAGCGGGT; ZN

RF3 KO- GCCAAGCGAGCAGTACAGCG; TP53 KO- GGCAGCTACGG

TTTCCGTCT (a gift from Jarno Drost, PMC, Utrecht); AXIN2 KO-

GCTTCCGTGAGGATGCCCCG. For genotyping, genomic DNA was

isolated using QIAamp DNA micro kit (Qiagen). Primers for PCR

amplification using GoTaq Flexi DNA polymerase (Promega) were

as follows: RNF43_Fw 50-AGTGGATCTGGAGAAAGCTA-30, RNF

43_Rev 50-ATTCAGCTGTAGTCTCCTCT-30; ZNRF3_Fw 50-TGAT
TACCATACAAGGTAGGTG-30, ZNRF3_Rev 50-CTCGTGCCTATAATT
CCAGATA-30; TP53_Fw 50-CAGGAAGCCAAAGGGTGAAGA-30,
TP53_Rev 50-CCCATCTACAGTCCCCCTTG-30; AXIN2_Fw 50-AGCTT
TCCTTCCTCCGGTCTTC-30, AXIN2_Rev 50- GGTCACTACAGACTTT

GGGGCT-30. Products were cloned into the pGEM-T Easy vector

system I (Promega) and subsequently sequenced using the T7

sequencing primer.

Organoid culture

Healthy human colon tissue was isolated to establish human intestinal

organoids for a previous study (Drost et al, 2015). Normal human

colon organoids were cultured in advanced DMEM/F12 medium (Invit-

rogen), supplemented with B27 (Invitrogen), Nicotinamide (Sigma-

Aldrich), N-acetylcysteine (Sigma-Aldrich), EGF (PeproTech), TGF-b
type I receptor inhibitor A83-01 (Tocris), P38 inhibitor SB202190

(Sigma-Aldrich), Wnt3a-CM (50%), Noggin-CM (10%), and Rspo1-CM

(20%) (full medium). Mutant TP53 organoids were cultured in the

presence of 5 lM Nutlin-3 (Cayman Chemical). Mutant RNF43 orga-

noids were initially selected by withdrawing Wnt3a-CM and Rspo1-

CM. Where indicated, the percentages of Wnt3a-CM and Rspo1-CM

were adjusted. All experimentation using human organoids described

herein was approved by the ethical committee at University Medical

Center Utrecht (UMCU; TcBio #12-093). Informed consent for tissue

collection, generation, storage, and use of the organoids was obtained

from the patients at UMCU.

Organoid electroporation

Organoid electroporation was performed as previously described

(Fujii et al, 2015). Briefly, organoids were grown in 10 lM Y-27632

(Selleck chemicals) and 5 lM CHIR 99021 (Tocris) without CM for

2 days before electroporation. 24 h before electroporation, 1.25%

DMSO was added to the culture medium. For electroporation, the

NEPA21 electroporator was used with the configuration reported by

Fujii et al (2015). 10 lg of pSpCas9(BB)-2A-Puro gRNA constructs

were used to generate mutant lines. Organoids were recovered for

1 day by adding medium supplemented with 1.25% DMSO, 10 lM
Y-27632, and 5 lM CHIR 99021 followed by another day with

10 lM Y-27632 and 5 lM CHIR 99021. 5-d post-electroporation

organoids were grown in full medium. For CRISPR-engineered orga-

noids, single clones were established by manual picking of individ-

ual organoids derived from single cells and genotyped. To visualize

Wnt activity, organoids were transduced with 7xTcf-eGFP:SV40-

PuroR (Top-GFP; a gift from Roel Nusse, Addgene #24305; Fuerer &

Nusse, 2010) as described (Koo et al, 2011) and selected with Puro-

mycin (Invivogen; 2 lg/ml).

Clonogenic assay and quantification of organoids

Organoids were counted by eye based on their morphology. Prolifer-

ative organoids have a cystic morphology, where as differentiated

and dead organoids are not cystic and are electron dense. Clono-

genic assays were performed as previously described (Ramesh et al,

2018). Briefly, WT, TP53KO, and onco-RNF43/TP53KO organoid
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lines were mechanically dissociated for 5 min by using a narrow

Pasteur pipette. At day 2, organoids were counted and C59 (Tocris;

1 lM) was added for 7 days. At day 9, organoids were split and

seeded in full medium and counted at day 14 (n = 3). Pictures were

taken at day 2 and 14 using an Evos microscope. The relative

outgrowth of organoids was based on the measurement of growth

after 14 days corrected for the initial amount of organoids at day 2.

RNA sequencing

Organoids were grown in full medium or medium with no Wnt/

0.2% Rspo for 48 h and were lysed in RLT lysis buffer (Qiagen).

RNA was obtained using the Qiagen QIAsymphony SP (Qiagen)

according to the manufacturer’s protocol. Single-end reads of 75 bp

were aligned to GRCh37 with STAR (Dobin et al, 2013) with parame-

ters outSJfilterIntronMaxVsReadN, chimJunctionOverhangMin, and

chimSegmentMin set to 10,000,000, 15, and 15, respectively. Gene

expression was quantified with edgeR with the human Ensembl tran-

script database version 74. Differential gene expression analysis was

performed with DESeq2 (Love et al, 2014), and its ‘rlogTransforma-

tion’ function was used for variance stabilization of gene expression

data. Clustering and generation of heatmaps were done with

ComplexHeatmap (Gu et al, 2016). UpSet plots were created with

the UpSetR R package (Lex et al, 2014). Intestinal cell type-specific

gene sets for Gene Set Enrichment Analysis (GSEA; http://www.b

road.mit.edu/gsea/) were defined as the 250 most specific cell-type

signature genes per cell type from Extended fig table 3 of Haber et al

(2017). Human orthologues of each cell-type gene set were deter-

mined with the biomaRt R package (Durinck et al, 2009). To calcu-

late the false discovery rate of every GSEA, we performed 10,000

gene set perturbations. MYC targets V2 (version 2) was generated at

more stringent inclusion criteria compared to version 1 and therefore

is a smaller subset of MYC regulated genes.

Statistical analysis

The statistical significance of interactions between identified

proteins and RNF43-BirA* was determined by a Student’s t-test by

controlling for the false discovery rate with the Benjamini–Hochberg

procedure. Significantly dynamic genes in the RNA-seq data were

determined with the R package DESeq2 by using a Wald test. The

false discovery rate of each Gene Set Enrichment Analysis was

empirically determined by 10,000 gene set perturbations. Statistical

details and sample numbers are specified in the figure legends.

Data availability

The data that support the findings of this study are available from

the corresponding author upon reasonable request. The RNA-seq

data are publicly available at the NCBI GEO repository (accession

number GSE129288; http://www.ncbi.nlm.nih.gov/geo/query/acc.c

gi?acc=GSE129288). The mass spectrometry proteomics data for

the BioID have been deposited to the ProteomeXchange Consortium

via the PRIDE (Perez-Riverol et al, 2019) partner repository with the

dataset identifier PXD020478.

Expanded View for this article is available online.
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