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Abstract

Motivation: Pseudotime analyses of single-cell RNA-seq data have become increasingly common.

Typically, a latent trajectory corresponding to a biological process of interest—such as differenti-

ation or cell cycle—is discovered. However, relatively little attention has been paid to modelling the

differential expression of genes along such trajectories.

Results: We present switchde, a statistical framework and accompanying R package for identify-

ing switch-like differential expression of genes along pseudotemporal trajectories. Our method in-

cludes fast model fitting that provides interpretable parameter estimates corresponding to how

quickly a gene is up or down regulated as well as where in the trajectory such regulation occurs. It

also reports a P-value in favour of rejecting a constant-expression model for switch-like differential

expression and optionally models the zero-inflation prevalent in single-cell data.

Availability and Implementation: The R package switchde is available through the Bioconductor

project at https://bioconductor.org/packages/switchde.

Contact: kieran.campbell@sjc.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) has transformed biology by

providing high-throughput quantification of mRNA abundance in in-

dividual cells allowing, amongst other things, the identification of

novel cell types and gene expression heterogeneity (Trapnell, 2015).

Single-cell pseudotime estimation (Ji and Ji, 2016; Reid and Wernisch,

2016; Shin et al., 2015; Trapnell et al., 2014) has also enabled gene ex-

pression profiles to be mapped to a unique value known as the

pseudotime—a surrogate measure of the cellular state in temporally

evolving biological process such as differentiation or cell-cycle.

Once a pseudotime has been assigned to each cell it is possible to

identify genes that exhibit a strong pseudotemporal dependence

through differential expression testing. An approach first introduced

in Trapnell et al. (2014) was to regress gene expression on pseudo-

time using cubic B-spline basis functions with a Tobit likelihood.

However, the flexible nonparametric nature of such models may

lead to overfitting and may also be difficult to interpret. To our

knowledge no other differential-expression-along-pseudotime mod-

els have been proposed.

As a solution to these issues we present switchde, a statistical

model and accompanying R package for identifying switch-like dif-

ferential expression analysis along single-cell trajectories. We model

sigmoidal expression changes along pseudotime that provides inter-

pretable parameter estimates corresponding to gene regulation

strength and timing along with hypothesis testing for differential ex-

pression. Our model optionally incorporates zero-inflation for data-

sets that exhibit high numbers of missing measurements.

2 Materials and methods

We begin with a C�G expression matrix Y for G genes and C cells

with column vector yg; g 2 1; . . . ;G, that is non-negative and repre-

sents gene expression in a form comparable to log ðTPMþ 1Þ. We

define the sigmoid function as f ðtc; l
ð0Þ
g ;kg; t

ð0Þ
g Þ ¼ 2lð0Þg

1þexp �kgðtc�t
ð0Þ
g Þð Þ
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where tc; c 2 1; . . . ;C is the latent pseudotime of cell c. The param-

eters (Fig. 1A) may be interpreted as the average peak expression

level (lð0Þg ), the activation strength kg or how quickly a gene is up-or-

down regulated and the activation time (t
ð0Þ
g ), or where in the trajec-

tory the gene regulation occurs.

We fit the model using gradient-based L-BFGS-B optimization to find

maximum likelihood estimates (MLEs) of the parameters (Supplementary

Methods). By setting kg¼0 we identify a nested constant-expression

model where yg � Nðl
ð0Þ
g ; r2

gÞ and so can perform a likelihood ratio test

for differential expression, where twice the difference in the log-likelihood

MLE between the constant and sigmoidal models asymptotically follows

a v2 distribution with two degrees of freedom.

scRNA-seq data is also known to exhibit a large number of drop-

outs where the expression measurements of low abundance tran-

scripts are zero (Kharchenko et al. (2014)). This leads to sparse

input matrices for downstream analysis which may violate assump-

tions of statistical models, such as the Gaussian likelihood above.

Therefore, we have also developed an extension for datasets with

high dropout rates that incorporates a zero-inflated likelihood simi-

lar to Pierson and Yau (2015).

3 Results and discussion

We applied switchde to the set of differentiating myoblasts from

Trapnell et al. (2014). Using the originally published pseudotimes,

we removed cells corresponding to contaminating mesenchymal

cells and fitted switch-like models for the 11 253 genes expressed in

at least 20% of cells with a mean expression of 0.1 FPKM, which

took less than a minute on a laptop computer. 2336 genes were

found to be significantly differentially expressed at 5% FDR after

Benjamini-Hochberg multiple testing correction. The gene with the

lowest reported P-value was NDC80 whose expression is plotted in

Figure 1B along with the MLE sigmoid fit. The maximum likelihood

parameter estimates were kg ¼ �8:71, indicating strong down-

regulation and t
ð0Þ
g ¼ 17:61, which given the pseudotimes range

from 0 to 77 indicates this down-regulation occurs within the first

quarter of the trajectory.

We next applied switchde in zero-inflated mode to a subset of

genes from the same dataset. While zero-inflated mode accounts for

dropout and is thus a less mis-specified model, the Expectation-

Maximization algorithm required for inference takes on average an

order of magnitude longer. The resulting fit for the transcription fac-

tor MYOG can be seen in Figure 1C. One advantage of the zero-

inflated model is that transcripts that exhibit dropout may be

imputed given the pseudotemporal trend, shown by the crosses in

the figure. Finally, since switchde specifies a fully generative prob-

abilistic model we can generate a posterior predictive distribution of

gene expression over pseudotime. This distribution for MYOG is

shown in Figure 1D, demonstrating the model is well calibrated

with the overall pseudotemporal trend. Further data examples are

given in Supplementary Material.

In this paper we have introduced switchde, the first dedicated

statistical framework for modelling differential expression over

pseudotime. By assuming a parametric model of gene expression

along trajectories our model provides interpretable parameter esti-

mates corresponding to gene regulation strength and timing, incor-

porating zero-inflation that is prevalent in many scRNA-seq

datasets. Finally, our model provides hypothesis testing for switch-

like differential expression, though in practice this may lead to an

inflated false discovery rate due to the assumption that pseudotimes

are fixed (Campbell and Yau (2016)).
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Fig. 1. Sigmoidal expression across pseudotime. (A) The sigmoid curve as a

model of gene expression along single-cell trajectories, parametrized by the

average peak expression l0, the activation strength k and the activation time

t0. (B) An example using the NDC80 gene from the Trapnell dataset (Trapnell

et al. (2014)), which had the lowest P-value of all genes tested. Gene expres-

sion measurements are shown as the grey points with the maximum likeli-

hood sigmoid fit denoted by the dark line. The maximum likelihood

parameter estimates were lð0Þg ¼ 2:73; kg ¼ �8:71 and t
ð0Þ
g ¼ 17:61. (C) Zero-

inflated differential expression for the transcription factor MYOG. Solid line

shows the MLE sigmoidal mean while crosses show imputed gene expres-

sion measured as zeroes. (D) Posterior predictive density for the zero-inflated

model with the solid line denoting MLE sigmoidal mean.
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