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Abstract
Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed

local ancestry analysis of Mexican samples from two genome-wide association studies

obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive

African ancestral alleles compared to the rest of the genome, which is the hallmark of recent

selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for

two datasets, which put our finding among the strongest known selections observed in

humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans.

Using inaccurate Amerindian training samples was a major concern for the credibility of pre-

viously reported selection signals in Latinos. Taking advantage of the flexibility of our statis-

tical model, we devised a model fitting technique that can learn Amerindian ancestral

haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans

using only European and African training samples. The strong selection signal at the MHC

remains without Amerindian training samples. Finally, we note that medical history studies

suggest such a strong selection at MHC is plausible in Mexicans.

Author Summary

Whether or not there exists recent selection since admixture in Latinos has been a subject
of debate. To detect selection signal, a method uniquely applicable to recently admixed
samples is local ancestry analysis. We infer local ancestry of admixed samples (in our
study, Mexicans), and look for regions where the average ancestry of one ancestry compo-
nent significantly deviates from its genome-wide average. Inferring local ancestry requires
training samples that represent the genuine ancestral source populations. One major con-
cern for previously detected selection signals in Latinos via local ancestry analysis is the
inaccuracy of Amerindian training samples. This is partly due to large genetic differences
among Amerindian tribes and partly due to the difficulty in obtaining Amerindian train-
ing samples. We developed a new method which allows us to learn Amerindian ancestral
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haplotypes fromMexican cohorts in the absence of Amerindian training samples. Our
work demonstrates the existence of recent strong selection at MHC in Mexicans.

Introduction
In 1492 Columbus discovered America. Europeans, led by the Spaniards, and armed with
horses, wheels, germs, and steel, rapidly conquered the NewWorld [1], and promptly Africans
were brought there as slave labor. During the past 500 or so years, three populations—Amerin-
dians, Europeans, and Africans—have occupied the same space and time, albeit asymmetri-
cally, and were genetically admixing. Twenty generations later, the majority of the people
inhabiting Central America, Caribbean Islands, and South America, such as Mexicans, Puerto
Ricans, and Columbians have become an admixture of the three continental ancestral popula-
tions. These recently admixed populations are of great interest for modern genetic studies [2].

In 2007, Tang and colleagues analyzed a small cohort of Puerto Rican samples and reported
three regions that are under strong recent selection [3]. Using their then state-of-the-art local
ancestry inference software Saber [4], Tang and colleagues discovered in Puerto Rican samples
genomic regions whose mean local ancestries (averaged over individuals) significantly deviated
from the genome-wide average—a hallmark of recent selection for admixed samples. Price and
colleagues cautioned that the strong selection discovered by Tang and colleagues might be arti-
facts and they provided three arguments [5]. First, Saber only models linkage disequilibrium
(LD), the non-independence of genetic markers in a population, between adjacently markers
and thus may produce unreliable local ancestry estimates in regions that harbor long-range LD.
It was noted that all three loci under selection that Tang and colleagues reported are within the
long-range LD regions. Second, the Amerindian training samples used by Tang and colleagues,
which are Maya and Pima samples from human genetic diversity panel (HGDP) [6], is an inac-
curate ancestral population for Puerto Ricans, which might produce artifacts in local ancestry
inference. Third, Price and colleagues analyzed a larger sample using their software Ancestry-
Map [7] and did not discover the deviation of local ancestry reported by Tang and colleagues.

We would like to make the following comments. First, the AncestryMap uses the so called
ancestry informative markers (AIMs) to infer local ancestry; because that AIMs are sparse and
that ancestry informative haplotypes may not contain sufficient number of AIMs, the statistical
method underlying AncestryMap is evidently under-powered in detecting local ancestry com-
pared to those that attempt to model haplotypes, particularly more recent model-based meth-
ods such as HapMix [8] and ELAI [9]. Therefore, negative results from AncestryMap cannot
convincingly refute positive findings by Tang and colleagues. Second, the long-range LD, if
properly modeled, will benefit the local ancestry inference, because in regions that harbor long-
range LD there are more markers in sync to define population specific haplotypes. Although
Saber [4] has difficulty with long-range LD, more recent model-based methods, such as ELAI
[9], can benefit from long-range LD. Third, inaccurate Amerindian training samples is a chal-
lenge in studying local ancestry of Latinos. Amerinidan training samples are rarely found in
the public domain; the ones that are available, such as Maya and Pima samples from HGDP
[6], have small sample sizes and many samples have non-neglegible European ancestries [10].

In this study we analyzed two datasets whose subjects are of Mexican descent, which we
obtained from the database of genotype and phenotype (dbGaP). Our primary motivation is to
follow up with selection findings in an early study [9], which discovered signatures of recent
selection in HapMap3 [11] Mexican samples based on a departure of local ancestry from the
global average. Our second motivation is to report a method that can overcome the technical
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challenge presented by inaccurate Amerindian training samples when analyzing local ancestry
of Latinos. We devised a novel method to infer local ancestry which allows us to discard Amer-
indian samples and instead learn Amerindian haplotypes fromMexican samples. The strong
selection in the MHC region in Mexicans was confirmed in our study.

Results
We applied for access and downloaded two GWAS datasets of Mexican descent from the
dbGaP. One is the Viva La Familiar obesity-diabetes familial risk study (henceforth Viva) that
contains 815 individuals from 261 families [12]. The other is the Mexican hypertriglyceridemia
study (henceforth Lipid) that contains 2229 unrelated individuals [13]. After stringent QC (see
Materials and Methods), we applied ELAI to infer local ancestry of each individual. ELAI out-
performs other competing state-of-the-art methods in local ancestry inference [9]. It is also
convenient to use as it does not require phasing for either training samples or cohort samples,
nor does it require recombination map or global admixture proportions as inputs. Public
resources, such as HapMap and 1000 Genomes projects, contain high quality European and
African haplotypes, but not Amerindian haplotypes; this makes ELAI even more attractive
than others in analyzing Mexican samples.

Patterns of global and local ancestry
In VIVA the global ancestry proportions (that is, the admixture proportions) for Amerindian,
European, and African components are 0.484,0.452, and 0.064 respectively. In Lipid the num-
bers are 0.552,0.409, and 0.039. Compared to Viva, Lipid has a higher Amerindian ancestry
proportion and lower European and African ancestry proportions. The sampling location is
likely to account for the difference: participants in Lipid were recruited in Mexico City, Mexico,
whereas participants in Viva were recruited in Houston, Texas. For each ancestry component,
there are substantial variations among individuals (see two triangular plots in Fig 1). For both
datasets, the topological resemblance between the triangular plot and the principal component
(PC) plot is remarkable. The relative positions of the Mexican outlier individuals are well
matched, and an African American individual accidentally recruited in Viva is rather obvious.
This suggests that ELAI estimates are sensible, and that using PC to derive admixture propor-
tions has some merits [14]. It is believed that using East Asians as additional proxy to Amerin-
dian training samples may improve the local ancestry inference of Latinos, because
Amerindians are genetically more similar to East Asians. Our experience suggests, however,
that this practice has little impact, and the PC plots, in which Chinese separate from Amerindi-
ans inconsistently in two datasets, seem to corroborate our experience.

We computed at each marker the average dosages separately for each ancestral component
by averaging that component over all individuals. The average ancestry dosages were com-
puted differently for Viva to account for relatedness in the sample (see Materials and Meth-
ods). Fig 2 shows variation of African average dosages along each autosome. (S1A Fig has
average dosages for all ancestries.) The spikes on chromosome 6 in both datasets are rather
striking. For Viva, the sample standard deviation (ssd) of average dosages for Amerindian,
European, and African components are 0.046,0.043, and 0.024 respectively. The largest devia-
tions, measured by the ssd of average dosages for each ancestry, are 5.4,4.8, and 9.9. The locus
whose African average dosage is 9.9 ssd above the mean is inside the MHC region, and under
the normal approximation, a 9.9 ssd corresponds to a p-value of 2 × 10−23, which surpasses
any reasonable significant threshold for a genome-wide analysis (in GWAS such a significant
threshold is 5 × 10−8). The same region inside MHC was again identified as significant in
Lipid; the largest deviation of African average dosages is 14.8 ssd above the mean, which
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corresponds to a p-value of 3 × 10−49. The region identified in MHC is the same region identi-
fied by analyzing HapMap3 Mexican samples [9]. In that study, a region on chromosome 8
was also identified as border-line significant in Amerindian average dosages. In both Viva and
Lipid, however, this region was not replicated.

Different European and African training samples and their effects on
local ancestry inference
We used HapMap3 Utah Residents with Northern and Western European Ancestry (CEU) as
European training samples; Yoruba in Ibadan, Nigeria (YRI), from west Africa, as African

Fig 1. Global ancestry proportions and principal components. (a) and (b) are triangular plots for Viva and Lipid respectively. To produce a triangular plot,
note that each individual associates a triplet of ancestry proportions (x, y, z) such that x + y + z = 1, and a unique point can be determined such that within an
equilateral triangle its distances to three edges are x, y and z. (c) and (d) are PC plots for Viva and Lipid respectively. The PC plots shown are mirror images
of the original as indicated by “–” sign in labels.

doi:10.1371/journal.pgen.1005847.g001
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training samples; and Maya and Pima from HGDP [6] (MAYA) as Amerindian training sam-
ples. To test the robustness of our results against different choices of training samples, we first
investigated European and African training samples as they both have alternative choices in
HapMap3. We used Tuscani in Italia (TSI), from south Europe, as an alternative to CEU, and
Maasai in Kinyawa, Kenya (MKK), from east Africa, as an alternative to YRI, and these pro-
duced four combinations: CEU−YRI−MAYA, CEU−MKK−MAYA, TSI−YRI−MAYA, and

Fig 2. African average dosages. Plot shows all 22 autosomes for two GWAS datasets. The spike at MHC
region on chromosome 6 is rather striking in both datasets. The blue lines are the genome-wide mean of
average dosages; the gray lines aremean ± 4ssd (ssd stands for sample standard deviation).

doi:10.1371/journal.pgen.1005847.g002
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TSI−MKK−MAYA. We also combined all training samples to perform inference (CEU+TSI
−YRI+MKK−MAYA). The genome-wide pattern of local ancestry is consistent for different
sets of training samples (S1 Table and S1B and S1C Fig). We thus focus on the MHC region
shown in Fig 3(a) and 3(b). We made the following observations: 1) Using TSI to replace CEU
produced a less significant deviation at the MHC region. 2) Using MKK to replace YRI pro-
duced a more significant deviation at MHC. 3) Combining all training samples produced a sig-
nificant deviation at MHC, and the significant level is intermediate among other combinations.
4) Outside the MHC region, different combinations of training samples produced congruent
results.

Fig 3(c) shows the difference in inferred European average dosages between two European
training samples (average difference between TSI−YRI−MAYA vs CEU−YRI−MAYA and
TSI-MKK-MAYA vs CEU-MKK-MAYA). Interestingly, the highest peak contains HLA-B and
HLA-C loci. We naturally suspect that TSI has more genetic diversity than CEU at the MHC,
because more genetically diverse European training samples tend to produce higher estimates
of European ancestry dosages. Amerindian average dosages are congruent between choices of
CEU and TSI training samples (S2 Fig), and the deficiency in African average dosages when

Fig 3. Comparison between different European and African training samples. The comparison was performed with chromosome 6 of Lipid dataset.
African (a) and European (b) average dosages for five sets of training samples shown in legend, where ALL means CEU+TSI−YRI+MKK−MAYA. (c) The
difference of estimated European average dosages of Mexicans between two European training samples (see main text for explanation). (d) The violin plots
of structure analysis of five HapMap3 populations, where ASW denotes Americans from the Southwest, an African American population. On each violin plot,
gray dot denotes the median and black dot the mean.

doi:10.1371/journal.pgen.1005847.g003
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using TSI as training samples are compensated for by sufficiency of European average dosages.
We extracted 8679 SNPs in the extended MHC region, 25–35Mb on chromosome 6, from
European and African training samples, and ran ELAI using two upper clusters without speci-
fying the population label, which is essentially haplotype-based structure analysis [9]. One
admixture component was arbitrarily chosen to make comparison, and the admixture compo-
nent was averaged over 10 EM runs (after adjusting for label-switching across EM runs). The
violin plots in Fig 3(d) show that TSI is indeed more diverse than CEU at the MHC, MKK is
more diverse than YRI, and MKK is the most diverse among four non-admixed populations,
which agrees with the theory of east African origin of modern humans [15]. Recently admixed
African Americans (ASW) were included for sanity check of the haplotype-based structure
inference.

Amerindian training samples and how its removal affects local ancestry
inference
Next we turn to Amerindian training samples. The 1000 Genomes admixture analysis group
used a collection of Amerindian samples [16] different from the Maya and Pima from HGDP
that we used, but we had difficulty in obtaining that data. Moreover, a practical concern is that
any specific choice of Amerindian training samples will be subject to suspicion of inaccuracy.
To test the robustness of our inference against different Amerindian training samples, we
elected to remove Amerindian training samples and used only European and African training
samples to perform inference—but of course we kept the setting of three ancestral populations.
ELAI can function with the absence of one training population as long as there are enough
genetic components of that ancestry in the cohort samples. Because Mexicans have a large
Amerindian ancestry proportion, when Amerindian training samples are missing, ELAI is still
able to learn Amerindian ancestral haplotypes relatively easily fromMexican samples as long
as the sample size is large. The same is true for European training samples, but it becomes
more difficult if African training samples are missing. To borrow an analogy from next-genera-
tion sequencing, a large number of Mexican samples and a high ancestry proportion to local
ancestry inference is analogous to a high coverage of sequencing reads to variant call.

The recommended practice in an early version of ELAI is to split a large dataset into small
subsets. Doing so not only improves computational efficiency on a computer cluster, but also
allows ELAI to jointly fit training and cohort datasets. It is evident [17, 18] that a cluster model
becomes less fit to the training samples in the presence of an overwhelmingly large number of
cohort samples, which undermines the performance of local ancestry inference (or imputa-
tion). Recall that removing Amerindian training samples requires a large number of cohort
samples jointly fitting the model with training samples—we are seemingly in a quandary. The
solution is rather simple. In parameter estimation of the two-layer model underlying ELAI [9],
we can arbitrarily adjust relative weights between cohort and training samples without chang-
ing the expected ancestral allele (haplotype) frequency estimates. In other words, we can take
an arbitrarily large number of cohort samples and down weight their contribution to parameter
estimation. When the training samples are available, the weighting ensures the model fits to
training samples sufficiently; otherwise, the ancestral alleles are estimated exclusively by cohort
samples, and the weight cancels out in the parameter estimation as long as we assign equal
weight to all cohort samples. (The technical details can be found in Materials and Methods.)
Thus, the weighting allows us to take the extreme measure of removing Amerindian training
samples.

We implemented the weighting scheme and applied it to both datasets. We combined CEU
and TSI as European training samples and YRI and MKK as African training samples. Fig 4
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demonstrates, using both Viva and Lipid datasets, the difference, or lack of it, in the estimated
African average dosages with and without Amerindian training samples. Comparing the Amer-
indian average dosages, however, the estimates without Amerindian training samples are
higher than that with. The mean differences are 0.09 for Viva and 0.08 for Lipid. This is not too
surprising considering 1) Maya and Pima samples have some European ancestral components
(PC plots in Fig 1); and 2) Maya and Pima samples may be imperfect representatives of the
Amerindian source populations for Mexicans, and learning Amerindian ancestry components
from a large number of cohort samples may provide a better fit. Our results shall eliminate con-
cerns of possible artifacts caused by inaccurate Amerindian training samples.

Strong selection at the MHC region
If purely by chance, it is very unlikely that Amerindians share more alleles with Africans at
MHC than the rest of the genome at such a significant level; that the pathogens from the Old
world are often lethal to the native inhabitants of the NewWorld seems to argue against such a
peculiar sharing. The effect of the population bottleneck and the drift do not distinguish the
MHC from the rest of the genome [19]. If selection happened in Africans before admixture,
one would expect to see such selection signals in African Americans, which are not there [20].
Therefore, it is safe to assume that the African average dosages in Mexicans rose from the
genome-wide mean p0, which is a proxy dosage before selection at MHC, to the inferred value

Fig 4. Comparison of estimations with and without Amerindian training samples. (a) African average dosages of Viva. (b) Amerindian average
dosages of Viva. (c) African average dosages of Lipid. (d) Amerindian dosages of Lipid. We combined CEU and TSI as European training samples, and YRI
and MKK as African training samples.

doi:10.1371/journal.pgen.1005847.g004
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of p1 at MHC in the past 20 generations, and it is selection at work. A selection coefficient s can
be computed via a simple model p1 = p0 × (1+s)20, which provides a lowerbound estimate of s
compared to recursion formula for both dominance and additive models (see Materials and
Methods). Table 1 summarizes the estimates of selection coefficient under different models;
the lower-bound estimates are s = 0.05 for Viva and s = 0.07 for Lipid. Both estimates indicate a
very strong selection, on par with the lactase selection in northern Europeans (0.09–0.19) [21]
and the sickle-cell trait in Africans (0.05–0.18) [22].

To understand how many SNPs have contributed to the selection signal in MHC, we
assigned a phenotypic value to each individual based on their African ancestry dosage at the
identified region in MHC (detailed in Materials and Methods), regressed out six leading princi-
pal component and admixture proportions, and performed the single-SNP association test
using BIMBAM [17]. At a very liberal threshold of log10 Bayesfactor> 10, we discovered 1700
SNPs in the extended MHC region to be genome-wide significant (S3 Fig). Considering the
high correlation among SNPs in the region, we next performed multi-SNP analysis using a
Bayesian variable selection regression procedure implemented in the software piMASS [23].
piMASS implements a Markov chain Monte Carlo (MCMC) procedure to sample the posterior
distribution of model space (SNP sets) under sparse and shrinkage priors. The output contains
posterior probability of association (PPA) for each SNP, which roughly reflects how often the
SNP is being selected in an additive model. We ran piMASS using all markers from chromo-
some 6 of Lipid with 10,000 burn-in steps and 1 million sampling steps. Two independent runs
were conducted. In both runs, the proportion of variation explained (the narrow sense herita-
bility) estimates had the same posterior mean of 0.88, with ssd of 0.015 and 0.017 respectively.
The posterior mean model sizes (the number of SNPs in the model sampled) were 93±10.7 and
83±7.1 respectively (mean ± ssd). The two runs had 126 and 116 SNPs with PPA>0.1; among
them, 60 SNPs overlapped, and the union contained 182 SNPs. We removed these 182 SNPs
and reran local ancestry inference of chromosome 6. The pattern of the local ancestry was
essentially unaffected. These exercises suggest that the observed selection signal is driven by a
large number of SNPs and their constitutional haplotypes.

Discussion
In this paper we analyzed two existing GWAS datasets of Mexican subjects and demonstrated
that the MHC region is under strong recent selection in Mexicans. Because Viva contains
related individuals, we split individuals into non-overlapping subsets, each containing 40–50
unrelated individuals; performed local ancestry inference separately for each subset; and aggre-
gated them to compute the average dosages. This practice produced congruent results as our
combined analysis. In Lipid, samples were assigned case-control labels according to their tri-
glyceride levels. The results presented in the paper ignored the case-control status. We analyzed
cases and controls separately, and the results were highly congruent to that of the combined
analysis. We also analyzed African American samples in HapMap3 and did not find any region
under selection, which agrees with a recent study [20]. This serves as a negative control for

Table 1. Estimates of selection coefficient s under different models. p0 is the genome-widemean of African average dosages; p1 is the peak African
average dosage at MHC.

Data p0 p1 s

Simple Dominance Additive

Viva 0.128 0.365 0.054 0.069 0.061

Lipid 0.079 0.325 0.073 0.089 0.081

doi:10.1371/journal.pgen.1005847.t001
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ELAI. We devised a model fitting technique to introduce weighting into parameter estimation,
which makes it possible to infer local ancestry of Mexicans using only European and African
training samples. This rids us of the concern that the detected selection signals in Mexicans are
artifacts produced by inaccurate Amerindian training samples.

A previous study detected selection in 1000 genomes Mexican samples through local ances-
try analysis [9]. Bhatia and colleagues questioned the plausibility of that finding; they argued
that if signals were there, the 1000 genomes admixture analysis group would have found it
[20]. We took this opportunity to investigate why the 1000 genomes admixture analysis group
failed to detect the strong selection at the MHC region in Mexicans. We simulated genotypes
using a demographic model that mimic the out-of-Africa migration events [24], performed for-
ward simulations to mimic admixture and selection at three linked loci (details in Materials
and Methods), and inferred local ancestry. The 1000 genomes used consensus call from four
programs: HapMix [8], LAMP-LD [25], RFMix [26], and MultiMix [27]. The publicly available
version of HapMix was designed exclusively for two-way admixture, and the extended version
used to analyze the 1000 Genomes data was not available to us [28]. Thus it was excluded from
our analysis. MultiMix performed poorly despite our best effort and was excluded as well. For
both LAMP-LD and RFMix we used the same parameter settings as those used in the 1000
Genomes admixture analysis group [28]. Both LAMP-LD and RFMix require phased training
samples, and RFMix also requires phased cohort samples. (ELAI works with diplotypes.)
When supplied with true phasing, both LAMP-LD and RFMix works well, on par with ELAI.
We then introduced 2% switch-errors into cohort haplotypes and training haplotypes that
mimic Amerindians, 1% switch-errors into European and African training samples. LAMP-LD
is robust to switch-errors, but RFMix under-performs (S4A and S4B Fig). It is worthwhile to
note that MHC is notoriously hard to phase, and phasing for admixed samples at MHC is even
more challenging as it requires the phasing algorithm to correctly identify local ancestry—a
catch-22 for RFMix. We were surprised at the worse-than-the-expected performance of RFMix
in the presence of switch-errors (S4C Fig). Further investigation revealed that its window size
parameter has a sweet-spot (S4D Fig). When using the best window size RFMix performed on
par with ELAI (S4E Fig). Going back to the question why the 1000 genomes admixture analysis
group failed to detect the signal, our simulation studies suggested that the democratic strategy
adopted by 1000 genomes admixture analysis group, which used consensus calls from four
methods to identify local ancestry, was perhaps not optimal. The simulation studies prompted
us to use LAMP-LD and RFMix to analyze chromosome 6 of Viva and Lipid data. We phased
the Maya and Pima samples from HGDP using SHAPEIT [29], which were used in combina-
tion with CEU and YRI haplotypes as training datasets. LAMP-LD was then applied to infer
local ancestry of Viva and Lipid datasets. We then phased the Viva and Lipid datasets, and
RFMix was applied to infer their local ancestry. Reassuringly, both LAMP-LD and RFMix dis-
covered the signal of selection at MHC (S5 Fig).

The MHC region influences susceptibility and resistance to a broad range of infectious
agents such as viruses, bacteria, and parasites. It is sensible to observe more alleles of African
ancestry at MHC in Mexicans if those alleles confer selective advantages in the presence of cer-
tain infectious agents. The European conquerors brought to America European and African
diseases such as smallpox, measles, and typhus. Spaniards imposed an urbanized life style and
farming practice on native people. A sudden increase in local population concentration, dis-
placement, social upheaval, food shortages, and stress made them much vulnerable to infec-
tious diseases. An estimated 5–8 million native people perished in a smallpox epidemic alone
in early 1500s [30]. Nevertheless, after “difficult struggles of the formative period,” the accep-
tance and enthusiasm of the new life emerged from the persistence of the old; for a brief period
a “fusion of European and Mesoamerican cultures seemed ready to emerge” [31]. But severe
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drought hit and lethal pandemic broke out [30, 31]. The epidemic, called “huey cocoliztli,” was
symptomatically different from those imported from the Old World; some medical historians
suspect it was a hemorrhagic fever caused by arenavirus carried by rodents [31]. It first broke
out in 1545 and lingered until 1815 [31, 32]. The epidemic selectively targeted native people,
and 90% of the population perished in a few generations [30, 32]. This sustained epidemic har-
bors plenty of opportunities for strong selection at MHC, which fits our analysis. Once again
history left its mark in genomes for posterity [33].

Materials and Methods

Datasets
The first dataset, Viva La Familia obesity-diabetes familial risk study (dbGaP Study Accession:
phs000616.v1.p1), contains 858 genotyped individuals [12]. Among them, 815 Mexicans chil-
dren from 261 families were genotyped with Illumina HumanOmni 1-v1.0 BeadChips, and the
remaining 43 children were genotyped on HumanOmni 2.5–8v1 BeadChips. We chose to ana-
lyze the 815 samples that were typed on the same chip. Study participants in Viva La Familiar
study were recruited in Houston, Texas. The second dataset, Mexican hypertriglyceridemia
study (dbGaP Study Accession: phs000618.v1.p1), contains 2229 samples with 1117 cases and
1112 controls, where the case–control status was ascertained based on an individual’s serum tri-
glyceride level [13]. Note that although there were 4350 study samples reported in the paper, the
dbGaP contains only 2229 that were genotyped with Illumina Human610-Quad BeadChips—
stage 1 of the GWAS. The rest samples were only typed on selected 1200 SNPs—stage 2. Study
participants in this study were recruited in Mexico City. We call the first dataset Viva and the
second Lipid.

Data quality control
We removed all A/T, C/G SNPs whose potential allele flipping between different datasets can-
not be identified without additional information. A SNP was removed if it was missing in one
of the datasets, either training or cohort. We also removed SNPs whose missing proportion
was larger than 5%. Although we realized that the Hardy-Weinburg disequilibrium test is not
appropriate for admixed samples, we used it anyway to remove SNPs whose HWD test p-val-
ues<10−6. It is understood that this practice errs toward the safe side by eliminating possibly
good SNPs. Finally, we obtained the cluster plots for each SNP, devised a simple algorithm to
assign quality scores to each SNP cluster plot, and visually inspected those SNPs whose score
indicated low quality. We removed those SNPs that contained a fourth cluster, or whose clus-
ters were not distinct (examples of such cluster plots can be found in [34]). We were particu-
larly stringent to conduct such SNP quality control at the MHC region. Of the two GWAS
datasets we obtained from dbGaP, Viva contains SNP cluster information, but Lipid does not.
In the end, we had 352,754 SNPs from Viva and 479,757 SNPs from Lipid. The low number of
SNPs in Viva reflected small number of overlapping SNPs between the Illumina HumanOmni
1-v1.0 and the Illumina 650Y arrays, the latter of which was used by the HGDP study that gen-
erates the Maya and Pima genotypes used as Amerindian training samples.

Local ancestry inference
We used ELAI [9] for local ancestry inference, which has been demonstrated to outperform
competing methods such as HapMix [8] and LAMP-LD [25]. ELAI implements a two-layer
cluster model and the model is fitted via the EM algorithm. The upper-layer clusters are
parameterized to represent haplotypes from ancestral populations, and the lower-layer clusters
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contemporary haplotypes. The two-layer model was motivated by approximating the coales-
cent with recombination. It directly applies to diplotypes and automatically integrates out
phase uncertainty. It can also estimate the recombination rates between markers, and hence
doesn’t require recombination map as an input. Thus, the requirement for running ELAI is
minimal—just genotypes and marker positions. To run ELAI, one needs to provide training
samples. We used European and African samples from HapMap3 and Maya and Pima samples
from HGDP as default training samples (or reference panels, or source populations). ELAI is a
cluster-based model and we wanted to specify numbers of clusters. The number of upper-layer
clusters represents the number of source populations and we set it as 3; the number of lower-
layer clusters was set as 15. Extensive simulations demonstrated that this parameter setting per-
forms well [9]. Lastly, we needed to specify number of admixing generations and we used 20.
All ELAI results were averaged over 10 independent EM runs of 20 steps each, unless noted.

Compute average ancestry dosages
Lipid data contains unrelated individuals, and we treated an individual as unit and the compu-
tation is straightforward. Viva data contains 261 unrelated families. Each family contains 1–8
children, with majority of families (242) having 2–4 children. To account for relatedness in
Viva data, we treat a family instead of an individual as unit, and computed the average dosages
in the following manner: first we obtained family ancestral dosages by averaging over family
members, and then we averaged over families to obtain overall average dosages.

Assign different weights to training and cohort samples
The two-layer model and the details of model fitting using EM algorithm can be found in [9].
Here we show how to estimate θ, the allele frequency associated with the cluster which emits
the observed data. To simplify notation and presentation, we assume observing haplotypes
instead of diplotypes. The weighting scheme can be applied to mixed sample that contains
both haplotypes and diplotypes. To update parameters in each EM step, we take derivative of
the expected full data log likelihood with respect to a parameter we want to update, say x 2 ξ,

d
dx

EZð1Þ ;...;ZðnÞjhð1Þ ;...;hðnÞ ;x� log pðhð1Þ; . . . ; hðnÞ;Zð1Þ; . . . ;ZðnÞjxÞ� � ¼ 0; ð1Þ

and solve for x to obtain updates. Z(i) is the latent state of haplotype h(i), which contains two
components, one for each layer of clusters. The expectation in Eq (1) is with respect to the pos-
terior probability of latent states, conditioning on ξ�, which is the collection of parameters of
the two-layer model estimated from the previous iteration, and ξ is the collection of parameters
to be estimated. At markerm, write qij ¼

P
spðZm ¼ ðs; jÞjhðiÞ

m ; x
�Þ, which is the marginal poste-

rior probability of hðiÞ
m emitted from cluster j. Let Tk ¼ fi : hðiÞ

m ¼ kg for k = 0,1. Take the deriva-
tive with respect to θmj, which is the allele frequency associated with cluster j, to get

�1

1� tj

X
i2T0

qij þ
1

tj

X
i2T1

qij ¼ 0; ð2Þ

and solve to get

tj ¼
P

i2T1qijP
i2T0qij þ

P
i2T1qij

; ð3Þ

which can be thought as estimates of θmj with equal weight 1. To apply differential weights, we

split Tk into training sample T ðtÞ
k and cohort sample T ðcÞ

k : For training sample we assign a weight
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wt and for cohort sample wc. Eq (3) is generalized to

tj ¼
wt

P
i2Tt

1
qij þ wc

P
i2Tc

1
qij

wt

P
i2Tt

0
qij þ

P
i2Tt

1
qij

� �
þ wc

P
i2Tc

0
qij þ

P
i2Tc

1
qij

� � : ð4Þ

Let wt � wc, then cohort samples contribute very little to tj when training samples are present.
This is often desirable because the qij estimates of training samples are more reliable, which is
especially true in the context of imputation [17]. When training samples are missing, the first
terms of both nominator and denominator on the right hand side which involve wt disappear
and Eq (4) reduces to Eq (3).

Using simulated data (described below), we fit the ELAI model using two training samples
of European and African, discarding the Amerindian training samples. The African ancestral
dosages were used to compare the inferred values and the truth. The results demonstrated that
the weighting samples works well for selection coefficients of 0.02 and 0.05, and showed a bias
for selection coefficient of 0.10, but the biased estimates were conservative for the purpose of
detecting selection (S6 Fig).

Define phenotype for association test
We defined a marker set A that contained markers whose African average dosages were greater
than 0.30. This threshold was 13 sample standard deviations away from the mean (in Lipid data-
set), and the resulting markers formed a consecutive region within MHC.We assigned each indi-
vidual a phenotypic value obtained by averaging African ancestry dosages over markers in A.

Compute selection coefficient
Let s be the selection coefficient, and fn(s) denote allele frequency at the n-th generation which is
a function of s. Here the allele is referred to as a class of population specific alleles. Assume that
the population size is constant but infinite so that we have a deterministic model. For dominance
model where both heterozygous individual and homozygous individual of advantageous alleles

has the same fitness 1+s, we have recursion fnþ1ðsÞ ¼ fnðsÞð1þsÞ
1þð2�fnðsÞÞfnðsÞ s

: For additive model where a

heterozygous individual has fitness 1+s and a homozygous individual of advantageous alleles has

fitness 1+2s, we have recursion fnþ1ðsÞ ¼ fnðsÞð1þsþfnðsÞ sÞ
1þ2fnðsÞ s

: Let n = 20; we know the values of f0(s)

and f20(s) and we want to find s. Because fn(s) is a monotone function of s, we perform interval-
bisection search to numerically solve for s. We start with an interval [a, b], such that f20(a)<

f20(s)<f20(b), we evaluate y ¼ f20
aþb
2

� �
; if y> f20(s), we set b = y; otherwise we set a = y. We repeat

this procedure until y−f20(s)2(−�, �) for a small �. Note that to apply the recursion formulae, the
input f0(s) and f20(s) have to be allele frequencies, which are half of the allele dosages for humans.

We call the model defined by recursion fn+1(s) = fn(s)(1+s) the simple model. It is easy to

check that for dominance model we have fnþ1ðsÞ ¼ fnðsÞð1þsÞ
1þð2�fnðsÞÞfnðsÞ s

< fnðsÞð1þ sÞ; and for additive
model we have fnþ1ðsÞ ¼ fnðsÞð1þsþfnðsÞ sÞ

1þ2fnðsÞ s
< fnðsÞð1þ sÞ: Therefore the simple model produces a

lower-bound estimate of s for both dominance and additive models. Let f0(s) = p0 and f20(s) =
p1, we have p1 = p0(1+s)

20, and therefore the simple model estimate of selection coefficient is s
= exp(log(p1/p0)/20) − 1.

Simulate admixed samples under selection
We used a population genetics model that mimics the out-of-Africa migration events to simu-
late a 3 Mb region of three source populations that mimic Amerindian, European, and African
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[24]. After setting aside 200 haplotypes from each source population as training haplotypes, we
used the remaining haplotypes to simulate three-way admixed individuals by a one-pulse
model [35]. Specifically, we randomly selected 50,000 haplotypes from the three source popula-
tions using proportions of 50%, 45%, and 5%, mimicking the admixture proportion of Mexi-
cans. We split 3 Mb into three segments, and assigned at two splitting points recombination
hotspots. At each hotspot, we assumed equal recombination probability of 0.1,0.2, and 0.5 per
generation. We sampled two haplotypes with replacement and introduced possible crossover
events at hotspots to produce two new haplotypes. We repeated the pairing and crossover
25,000 times to produce 50,000 haplotypes for the next generation. The admixture simulation
was done for 20 generations. To simulate selection, we designated the mid-section as the locus
under selection, and assumed selection coefficients of 0.02,0.05, and 0.10 per generation. The
alleles under positive selection were those 5% from the source population that mimicked Afri-
cans. After 20 generations, we randomly chose 2,000 admixed haplotypes, pairing them to
form 1,000 diplotypes as cohort samples. We used two sizes of mid-section: 0.5 Mb and 1 Mb.
A small mid-section produces a more challenging problem. To investigate how switch-errors
affected local ancestry inference for different methods, in addition to perfect phasing situation,
we also introduce 2% phasing errors into Amerindian training samples and the cohort samples,
and 1% phasing errors to European and African training samples. To do so, at randomly
selected heterozygous marker, from left to right we crossed-over two haplotypes.

Supporting Information
S1 Table. Summary statistics for different sets of training samples for autosomes of the
Lipid dataset. ALL means CEU+TSI−YRI+MKK−MAYA, and ssd means sample standard
deviation.
(PDF)

S1 Fig. Average dosages with different European and African training samples. A) Average
dosages for Amerindian (blue), European (red), and African (green) ancestries for Viva (top)
and Lipid (bottom) datasets with training samples of CEU−YRI−MAYA. B) Average dosages
for Amerindian (blue), European (red), and African (green) ancestries for Lipid dataset with
training samples of CEU−MKK−MAYA (top) and TSI−MKK−MAYA (bottom). C)Average
dosages for Amerindian (blue), European (red), and African (green) ancestries for Lipid dataset
with training samples of TSI−YRI−MAYA (top) and CEU+TSI−YRI+MKK−MAYA (bottom).
(PDF)

S2 Fig. Comparison of Amerindian average dosages. The five sets of training samples are
shown in the legend, where ALL means CEU+TSI−YRI+MKK−MAYA. The comparison was
performed with chromosome 6 of Lipid dataset.
(PDF)

S3 Fig. SNPs associated with enrichment of African local ancestry in Lipid dataset. Bayes
factors (BF) were computed using BIMBAM. The horizontal blue line is log10 BF = 10.
(PDF)

S4 Fig. Simulation studies to evaluate LAMP-LD and RFMix. A) Comparison between
LAMP-LD, RFMix, and ELAI under different simulation conditions, Part I. There are 9 combi-
nations of crossover probability (0.1,0.2, and 0.5) and selection coefficients (0.02,0.05, and
0.10) for two sizes of the mid-section. This plot is for mid-section of size 1 Mb. The mid-section
harbors alleles under selection, and a smaller size produces a more challenging problem. Plots
also compare effects of phasing errors (2% for cohort and the Amerindian training sample and
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1% for the other two training samples). RFMix underperformed after phasing errors were
introduced in (b). Compared to RFMix, LAMP-LD was less sensitive to phasing errors. ELAI
was unaffected by phasing errors. Parameters for LAMP-LD: window size = 100, number of
HMM states = 25; for RFMix: window size = 0.1 cM, which approximately contains 100 SNPs.
Both parameter settings were used by the 1000 Genomes admixture analysis group. B) Com-
parison between LAMP-LD, RFMix, and ELAI under different simulation conditions, Part II.
The same simulation setup as in S4A Fig but with mid-section of size 0.5 Mb. C) RFMix perfor-
mance with different switch-errors. This is the same dataset as used in S4B Fig. In the legends,
the number before the plus sign is the switch-error for cohort and the Amerindian training
sample, and the number after is for the European and African training samples.D) RFMix per-
formance with different choices of window size. The mean absolute deviation was computed
from the same dataset that was used in S4B Fig and averaged over 9 simulation parameter set-
tings (recombination probability and selection strength). The switch-errors were 2% for cohort
and the Amerindian training sample and 1% for the other two training samples. We used
centi-Morgan (cM) to measure the window size, which is the unit used by RFMix. In our simu-
lations, 1 cM contains roughly 1000 SNPs. E) RFMix performs well with the optimal window
size. This is the same dataset as used in S4B Fig. When the optimal window size is used, RFMix
performs well in the presence of phasing errors (2% for cohort and the Amerindian training
sample and 1% for the other two training samples).
(PDF)

S5 Fig. Average dosages inferred by LAMP-LD and RFMix of chromosome 6 of Viva and
Lipid datasets. LAMP-LD (first column) and RFMix (second column) discovered excessive
African average dosages at MHC for both Viva (first row) and Lipid (second row) datasets.
(PDF)

S6 Fig. Simulation studies to exclude Amerindian training samples. The grey lines indicate
the truth. The black lines are the inferred African average dosages by ELAI with only European
and African training samples. There are 9 combinations of crossover probability (0.1,0.2, and
0.5) and selection coefficients (0.02,0.05, and 0.10), and the size of the mid-section is 0.5 Mb.
On each plot the main text displays the simulation parameters with C for crossover probability
and S for selection coefficient. For example, C = 0.2, S = 0.05 means crossover probability is 0.2
and selection coefficient is 0.05.
(PDF)
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