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Abstract

Occupancy modeling is important for exploring species distribution patterns

and for conservation monitoring. Within this framework, explicit attention is

given to species detection probabilities estimated from replicate surveys to sam-

ple units. A central assumption is that replicate surveys are independent Ber-

noulli trials, but this assumption becomes untenable when ecologists serially

deploy remote cameras and acoustic recording devices over days and weeks to

survey rare and elusive animals. Proposed solutions involve modifying the

detection-level component of the model (e.g., first-order Markov covariate).

Evaluating whether a model sufficiently accounts for correlation is imperative,

but clear guidance for practitioners is lacking. Currently, an omnibus goodness-

of-fit test using a chi-square discrepancy measure on unique detection histories

is available for occupancy models (MacKenzie and Bailey, Journal of Agricul-

tural, Biological, and Environmental Statistics, 9, 2004, 300; hereafter, MacKen-

zie–Bailey test). We propose a join count summary measure adapted from

spatial statistics to directly assess correlation after fitting a model. We motivate

our work with a dataset of multinight bat call recordings from a pilot study for

the North American Bat Monitoring Program. We found in simulations that

our join count test was more reliable than the MacKenzie–Bailey test for detect-

ing inadequacy of a model that assumed independence, particularly when serial

correlation was low to moderate. A model that included a Markov-structured

detection-level covariate produced unbiased occupancy estimates except in the

presence of strong serial correlation and a revisit design consisting only of tem-

poral replicates. When applied to two common bat species, our approach illus-

trates that sophisticated models do not guarantee adequate fit to real data,

underscoring the importance of model assessment. Our join count test provides

a widely applicable goodness-of-fit test and specifically evaluates occupancy

model lack of fit related to correlation among detections within a sample unit.

Our diagnostic tool is available for practitioners that serially deploy survey

equipment as a way to achieve cost savings.

Introduction

Occupancy modeling is a widely used analytical frame-

work for making inferences about distributions of threat-

ened and elusive plant and animal populations (Bailey

et al. 2014). Occupancy models can provide unbiased

estimates of species occurrence, even when the probability

of detection is less than one (MacKenzie et al. 2006).

Additionally, occupancy estimates can be more

informative and practically obtained than other state vari-

ables used to address a wide variety of research and mon-

itoring goals (e.g., Jones 2011). Many research and

monitoring programs deploy automated recording devices

for consecutive days or nights to detect species of interest

(e.g., Acevedo and Villanueva-Rivera 2006; Hines et al.

2010; Furnas and Callas 2015; Loeb et al. 2015). While

this strategy can reduce costs per unit of survey effort, it

also can lead to violation of a fundamental occupancy
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model assumption that observations within a detection

history (i.e., repeat visits to a sample unit within a sea-

son) are independent. The ubiquity of occupancy studies

that utilize within-season replicates that are measured in

spatial or temporal proximity creates a need for tools that

can assess model lack of fit from correlated detections.

Making reliable inferences from models requires a criti-

cal assessment of implicit model assumptions and evalua-

tion of model–data agreement. In general, assessment and

validation of occupancy models have received less atten-

tion in the literature (e.g., MacKenzie and Bailey 2004)

than has the development of more complex models

(MacKenzie et al. 2006; Royle and Dorazio 2008; Hines

et al. 2010). A goodness-of-fit test based on a Pearson’s

chi-square test statistic using unique detection histories

has been shown to be an effective tool at diagnosing lack-

of-fit model due to nonindependent sample units or

missing detection probability covariates (MacKenzie and

Bailey 2004). Further, Bayesian posterior predictive checks

and area under the curve values have been used in model

validation (Zipkin et al. 2012; Rodhouse et al. 2015; Kery

and Royle 2016). However, to our knowledge, the perfor-

mance of tools to identify temporal or spatial correlation

among observations used for estimating detectability has

not been investigated thoroughly. Additionally, despite

the MacKenzie–Bailey test being the standard tool for

assessing model fit in an occupancy framework, it does

not appear to have been widely used [e.g., MacKenzie

et al. (2002) cited 1353 times whereas MacKenzie and

Bailey (2004) cited only 178 times; Web of Science [wok-

info.com] accessed on 31 May 2016]. Frequently, infor-

mation theoretic measures, such as Akaike’s (AIC), are

used to compare, in a relative way, information content

of different occupancy models, but this approach does

not actually assess how well the suite of candidate models

fit the data (Burnham and Anderson 2002).

As occupancy models are frequently utilized to guide

management decisions for endangered or threatened spe-

cies (Jones 2011), unrealistic models that lead to incorrect

inferences have the potential to be extremely costly to

conservation efforts. Misleading inferences are possible if

the statistical model used does not adequately describe

the observed data. Failing to appropriately model correla-

tion among sample units results in inaccurate standard

errors (MacKenzie and Bailey 2004), while unmodeled

correlation among revisits can lead to biased occupancy

estimates (Hines et al. 2010) or can reduce power to

detect changes in occupancy over time (Whittington et al.

2015). Explicitly modeling detection-level correlation as a

first-order Markov structure or continuous process is

some of the proposed solutions when serial revisits are

correlated (e.g., Hines et al. 2010; Guillera-Arroita et al.

2011; Charbonnel et al. 2014; Whittington et al. 2015).

An alternative approach is to account for correlated revis-

its prior to an analysis by aggregating observations until

they can be considered independent. However, we are

unaware of any tests or procedures that specifically evalu-

ate whether there is evidence of correlation within survey

site detection histories or that may be left unaccounted

for after fitting a model. Here, we expand the occupancy

modeling tool kit by providing an alternative procedure

for practitioners to use for assessing lack of independence

when detection data are gathered in close geographic or

temporal proximity.

We motivate our work by the within-season revisit

design proposed by Loeb et al. (2015) for the North

American Bat Monitoring Program (NABat) where multi-

ple (2–4) bat detectors deployed at different locations

over four consecutive nights within each areal sample unit

is recommended. Under this framework, the detection or

nondetection of a species during one night at a single

detector is considered a replicate survey of the sample

unit (or revisit) for occupancy analysis. Although we

focus on the deployment of bat detectors over consecutive

nights, we note that study designs that generate serial

encounter histories are widespread for many taxa (e.g.,

Hines et al. 2010). However, the bat monitoring scenario

is especially useful because the cost-saving benefit of serial

deployment is great. The cryptic and wide-ranging move-

ments of bats make them particularly difficult to survey

without assistance from recording devices (Hayes et al.

2009); deploying these devices over days and weeks can

generate large amounts of data, offsetting the initial

investment in travel and other deployment costs. There

are many applications where bat detectors have been

deployed over consecutive nights or simultaneously across

space as replicates within areal sample units to study

habitat associations, bat activity patterns at wind farms,

and for population monitoring (e.g., Gorresen et al. 2008;

Fischer et al. 2009; Weller and Baldwin 2012; Rodhouse

et al. 2015). Because of the growing number and novelty

of the conservation threats facing bats from disease (Frick

et al. 2010), wind power developments (Hayes 2013), and

climate change (Sherwin et al. 2013), developing appro-

priate statistical methods and model assessment diagnos-

tics for data arising from acoustic-based bat surveys is

increasingly urgent.

We develop a novel goodness-of-fit test based on a chi-

square discrepancy measure using join counts adapted

from spatial statistics. We compare our join count chi-

square test to the MacKenzie–Bailey test that is currently

available to evaluate the fit of occupancy models. Our test

is similar to the MacKenzie–Bailey test because it is based

on a chi-square discrepancy measure, but aggregates over

sample units by the join count statistic commonly used

for assessing spatial correlation in binary lattice data
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(Schabenberger and Gotway 2005) instead of unique

detection histories. Our approach provides a tool to

specifically assess the occupancy model assumption of

independent observations from a sample unit within a

season. We investigate how the number of spatial and

temporal replicates within a sample unit (within-season

revisit design structure) and strength of serial correlation

among temporal replicates influence the ability of these

tests to detect whether a Markov model (also referred to

as the “trap response” model from Hines et al. 2010) or

single-season occupancy model (MacKenzie et al. 2006) is

adequate for drawing ecological inferences via a simula-

tion study. We also demonstrate the use of these model

assessment tools with empirical data collected during a

pilot study for NABat. Our approach illustrates that

sophisticated models do not guarantee adequate fit to real

data, underscoring the importance of model assessment.

Computer code to implement our join count chi-square

test is available in Supporting Information (Data S1).

Methods

Occupancy models

We investigated two occupancy models: a single-season

occupancy model (MacKenzie et al. 2006) and a single-

season model which incorporated a first-order Markovian

process for detections at consecutive replications (based

on the “trap response” model from Hines et al. 2010).

We consider detection history matrices composed of

observations from temporal and spatial replicates within a

sample unit. Using both types of within-unit replication

has been proposed for the NABat program (Loeb et al.

2015), but is not typical for single-season occupancy

models (but see Whittington et al. 2015) and not widely

investigated within an occupancy modeling framework.

Under the assumption that spatial and temporal revisits

are independent and exchangeable, an occupancy model

incorporating both types of replication is equivalent

(mathematically) to a single-season occupancy model. We

chose to retain three indices in our notation below to

more easily distinguish spatial (e.g., detectors at different

locations within a sample unit) from temporal (e.g., a

survey night) revisits within a detection history for a sam-

ple unit when describing our join count statistics.

Under this framework, observation Yijk was a binary

response (detection = 1, nondetection = 0) for sample

unit i with i = 1, . . ., N, spatial replicate j with j = 1, . . .

J, and temporal replicate k with k = 1, . . ., K. Under the

standard, single-season occupancy model, detections

occur with probability p conditional on the sample unit

being occupied (zi = 1) which occurs with probability w.
Estimates of detection (p) and occupancy (w)

probabilities are simultaneously obtained using revisits to

sampling units (MacKenzie et al. 2006). Covariates can be

included in this model using a logit link which allows p

and (or) w to vary as follows, logit(wi) = Xib and logit

(pijk) = Vijka, where Xi and Vijk are occupancy and detec-

tion covariate vectors, respectively, while b and a are

coefficient vectors. Under this model, spatiotemporal

observations (Yijk) are assumed independent draws from a

zero-inflated binomial distribution (hereafter, “basic”

occupancy model).

The second model we utilized (hereafter, “Markov”

model) is an extension of the basic model which incorpo-

rates different detection probabilities based on whether

the previous temporal revisit yielded a detection. As with

the basic model, occupancy and detection-level covariates

can be incorporated using a logit link. The Markov model

incorporates a first-order Markov-structured, detection-

level covariate. The model specifies the probability of

detecting a species as p1 if the previous survey resulted in

a detection and p0 if there was not a detection in the pre-

vious survey. Based on the idea that nightly bat activity

drives changes in detection, when Markov models were

fit, we assumed a detection probability of pmean =
p0/(p0 + (1 � p1)) if the survey was the first temporal

replicate because this would be the equilibrium probabil-

ity for a randomly selected night (Hines et al. 2010).

Although the Markov model can also be used to model

correlation from spatial replication (e.g., consecutive trail

segments from Hines et al. 2010), we chose to simplify

the problem to only temporal correlation for purposes of

method development. Based on knowledge about bat

biology and our own exploratory analyses, we assumed

that bat acoustic survey data were consistent with a Mar-

kov model in which consecutive temporal observations

were potentially correlated, but observations from spatial

replicates were independent when spaced minimum dis-

tances apart within areal sample units as enforced via a

survey protocol (e.g., kilometers) (Appendix S1). Several

studies have identified the potential for “runs” in bat

activity to occur over consecutive nights as a result of

weather fronts (Hayes 1997; Fischer et al. 2009). In gen-

eral, temperate zone bats are nonterritorial central-place

foragers with large home ranges (Pierson 1998; Daniel

et al. 2008; Popa-Lisseanu et al. 2009; Rainho and Pal-

meirim 2011), supporting the assumption that spatial

replicates within occupied areal units all have nonzero

probability of species detection. Although here we make

the assumption that spatial replicates are independent

throughout, different biological and sampling design sce-

narios could yield different patterns of spatiotemporal

correlation (e.g., Charbonnel et al. 2014; Whittington

et al. 2015) and should be investigated further (e.g., with

multiscale model by Nichols et al. 2008).
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To fit both models, we used maximum-likelihood esti-

mation (MLE) in Program R (R Core Team 2015). Likeli-

hood functions were written for both occupancy models,

and MLE solutions for the parameters were found using

the optim function with initial values for all parameters

equal to zero on the logit scale (corresponding to a prob-

ability of 0.5). Asymptotic 95% confidence intervals for

all parameters were found using the associated Hessian

matrix given by the optim function. Confidence intervals

for p and w were estimated on the logit scale and back-

transformed to the probability scale.

Mackenzie–Bailey test

We explored a goodness-of-fit test based on a Pearson’s

chi-square test statistic based on the counts of unique

detection histories (MacKenzie and Bailey 2004) as one tool

to check for possible violation of the independence

assumption. As pointed out by Kery and Royle (2016), the

MacKenzie–Bailey test utilized one method to aggregate the

data (by unique detection histories), but other data aggre-

gations, such as row or column sums from the detection

history matrix, could be used. The MacKenzie–Bailey test

statistic was calculated using the observed number of sam-

ple units with detection history h (Oh) and the expected

number of sample units with detection history h (Eh) given

parameter estimates from a fitted model (here, the basic or

Markov) and the number of sample units visited. Let yi..
denote the vector of observations from sample unit i (i.e.,

(yi11, yi12, . . .,yi1K, yi21, . . ., yiJK)); H the set of all possible

detection histories observed for yi. . . For example, with

J = 2 and K = 2, one possible outcome in the set H could

be h = 0101, with elements h11 = h21 = 0 and

h12 = h22 = 1. Eh and Oh are defined as follows:

Oh ¼
PN

i¼1 Iðyi:: ¼ hÞ and

Eh ¼
XN
i¼1

ŵi �cPrðyi:: ¼ hjzi ¼ 1Þ þ ð1� ŵiÞIðh ¼ 0Þ;

where I(h = 0) is an indicator if h was all zeroes or not,

and

cPrðyi:: ¼ hjzi ¼ 1Þ ¼
YJ
j¼1

YK
k¼1

p̂ijkhjk þ ð1� p̂ijkÞð1� hjkÞ:

In words, the probability of a given detection history

vector for sample unit i given occupied is based on esti-

mated probabilities p̂ijk multiplied by the corresponding

detection or nondetection element hjk within the vector h.

A computational efficiency was gained because only

expected counts for observed combinations of detection/

nondetections were needed in calculations (MacKenzie

et al. 2006, Pp. 110–113).
If the survey design was not balanced (i.e., J and K

were not equal for every sample unit), these values were

determined for each cohort (c), where a cohort was all

the sample units with the same pattern of missing obser-

vations (MacKenzie and Bailey 2004). The MacKenzie–
Bailey test was based on a Pearson’s chi-square test statis-

tic or a chi-square discrepancy measure (Kery and Royle

2016):

v2 ¼
X
c

X
hc

ðOhc � EhcÞ2
Ehc

:

P-values were found using a parametric bootstrap

approach (MacKenzie and Bailey 2004) with 500 replica-

tions per test. The P-value was the proportion of gener-

ated datasets under the fitted model which resulted in a

Pearson’s chi-square test statistic greater than or equal to

the observed test statistic calculated from empirical data.

Small P-values suggest the observed data were inconsis-

tent with the fitted model (lack of fit). R code to imple-

ment this test for the models we investigated is available

in Supporting Information (Data S1).

Permutation join count test

We exploited the join count, a spatial statistic, for assess-

ing whether there was evidence for lack of independence

among observations within the detection history matrix.

Join count tests were developed for evaluating spatial cor-

relation among binary data collected over a lattice (Sch-

abenberger and Gotway 2005). We modify the join count

statistic by defining a “neighborhood” of temporal obser-

vations within a sample unit. We explored two different

neighbor definitions: (1) all temporal observations

(k = 1, . . ., K) at a single spatial replicate j within the

same sample unit i and (2) observations from consecutive

temporal revisits indexed by k � 1, k, k + 1 at a single

spatial replicate j within the same sample unit i. Under

definition (2), temporal observation 1 and K have only

one neighbor each, temporal observation 2 and K � 1,

respectively, while the remaining temporal observations

have two neighbors each. Visual representations of these

neighborhood definitions for two example within-season

revisit designs are shown in Appendix S2. The two differ-

ent neighbor definitions illustrate that even though we

focused on Markovian dependence among detections for

this study, our test is applicable for other spatial and (or)

temporal processes that lead to correlated detections. The

join count statistic was then determined by counting the

Correction statement: [Correction added on 15 July 2016: One
of the equations was previously incorrect and has been amended
in this version.]
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number of neighbor pairs (using either definition above)

with species detections within each sample unit i (number

of pairs with Yijk = 1 and Yijk’ = 1, where these observa-

tions are neighbors; i.e., “black–black” joins), referred to

as BB statistic.

P-values associated with the BB statistic, in a spatial

analysis context, are found using a permutation test and

calculated as the proportion of permuted datasets result-

ing in a total number of joins (i.e., sum the BB statistics

over all sample units) larger than the total number of

joins observed. The null distribution for this permutation

test assumes that there was no correlation among obser-

vations. We generated permuted datasets through a con-

strained randomization that rearranged the observations

(zeros and ones) in the detection history matrix using the

sample units with at least one detection (naive occu-

pancy). In other words, the randomization constraint

shuffled observations within and across naively occupied

sample units and then the test statistic (total joins) was

calculated for these permuted datasets. The randomiza-

tion constraint avoided possible diffusion of detection/

nondetections across a greater number of sample units

(including to some that are not occupied) which would

lead to an observed test statistic consistently in the tails

of the permutation distribution. In other words, without

the constraint, one would incorrectly assume there was

temporal correlation in a dataset.

We used this method as an exploratory tool (prior to fit-

ting any model). The typical join count permutation test

procedure assumed that there was no heterogeneity in the

probability of detection (pijk = p for all i, j, k). Therefore,

this test was limited because detection covariates were not

considered and there was no ability to assess evidence of

correlation after fitting a model. To perform this test, we

used the spdep package in R (Bivand and Piras 2015).

Join count chi-square test

To address the limitations of the join count test, we devel-

oped a novel test procedure utilizing a chi-square test for

the observed and expected number of join count (BB) val-

ues within sample units. Our procedure can be used after

fitting any occupancy model which may include detection-

level covariates, such as a first-order Markov-structured

covariate, or possibly other model extensions. We used the

same neighbor definitions as described in the preceding

section. However, we compared the observed count of

sample units with a particular number of joins (based on

either neighbor definition: OBB) to the expected count

(EBB) based on the estimated detection and occupancy

probabilities from a fitted model. Then, similar to the

MacKenzie–Bailey test, OBB and EBB were found for the

set of possible number of joins (BB) within a detection

history, H (again h denotes a possible outcome in the set

H), with

OBB ¼
XN
i¼1

Iðjoinsðyi::Þ ¼ BBÞ;
and

EBB ¼
X
h

Eh � IðjoinsðhÞ ¼ BBÞ;

where I(joins(h) = BB) is an indicator if the number of

joins in h is equal to BB and Eh is calculated in the same

way as performed for the MacKenzie–Bailey test.

The join count chi-square test statistic equalsP
c

P
BBc

ðOBBc
� EBBc

Þ2=EBBc
. The summation over

cohorts modifies the statistic to accommodate an unbal-

anced survey design, as performed for the MacKenzie–
Bailey test. We provide example calculations for our join

count chi-square test using a simple dataset for both the

basic and Markov models in Appendix S2.

All P-values associated with the join count chi-square

test were also found using a parametric bootstrap

approach and calculated as the proportion of boot-

strapped test statistics larger than the observed test statis-

tic. A small P-value suggested that observed data were

inconsistent with a fitted model based on the BB counts,

whereas a large P-value indicated the observed BB counts

were consistent with those generated from the fitted

model.

The main distinction between the MacKenzie–Bailey
test and our novel join count chi-square test was the data

aggregation used within the chi-square discrepancy mea-

sure. The MacKenzie–Bailey test focused on patterns of

nondetections/detection, a more omnibus approach.

Comparatively, the join count chi-square test examined

whether the number of joins (neighbors with both

responses of 1) within sample units observed in the data

was likely under a fitted model. In this way, the join

count chi-square test provides a way to specifically evalu-

ate whether there is evidence of additional correlation

after fitting a model. R code to perform this test for the

models we investigated is available in the Supporting

Information (Data S1) and could be modified to accom-

modate other occupancy model extensions.

Simulation study

The MacKenzie–Bailey, permutation join count, and our new

join count chi-square tests (using both neighbor definitions)

were applied to simulated datasets under four different sce-

narios. For all scenarios, we assumed a sample size of 50

(i = 1,. . .,50) and that all sample units had the same number

of spatial and temporal replicates within a season. The four

within-season revisit designs were as follows: a single spatial
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replicate (J = 1) with 16 temporal revisits (K = 16); four spa-

tial replicates (J = 4) with four temporal revisits (K = 4); a

single spatial replicate (J = 1) with eight temporal revisits

(K = 8); and four spatial replicates (J = 4) with two temporal

revisits (K = 2). Of these scenarios, the first two have 16 total

revisits per sample unit and the second two have eight total

revisits per sample unit.

We assumed that spatial replicates were independent of

one another and varied the strength of correlation between

consecutive temporal observations within a sample unit.

For each revisit schedule, we simulated data under five dif-

ferent p0/p1 combinations: 0.5/0.5, 0.4/0.6, 0.3/0.7, 0.2/0.8,

and 0.1/0.9 with the probability of detection always equal

to pmean for the first temporal replicate. Note that the dif-

ference in detection probabilities (p1 � p0) increased as the

correlation among detections increased, but that for each

combination, pmean was equal to 0.5. The p0/p1 combina-

tion of 0.5/0.5 represents a scenario of no correlation

among temporal replicates as the probability of detection

does not depend on whether the previous observation

resulted in a detection or not.

For each within-season revisit design scenario and p0/p1
combination, 500 datasets were simulated. The permuta-

tion-based join count test was performed on each simu-

lated dataset with 999 permuted (using the constrained

randomization procedure) datasets per test. Then, the

Markov and basic occupancy models (no covariates) were

fit to each simulated dataset. For all scenarios and p0/p1
combinations, the Markov model was always consistent

with how the data were simulated including the assump-

tion that the detection probability for the initial temporal

replicates was pmean. If a model did not converge for a

particular dataset (i.e., error from the optim function or

the inverse of the Hessian was not positive definite), the

tests using that model fit were discarded. Using both fit-

ted models, we then performed the MacKenzie–Bailey test

and join count chi-square test (using both neighborhood

definitions for every simulated dataset).

We calculated the proportion of the 500 simulated

datasets which resulted in P-values less than 0.05 for all

tests, within-season revisit scenarios, and p0/p1 combina-

tions as a summary measure. This measure could be con-

sidered an estimate of test power for appropriately

detecting this particular form of correlation after model

fitting. For example, fitting the basic occupancy model to

data generated with p0/p1 = 0.5 (no correlation) should

result in only 5% of the 500 datasets returning tests with

P-values < 0.05 (using a fixed cutoff a = 0.05), if the test

displays the nominal rate. However, for the scenarios that

generate datasets with serial correlation (p0/p1 6¼ 0.5), the

MacKenzie–Bailey and join count chi-square tests should

detect inadequacy of the basic model, ideally, resulting in

power increasing as the strength of serial correlation

increases. On the other hand, MacKenzie–Bailey and join

count chi-square tests should indicate for the majority of

simulated datasets adequacy of the Markov model as the

data were generated under that model when p0/p1 6¼ 0.5,

again displaying nominal test size.

Bat acoustic survey data

To demonstrate application of these model assessment

procedures, we used call file data identified to bat species

collected during surveys on U.S. Fish and Wildlife refuges

across Washington, Oregon, and Idaho (Barnett 2014).

For this dataset, following a regional sampling design

(Rodhouse et al. 2011, 2015) that has subsequently been

expanded to support continent-wide monitoring (Loeb

et al. 2015), a sample unit (N = 57) was a 10 9 10 km

grid cell and spatial replicates (J = 1,. . .,4) were stations

where a detector was placed at a point location within a

sample unit. Some sample units had spatial replicates that

were surveyed over the same nights, but others had detec-

tors deployed over different consecutive nights. Recorded

calls were classified to species using commercial software

(Sonobat 3; http://www.sonobat.com/). We constructed a

binary response variable, detected or not detected (1/0),

within each station/night combination.

We included only two species, the big brown bat

(Eptesicus fuscus; hereafter EPFU) and the hoary bat

(Lasiurus cinereus; hereafter LACI) in this study,

although many more species were recorded during the

surveys (Appendix S1). These species are common and

widespread and provided rich detection history patterns

for exploration. For both species, we used a subset of

the available data such that all sample units had at most

four detectors (spatial replicates) and at most four con-

secutive nights (temporal replicates) per detector. We

modeled bat occupancy as a function of whether the

areas surrounding the sample unit included land used

for agriculture or not and bat detectability as a function

of the type of water source near a detector (factor with

four levels: creeks and streams, lakes and ponds, marshes

and sloughs, and other (typically man-made) water fea-

tures) and Julian date.

Results

Simulation study

We present results based only on model fits that appeared

to have adequately converged. Lack of convergence

occurred when the optim function reported a Hessian

matrix whose inverse was not positive definite. Conver-

gence issues occurred most frequently for Markov models

when serial correlation was high (i.e., large difference in
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p0 and p1). The problem was most severe for the scenario

with a single spatial replicate and 16 temporal replicates

and p1 � p0 = 0.8; almost half (236) of the Markov mod-

els failed to converge. For the remaining scenarios, the

issue was much less prevalent. We did not explore ways

to resolve this issue for the simulation study, but different

initial values or settings for the numerical algorithm

could improve computations.

Occupancy and detection estimation

For converged models, estimates of occupancy (w) and

detection (p) from the Markov model appear unbiased

and 95% confidence interval coverages were close to

nominal (i.e., 95% of the intervals contained the true

value) for almost every combination of serial correlation

and spatiotemporal replicates (Table C1 in Appendix S3).

The one exception was with one spatial and eight tempo-

ral replicates with p1 � p0 = 0.8; occupancy estimates

were slightly biased, and coverage was only 91.2%. Esti-

mates of p0 and p1 using the Markov model appeared

unbiased for all spatiotemporal replicate and strength of

serial correlation combinations (Tables C2 and C3 in

Appendix S3). The confidence intervals for w and p were

wider using the Markov model compared to the basic

model (Tables C2, C3, and C4 in Appendix S3). This

finding is consistent with the understanding that confi-

dence intervals will be too narrow when correlation is

unaccounted for within a model.

For the basic model, occupancy estimates were unbi-

ased when correlation (p1 � p0) among detections was

low, but bias increased as correlation increased (Table C1

in Appendix S3). This issue was not as pronounced if

independent spatial replicates were available (as well as

temporal replicates), but became more severe when there

were no independent within-season observations for a

sample unit. For instance, with the highest level of corre-

lation, we investigated (p1 � p0 = 0.8) the occupancy (w)
95% confidence interval coverage rates were 0.944 and

0.908 for scenarios with four spatial replicates (four and

two temporal revisits, respectively) while the occupancy

(w) coverage rates dropped to 0.758 and 0.226 for the

same level of correlation when only a single spatial repli-

cate was used (16 and 8 temporal revisits, respectively;

Table C1 in Appendix S3).

Comparison of model assessment tests:
Mackenzie–Bailey, permutation join count,
and join count chi-square tests

We consistently found that the join count chi-square test

had greater ability to correctly identify unaccounted for

correlation (power) after fitting the basic occupancy

model compared to the MacKenzie–Bailey test (Figs. 1, 2

solid black line vs. dashed black line). The permutation

join count test had higher power than either of the other

two tests (Figs. 1, 2 dotted black lines), but again, this

test only explores correlation in binary data prior to

Figure 1. Defining neighbors as all temporal observations within a spatial replicate, the proportion of tests on simulated datasets with P-values

less than 0.05 (denoted as power) for scenarios with four spatial, four temporal (A); one spatial, 16 temporal (B); four spatial, two temporal (C);

and one spatial, eight temporal (D) replicates versus correlation (difference in detection probabilities). Different line types correspond to different

tests with solid lines for the novel join count chi-square test and dashed lines for the MacKenzie–Bailey test. Color distinguishes the two models:

black lines for tests using the basic model and red for Markov model. The permutation-based join count test is shown with the open circles and

dotted line. The plot shows join count chi-square test detects model inadequacy at a higher rate than the standard MacKenzie–Bailey test when

using the basic model under all four scenarios. The Markov model displays nominal test size (power = 0.05) for datasets with serially correlated

detections.
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fitting a model and assumes no heterogeneity in the prob-

ability of detection. When correlation among detection

probabilities was appropriately modeled with a Markov

model, the MacKenzie–Bailey and join count chi-square

tests both displayed nominal test size as expected (red

lines close to specified a = 0.05 for both tests; Figs. 1, 2).

Overall, the join count chi-square test was more sensitive

(compared to the MacKenzie–Bailey test) when we

defined neighbors as adjacent temporal replicates (Fig. 2),

which is consistent with the Markov model used to simu-

late data (Fig. 1).

Hoary bat and big brown bat acoustic data
analyses

Using the Markov model, the estimated coefficient of the

first-order Markov structure covariate was 1.88

(SE = 0.24) for the hoary bat (LACI) and 1.88

(SE = 0.33) for the big brown bat (EPFU) datasets

(Table 1), suggesting the presence of correlated detections

for both species. For LACI, baseline occupancy (sample

units without agriculture) was estimated to be 0.91 (95%

CI from 0.75 to 0.97) using the basic model and 0.95

(95% CI from 0.72 to 0.99) using the Markov model. For

EPFU, baseline occupancy was estimated to be 0.58 (95%

CI from 0.42 to 0.73) using the basic model and 0.65

(95% CI from 0.43 to 0.82) using the Markov model.

These were similar to our simulation findings with wider

intervals using the Markov model for estimation in the

presence of correlated detections. For both of these spe-

cies, neither model provided evidence that the probability

of occupancy differed for sample units with surrounding

agriculture lands compared to those with no surrounding

agriculture (all coefficients within 1 SE of zero, Table 1).

Using the basic model for LACI data, the detection

coefficients for water source suggested that detection

probability for all other water sources (lakes/ponds,

marshes/sloughs, other/man-made) was greater than that

for creeks and streams (coefficient estimates more than

two SEs larger than zero, Table 1). The magnitude of all

of these coefficients was reduced after including the first-

order Markov-structured covariate. For this model, the

estimated coefficients suggested that only detection for

marshes and sloughs was greater than that of creeks and

streams (estimate = 0.71, SE = 0.27, Table 1). Compara-

tively, for the EPFU data, only the man-made (and

“other”) water sources differed in detection probabilities

from the baseline level of creeks and streams (esti-

mate = 1.82, SE = 0.88, Table 1). For the Markov model

with the EPFU data, there was no evidence that any of

the estimated water feature coefficients differed from zero.

For both of these species, neither model indicated Julian

date was associated with the probability of detection (all

estimates within two SEs of zero, Table 1).

Specifying the basic model for LACI data, the MacKen-

zie–Bailey test indicated little evidence of lack of fit (P-

value = 0.138) while the join count chi-square tests pro-

vided strong evidence of lack of fit using both

Figure 2. Defining neighbors as consecutive temporal observations within a spatial replicate, the proportion of tests on simulated datasets with

P-values less than 0.05 (power) for scenarios with four spatial, four temporal (A); one spatial, 16 temporal (B); four spatial, two temporal (C); and

one spatial, eight temporal (D) replicates versus correlation (difference in detection probabilities). Different line types correspond to different tests:

solid lines for the novel join count chi-square test; dashed lines for the MacKenzie–Bailey test; permutation join count test shown by open circles

and dotted line. Color distinguishes the two models: black lines for tests using the basic model and red for Markov model. The plot shows the

join count chi-square test using this neighbor definition also detects model inadequacy at a higher rate than the MacKenzie–Bailey test when

using the basic model under all four scenarios. The Markov model displays nominal test size (power = 0.05) for datasets with serially correlated

detections.
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neighborhoods (P-values <0.002 when neighbors were

defined as all nights from a detector (JC1) and when

defined as only adjacent nights at a detector (JC2);

Table 2). Interestingly, even after accounting for serial

correlation within the LACI data, there was still evidence

of lack of fit based on the join count chi-square tests, but

the MacKenzie–Bailey test provided no evidence of inade-

quate fit. The inadequacy of the Markov model for this

species could be the result of the presence of a more

complicated correlation structure that was not accounted

for using the first-order detection covariate or another

form of detection probability heterogeneity which resulted

in more observed joins than expected under the fitted

model. A more comprehensive analysis for LACI was

beyond the scope of this paper.

For the EPFU data, when using the basic model, the

MacKenzie–Bailey test also provided no evidence of lack

of fit (P-value = 0.984, Table 2) while both join count

chi-square tests provided strong evidence for inadequate

fit (JC1 P-value = 0.02, JC2 P-value = 0.03, Table 2).

After serial correlation in EPFU data was accounted for

using the Markov model, all tests provided no evidence

of inadequate fit (P-values > 0.2, Table 2).

Discussion

As the number of occupancy modeling approaches and

applications (e.g., Bailey et al. 2014; Kery and Royle

2016) grows, so does the need to provide accessible guid-

ance and tools to practitioners for model assessment.

Technological advances are enabling survey designs that

use serial deployments of remote data loggers which accu-

mulate large datasets of correlated observations. While

this growing capacity allows researchers to encounter rare

and cryptic organisms and to save money (e.g., reduced

travel costs), these datasets potentially violate a central

assumption of independent replicate observations from a

sample unit. The use of model comparison metrics such

as AIC is insufficient for detecting violations of such

model assumptions. Our novel join count chi-square test

provides a targeted assessment of whether detections are

correlated within a sample unit and strengthens good-

ness-of-fit procedures for an emerging and ever increasing

type of occupancy survey design. Importantly, although

we demonstrate our tool with two specific single-season

models, it is widely applicable to any occupancy model

structure.

We found that our test had consistently higher power

than the MacKenzie and Bailey (2004) goodness-of-fit test

to detect lack of fit when basic occupancy models were

inadequate because of correlated detections within a sam-

ple unit. When the neighborhood definition was aligned

Table 1. Estimated coefficients (with standard errors) for basic and Markov occupancy models fit to hoary bat (LACI) and big brown bat (EPFU)

datasets.

LACI EPFU

Basic Markov Basic Markov

Occupancy

Intercept 2.27 (0.61) 3.01 (1.06) 0.34 (0.34) 0.61 (0.45)

Ag 0.23 (1.23) 0.53 (3.13) �0.41 (0.60) �0.59 (0.67)

Detection

Intercept �0.26 (0.13) �1.13 (0.17) �0.75 (0.20) �1.54 (0.25)

Water2 0.54 (0.22) 0.32 (0.20) 0.44 (0.28) 0.32 (0.27)

Water3 0.96 (0.29) 0.71 (0.27) 0.38 (0.37) 0.25 (0.36)

Water4 0.98 (0.47) 0.35 (0.41) 1.82 (0.88) 0.79 (0.96)

Date 0.005 (0.003) 0.002 (0.003) �0.004 (0.005) �0.005 (0.005)

Mark – 1.88 (0.24) – 1.88 (0.33)

The first set of coefficients is for model terms associated with the occupancy (w) parameter (“Ag” indicator for sample unit surrounded by agricul-

tural land). The second set of coefficients explained heterogeneity in detection probabilities (p) associated with different revisits. The water source

factor used to model detection probabilities had four levels: creeks and streams (baseline), lakes and ponds (“Water2”), marshes and sloughs

(“Water3”), and other (typically man-made) water features (“Water4”). The “Date” detection coefficient was for Julian date (mean centered).

The “Mark” detection coefficient was for the first-order Markov-structured covariate indicating whether the previous visit had a detection or not.

For both of these species, the estimated coefficient for the Markov parameter was more than two standard errors greater than zero.

Table 2. P-values from the MacKenzie–Bailey (MB) and join count

chi-square(JC1: neighbor definition 1, JC2: neighbor definition 2) tests

from basic and Markov occupancy models fit to hoary bat (LACI) and

big brown bat (EPFU) datasets. Available covariates for p and w were

included in each model. These data were collected for acoustic sur-

veys of wildlife refuges in the Pacific northwest.

Species

Basic model Markov model

MB JC1 JC2 MB JC1 JC2

LACI 0.138 <0.002 <0.002 0.774 0.012 0.026

EPFU 0.984 0.030 0.020 0.268 0.236 0.202
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with the generating temporal process (first-order Mar-

kov), the join count chi-square test displayed higher

power compared to a less restrictive temporal neighbor-

hood definition. For both tests, power increased with

increasing strength of correlation, but was less obviously

responsive to the number of spatial and temporal repli-

cates within a sample unit. These results emphasize that

the MacKenzie–Bailey test may not always be optimal for

identifying situations when data are inconsistent with the

assumption of independent replicate surveys. This finding

could be due to the fact that the MacKenzie–Bailey test is

an omnibus assessment of model–data agreement. Our

join count chi-square test, on the other hand, focuses on

whether the fitted model adequately captures correlation

among detections within a sample unit. Furthermore, the

flexible neighborhood definition in our join count chi-

square test allows for an investigation into multiscale

temporal and spatial processes within an occupancy mod-

eling framework. In this way, our tool can help guide

practitioners by providing an additional, more specific

test for assessing whether using observations gathered

close together in time or space as independent revisits to

a sample unit is inappropriate.

Identifying whether observations of detection/nonde-

tection clustered in time or space are independent is

important for ensuring estimates of occupancy are unbi-

ased. As documented by others (Hines et al. 2010), our

simulations showed that unmodeled correlation can lead

to biased occupancy estimates. We found bias increased

with increasing serial correlation and was greatest for

within-season revisit designs without an additional

source of independent observations. For instance, we

found that a basic occupancy model provided reliable

inferences when correlation was low to moderate

(p1 � p0 ≤ 0.6) under the proposed within-season revisit

design for the NABat (Loeb et al. 2015), four detectors

with four night deployments within a sample unit. How-

ever, revisit designs with less spatial or temporal repli-

cates produced biased estimates using the basic model.

Importantly, the Markov model yielded unbiased esti-

mates, except when correlation was very high

(p1 � p0 = 0.8) and within-season revisit designs con-

sisted only of temporal replicates. While this work

focused on bat surveys as a motivating example, many

other practical survey designs used for occupancy estima-

tion can lead to the potential for correlation among

detections. For instance, Markov models were initially

developed in order to analyze data collected along adja-

cent trail segments (Hines et al. 2010). Our simulations

and assessments relied on the assumption of independent

spatial replicates widely separated within an areal sample

unit and Markov-structured correlation among consecu-

tive temporal replicates. This assumption may not be

realistic for other survey designs (e.g., when detectors are

placed along transects) and for other taxa. In these more

complicated situations, the multiscale models of Nichols

et al. (2008) might be more appropriate. Ultimately, any

occupancy design which results in potentially correlated

observations within a sample unit can benefit from an

assessment of the independence assumption and our

method provides such a diagnostic tool for use after fit-

ting any occupancy model.

Over the last decade, formerly common species such as

the little brown Myotis (Myotis lucifugus) and hoary bat

have experienced unprecedented mortality rates and are

now facing nontrivial extinction risks (Frick et al. 2010;

Hayes 2013). One of the responses to these concerns has

been the development of a plan for coordinated continen-

tal-scale monitoring of bats, the NABat (Loeb et al.

2015). The scope and scale of this monitoring program

and the elusive nature of bats (highly mobile and noctur-

nal) make accounting for imperfect detection while esti-

mating occupancy, an important component of this

program. Pilot testing of acoustic surveys conducted for

four consecutive nights has begun in several jurisdictions,

including the U.S. Fish and Wildlife Service (FWS). Using

automated detection devices over consecutive nights raises

the question of whether nightly surveys can still be con-

sidered independent revisits; our study suggests they may

not be (e.g., hoary bat and big brown bat had “Mark”

covariates >0 in Table 1). When temporal correlation is

strong, a more efficient approach may be to utilize multi-

ple spatial replicates dispersed widely within areal sample

units to cover a range of available habitats with single-

night surveys. Replicating these single-night surveys

widely separated in time (e.g., monthly) within a defined

season could avoid temporal correlation and provide

more robust inferences.

Our analyses of hoary bat and big brown bat datasets

provided strong evidence for correlated detections among

consecutive nights. Similar to the results of our simulation

study, the join count chi-square test identified lack of fit

of the basic model which was not found using the

MacKenzie–Bailey test for both species. Accounting for

correlation by way of the Markov model appeared effective

for the big brown bat, but this approach will likely not be

sufficient for all species (e.g., hoary bat). This comparison

underscores the importance of assessing model fit. While

the Markov model is expected to effectively account for

correlation in most datasets, other models may be more

appropriate for some bat species. This emphasizes that

while the breadth of occupancy model extensions provides

the potential to account for various survey designs and

assumption violations, the use of a more sophisticated

model does not guarantee adequate model fit to real data.

Therefore, model assessment tools, such as our join count
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chi-square test, need to be utilized in order to evaluate

models and understand potential deficiencies.
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