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a b s t r a c t

Adaptive laboratory evolution (ALE) has long been used as the tool of choice for microbial engineering appli-
cations, ranging from the production of commodity chemicals to the innovation of complex phenotypes. With 
the advent of systems and synthetic biology, the ALE experimental design has become increasingly sophisticated. 
For instance, implementation of in silico metabolic model reconstruction and advanced synthetic biology tools 
have facilitated the effective coupling of desired traits to adaptive phenotypes. Furthermore, various multi-omic 
tools now enable in-depth analysis of cellular states, providing a comprehensive understanding of the biology of 
even the most genomically perturbed systems. Emerging machine learning approaches would assist in 
streamlining the interpretation of massive and multiplexed datasets and promoting our understanding of 
complexity in biology. This review covers some of the representative case studies among the 700 independent 
ALE studies reported to date, outlining key ideas, principles, and important mechanisms underlying ALE designs 
in bioproduction and synthetic cell engineering, with evidence from literatures to aid comprehension.
© 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 

Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/li-
censes/by-nc-nd/4.0/).
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1. Introduction

Spontaneous errors in DNA replication machineries render 
countless mutations in genetic codes, enabling biological systems to 
adapt and evolve in diverse environments. This defining biological 
feature has long been exploited in bacteria to understand the prin-
ciples of adaptation and evolutionary dynamics [1]. Currently, this 
trait is being increasingly harnessed for various biotechnological 
applications, including, but not limited to, industrial commodity 
production [2] and optimization of synthetic cells [3]. By leveraging 
the process of artificial selection, target microbes are subjected to 
serial propagation in an artificial culture setting that is designed to 
select for mutant strains with the desired phenotypes. This process, 
popularly known as adaptive laboratory evolution (ALE), is particu-
larly useful when a limited understanding of complexity in biology 
precludes conventional engineering efforts [4]. The bespoke nature 
of ALE allows the integration of various synthetic toolkits, such as 
biosensor circuitries, as part of the selection machinery to stream-
line the reconfiguration of microbes towards the desired objectives 
[5]. In addition, the tempo and mode of adaptive evolution can also 
be configured by engineering biological mutation rates, or abiotically 
through random mutagenesis (i.e. chemical mutagens) [6,7], al-
lowing the expansion of sequence and phenotypic diversities at a 
faster rate. Therefore, ALE is an important part of the strain en-
gineering pipeline in the field of biotechnology [4,8].

With the emergence of systems biology techniques such as next- 
generation sequencing (NGS) and in silico modeling, adaptive 
changes can be characterized, and the mechanism of adaptation can 
be defined by identifying causal mutations in unprecedented detail. 
For instance, independent genome sequencing datasets generated 
from numerous ALE experiments have now been compiled into a 
coherent database [9], allowing systematic analyses of the me-
chanistic effects of mutations on adaptive evolution. Recently, the 
analysis of large-scale mutational data unveiled the non-random, 
epigenomic-dependent nature of the mutability of genome, chal-
lenging the long-standing notion that genomic mutability is sto-
chastic in nature [10,11]. A host of multi-omics techniques can help 
elucidate adaptive remodeling of cellular phenotypes at the 
genomic, transcriptomic, and translational levels [12], ultimately 
providing an information-dense knowledge base for building and 
testing new biological hypotheses. The computational framework of 
cellular metabolism, known as the genome-scale metabolic model 
(GEM), provides for a highly accurate description and interpretation 
of metabolic phenotypes of adaptively evolved strains [13,14]. As a 
result, various GEM-derived systems biology frameworks have been 
used together with the ALE techniques to improve target compound 
production [15–20] and acquire complex phenotypes [21,22]. Thus, 
ALE demonstrates extended utility in strain engineering and serves a 
tool that informs users of the best possible optimization scenarios.

In this minireview, we discuss the importance of ALE in bio-
technological applications, with particular emphasis on the popular 
avenues of ALE research: industrial biotechnology and applications 
in synthetic biology. Further, we outline the variations in ALE 
methodologies and provide a summary of the key ideas, principles, 
and mechanisms underlying the proposed approach. We also pro-
vide a brief summary of case studies, where appropriate, to aid 
understanding. Finally, we present future perspectives on ALE- 
guided strain engineering in association to the emerging technol-
ogies.

2. Principles of ALE and its implications in biological engineering

The basis of ALE lies in the continuous propagation of cell po-
pulations under specific selection pressures until de novo mutations 
occur, which help overcome the fitness burden [23,24] (Fig. 1A). The 
fast generation time and striking adaptability of microbes make ALE 

a well-suited, straightforward approach for reconfiguring microbes 
in a timely manner. A routine ALE workflow involves real-time 
monitoring of adaptive changes in serially propagating populations, 
identification of “endpoint” stages of ALE, mutant selection via 
phenotypic assays, and multi-omics analysis to characterize the 
molecular basis of adaptation (Fig. 1B, C).

From an engineering perspective, ALE primarily serves as a 
complementary tool for rational genetic engineering. Rational en-
gineering entails knowledge-based design and elaborate genetic 
toolkits to alter microbial phenotypes. However, inherent complex-
ities and a limited understanding of biological systems, compounded 
by the lack of efficient tools, often leave microbes at perturbed 
metabolic and molecular states that prevent them from performing 
optimally as designed [4,8]. ALE addresses such impediments and 
stands out as a powerful interventional approach to complement the 
shortcomings of biological systems in several aspects.

First, the accumulation of beneficial mutations over time trans-
lates to the rewiring of metabolic and regulatory networks of target 
microbes in ways that are difficult to comprehend using rational 
engineering design approaches. Taking E. coli ALE in M9 glycerol as 
an example, mutations in glycerol kinase (glpK) and RNA polymerase 
subunits (e.g., rpoS, rpoB, and rpoC) are recurrently enriched in gly-
cerol-adapted endpoint strains [6,24,25]. The GlpK mutant experi-
ences a growth advantage by evading the inhibitory action induced 
by fructose-1,6-bisphosphate and IIAGLC, resulting in the hyper-
activation of glycerol uptake and a concomitant increase in carbon 
overflow [26,27]. In contrast, mutations in RNA polymerase lead to 
reprogramming of cellular transcriptomic regulation to maximize 
carbon efficiency, as characterized by enhanced biomass generation, 
while minimizing carbon overflow [27,28]. Interestingly, the glpK 
and rpoC double mutants displayed positive epistatic interactions, 
imparting a synergistic increase in strain fitness on M9 glycerol 
[24,27], ultimately providing the optimal solution for maximizing 
strain fitness in glycerol-limited conditions. ALE-driven engineering 
encompasses a broad range of topics, including growth rate im-
provement in natural and synthetic strains [6,12,29], activation of 
the latent and non-native pathways [21,30,31], tolerance against 
diverse stressors [16,32–34], and miscellaneous features such as the 
reconfiguration of cellular trophic states [22,35].

ALE allows the investigation of non-intuitively beneficial muta-
tions that are otherwise unpredictable using traditional methods. 
Thus, with an adequately defined experimental setting, researchers 
can generate microbes with desired traits, even in the absence of 
detailed knowledge of the genetic features of target phenotypes [4]. 
This also translates to the fact that the “knowledge-independent” 
nature of the ALE technique enables microbial species with limited 
genetic tractability and genomic information to be “evolutionarily 
engineered” in a user-defined manner. For example, Eubacterium li-
mosum is an emerging strain with industrial relevance owing to its 
ability to convert syngas waste feedstock (CO2, CO, H2) into value- 
added commodities [36]. However, the paucity of efficient genetic 
tools and the limited understanding of functional genetics have been 
major bottlenecks in strain engineering of this microorganism [37]. 
ALE proved to be an effective alternative for constructing chassis 
strains to produce value-added chemicals from syngas feedstocks, 
with minimal genetic engineering efforts in E. limosum [32,34]. ALE- 
driven engineering is applicable to a broad spectrum of micro-
organisms, allowing non-conventional microbes with distinct 
properties such as methane consumption (Methylomonas sp.) [38], 
bioremediation (Geobacter sulfurreducens) [39], partial oxidation of 
sugars (Gluconobacter oxydans) [40], antibiotic production (Strepto-
myces strains) [41], and resistance to extreme temperatures (Me-
tallosphaera sedula) [42], to be investigated for practical applications 
in biotechnology.

Exploring the genotypic solution space for finding optimal phe-
notypic traits facilitates the discovery of novel solutions that are 

K. Kim, M. Kang, S.-H. Cho et al. Computational and Structural Biotechnology Journal 21 (2023) 563–573

564



difficult to design a priori. This process leverages the inherent errors 
in genome replication machineries, and the error rates can be ad-
justed in favor of expanding the genotypic diversity [43]. In an en-
gineering perspective, mutators with a markedly increased genomic 
mutation rates can be exploited to expedite adaptive evolution, 
where increased chance acquisition of mutations enables fixation of 
beneficial mutations in a shorter evolutionary timescale [6,44]. The 
expanded genotypic diversity in mutator populations may also lead 
to ‘fitness readiness’ in non-adaptive environments, where the pre-
sence of neutral or deleterious mutations can, in turn, confer ben-
efits on non-adaptive conditions [6,21,43]. Similarly, abiotic 
mutagens such as the alkylating agents help promote sequence di-
versity, with a downstream enrichment and screening process to 
select for mutants with desired phenotypes [7]. Most important 
aspects of ALE, however, lies in the design of appropriate selection 
pressure to obtain mutants with desired phenotypes. For instance, it 
took nearly 31,500 generations (∼20 years) of evolution for one of 
the twelve long-term evolution experiment lineages to develop the 
ability to digest citrate present in the culture medium [45], while the 
remaining eleven lineages were yet to acquire the same trait even 
after three decades of ALE [46]. The principles of experimental de-
sign and the criteria for successful ALE have been reviewed ex-
tensively elsewhere [2,4,8,47].

2.1. ALE for improving target chemical production

Ease of culture, metabolic plasticity, and the resilience of mi-
crobes against various stressors have long been exploited in bio-
technological applications. In particular, microbial production of 
value-added products, including commodity chemicals, hetero-
logous proteins, and biofuels, represent some of the industrially 
important applications that can be achieved via microbial en-
gineering [48–50]. Currently, with the growing push towards bio-
sustainability and a carbon-neutral economy, numerous studies are 

being devoted to the valorization of renewable wastes into com-
modity chemicals. Industrial by-products and various low-value 
carbon wastes are emerging candidates for “alternative” feedstocks 
[51–53]. However, one of the biggest hurdles in the use of alternative 
feedstocks lies in the efficient metabolism and innate toxicity of host 
microbes. For instance, E. coli grows sub-optimally on glycerol, 
which is a waste stream in biodiesel production [13]. Agro-industrial 
waste carbons such as sugarcane molasses contain inhibitors that 
inflict strain fitness and bioconversion efficiency [54]. In addition to 
feedstock utilization, the functional operation of product biosyn-
thetic machineries also requires substantial optimization [55]. In this 
regard, ALE has been demonstrated to be an effective means for 
reconfiguring strain metabolism, tolerance, and target product bio-
synthetic processes to improve commodity chemical production. The 
examples covered in this review are listed in Table 1.

2.2. Classical ALE approach to enhance target compound production

The classical ALE approach that aim to optimize metabolic effi-
ciency has been demonstrated to be effective at improving the titer 
and productivity of target compounds [56] (Fig. 2A). For instance, the 
end-point strain of glycerol-adapted E. coli engineered to produce 
gamma-aminobutyric acid led to a 3.9-fold increase in the final 
product titer [57]. The fastest-growing clonal isolate of CO (carbon 
monoxide)-adapted E. limosum showed a 6.5-fold increase in 2,3- 
butanediol (2,3-BDO) production, with CO as the feedstock [34]. 
Lactobacillus delbrueckii adaptively evolved under high concentra-
tions of sugarcane molasses and exhibited enhanced D-lactic acid 
production [54]. The increase in the fitness of alternative carbon 
sources and the concurrent improvement in target compound pro-
duction are largely attributed to the optimized carbon metabolism, 
resilience against toxic compounds, and regulatory changes induced 
by the fixation of beneficial mutations. However, one caveat of this 
method is that the mutants that effectively re-direct the metabolic 

Fig. 1. Schematic illustration of a general ALE workflow. (A) Serial propagation of wild-type bacteria under sub-optimal culture condition. Spontaneous mutations that alter strain 
metabolism and regulation in a way that is beneficial under the selective culture conditions are selected during evolution. Intermittent monitoring of strain fitness helps infer the 
“end-point” of ALE. (B) Phenotypic characterization, typically entailing strain growth rate, is performed to assess adaptive changes in the end-point populations or single clonal 
isolates (to account for population heterogeneity). (C) Multi-omics analysis, normally with whole-genome resequencing and transcriptome sequencing, is used to account for the 
genetic basis of adaptation.

K. Kim, M. Kang, S.-H. Cho et al. Computational and Structural Biotechnology Journal 21 (2023) 563–573

565



Ta
bl

e 
1 

A
 b

ri
ef

 s
um

m
ar

y 
on

 A
LE

 s
tu

di
es

 f
oc

us
in

g 
on

 b
io

pr
od

uc
ti

on
 o

f 
co

m
m

od
it

y 
ch

em
ic

al
s 

co
ve

re
d 

in
 t

hi
s 

m
in

ir
ev

ie
w

. 

H
os

t
A

LE
 s

el
ec

ti
ve

 c
on

di
ti

on
G

ro
w

th
-c

ou
pl

in
g 

st
ra

te
gy

A
da

pt
iv

e 
ph

en
ot

yp
es

A
pp

lic
at

io
ns

A
LE

 t
yp

e
Re

f.

E.
 c

ol
i 

W
M

9 
gl

yc
er

ol
 (

0.
2%

 v
/v

). 
Se

ri
al

 t
ra

ns
fe

r 
in

 b
at

ch
 c

ul
tu

re
.

-
∼

40
, 4

7%
 i

m
pr

ov
em

en
t 

in
 s

pe
ci

fi
c 

gr
ow

th
 r

at
e 

an
d 

ca
rb

on
 

co
ns

um
pt

io
n 

ra
te

G
am

m
a-

am
in

ob
ut

yr
ic

 a
ci

d 
ti

te
r 

an
d 

pr
od

uc
ti

vi
ty

 in
cr

ea
se

d 
by

 3
.9

 a
nd

 4
.3

- 
fo

ld
s

Cl
as

si
c

[5
7]

E.
 l

im
os

um
 

EC
O

1 
(A

LE
 d

er
iv

at
iv

e 
of

 
A

TC
C8

48
6)

D
SM

Z 
13

5 
w

it
h 

66
%

 C
O

 g
as

 a
t 

20
0 

kP
a 

Se
ri

al
 t

ra
ns

fe
r 

in
 b

at
ch

 c
ul

tu
re

-
2-

fo
ld

 i
nc

re
as

e 
in

 fi
na

l 
ce

ll 
de

ns
it

y,
 

6.
2-

fo
ld

 i
nc

re
as

e 
in

 s
pe

ci
fi

c 
gr

ow
th

 r
at

e

6.
5-

fo
ld

 i
m

pr
ov

em
en

t 
in

 2
,3

- 
bu

ta
ne

di
ol

 p
ro

du
ct

io
n

[3
4]

L.
 d

el
br

ue
ck

ii 
N

L3
1

Fi
rs

t 
ph

as
e:

 M
od

ifi
ed

 M
an

 R
og

os
a 

Sh
ar

pe
 

br
ot

h 
co

nt
ai

ni
ng

 8
0–

16
0 

g/
L 

of
 s

ug
ar

ca
ne

 
m

ol
as

se
s 

in
 p

la
ce

 o
f 

D
-g

lu
co

se
. 

Se
co

nd
 p

ha
se

: 
M

RS
 c

on
ta

in
in

g 
16

0 
g/

L 
su

ga
rc

an
e 

m
ol

as
se

s 
an

d 
54

.2
 g

/L
 s

oy
be

an
 

m
ea

l 
hy

dr
ol

ys
at

e 
Se

ri
al

 t
ra

ns
fe

r 
in

 b
at

ch
 c

ul
tu

re

-
N

ea
rl

y 
3-

fo
ld

 i
nc

re
as

e 
in

 fi
na

l 
ce

ll 
de

ns
it

y 
on

 s
oy

be
an

 m
ea

l
11

2.
3 

g/
L 

D
-l

ac
ti

c 
ac

id
 w

it
h 

fe
d-

ba
tc

h 
fe

rm
en

ta
ti

on
[5

4]

E.
 c

ol
i 

JC
L1

6 
(B

W
25

51
3 

de
ri

va
ti

ve
)

M
9 

gl
uc

os
e 

(0
.4

%
 w

/v
), 

an
ae

ro
bi

c 
+ 

0.
1 

m
M

 
IP

TG
 a

nd
 a

 s
el

ec
ti

on
 m

ar
ke

r. 
Se

ri
al

 t
ra

ns
fe

r 
in

 b
at

ch
 c

ul
tu

re

Ch
ro

m
os

om
al

 d
el

et
io

n 
of

 Δ
ad

hE
, Δ

ld
hA

, Δ
fr

dB
C 

Ex
pr

es
si

on
 o

f 
bu

ta
no

l 
bi

os
yn

th
et

ic
 p

at
hw

ay
 

Ep
is

om
al

 o
ve

re
xp

re
ss

io
n 

of
 m

ut
D

5.

Re
st

or
at

io
n 

of
 s

tr
ai

n 
gr

ow
th

 o
n 

m
in

im
al

 m
ed

iu
m

2 
g/

L 
of

 b
ut

an
ol

 p
ro

du
ct

io
n 

in
 

m
in

im
al

 m
ed

iu
m

.
M

et
ab

ol
ic

[5
5]

E.
 c

ol
i 

BW
25

11
3

G
ly

ce
ro

l 
m

in
im

al
 m

ed
iu

m
 (

M
O

PS
)

Ch
ro

m
os

om
al

 d
el

et
io

n 
of

 Δ
fr

dC
5-

fo
ld

 i
nc

re
as

e 
in

 s
pe

ci
fi

c 
gr

ow
th

 r
at

e 
4-

fo
ld

 i
nc

re
as

e 
in

 g
ly

ce
ro

l 
de

hy
dr

og
en

as
e 

ac
ti

vi
ty

20
- 

an
d 

5-
fo

ld
 i

nc
re

as
e 

in
 h

yd
ro

ge
n 

an
d 

et
ha

no
l 

ti
te

r.
[3

0]

E.
 c

ol
i 

M
G

16
55

M
9 

gl
yc

in
e 

w
it

h 
in

cr
ea

si
ng

 c
on

ce
nt

ra
ti

on
 

of
 L

-s
er

in
e

Ch
ro

m
os

om
al

 d
el

et
io

n 
of

 
Δ

sd
aA

Δ
sd

aB
Δ

td
cG

Δ
gl

yA
.

In
cr

ea
se

 t
ol

er
an

ce
 a

ga
in

st
 L

-s
er

in
e 

(u
p 

to
 1

00
 g

/L
)

37
 g

/L
 L

-s
er

in
e 

ti
te

r, 
24

%
 m

as
s 

yi
el

d 
fr

om
 D

-g
lu

co
se

 (
on

e 
of

 t
he

 h
ig

he
st

 
ti

te
r 

re
po

rt
ed

 t
o 

da
te

).

[6
0]

E.
 c

ol
i 

M
G

16
55

M
9 

gl
uc

os
e 

or
 g

ly
ce

ro
l

In
te

gr
at

io
n 

of
 e

th
yl

en
e 

bi
os

yn
th

et
ic

 p
at

hw
ay

. 
Ch

ro
m

os
om

al
 d

el
et

io
n 

of
 Δ

pr
oB

 p
re

di
ct

ed
 

ba
se

d 
on

 i
JO

13
66

.

G
ro

w
th

-c
ou

pl
ed

 p
ro

du
ct

io
n 

of
 

et
hy

le
ne

O
pt

im
iz

ed
 e

th
yl

en
e 

bi
op

ro
du

ct
io

n 
fo

r 
fu

rt
he

r 
en

gi
ne

er
in

g
Sy

st
em

s 
m

et
ab

ol
ic

[1
7]

E.
 c

ol
i 

W
31

10
M

9 
gl

uc
os

e 
w

it
h 

in
cr

ea
si

ng
 c

on
ce

nt
ra

ti
on

s 
of

 N
iC

l 2
L-

ly
si

ne
-s

en
si

ti
ve

 b
io

se
ns

or
 w

it
h 

te
tA

 a
ct

ua
to

r 
(c

on
fe

rr
in

g 
re

si
st

an
ce

 a
ga

in
st

 N
i2

+
) 

Ra
nd

om
 p

ro
m

ot
er

 li
br

ar
ie

s 
ta

rg
et

in
g 

pp
c 

ex
pr

es
si

on

G
ro

w
th

-c
ou

pl
ed

 p
ro

du
ct

io
n 

of
 L-

ly
si

ne
In

cr
ea

se
d 

L-
ly

si
ne

 p
ro

du
ct

io
n 

(0
.6

 g
/L

)
Bi

os
en

so
r-

 
as

si
st

ed
[5

]

E.
 c

ol
i 

W
A

 m
od

ifi
ed

 g
ly

ce
ro

l 
m

in
im

al
 m

ed
iu

m
 w

it
h 

in
cr

ea
si

ng
 c

on
ce

nt
ra

ti
on

 o
f 

te
tr

ac
yc

lin
e

3-
hy

dr
ox

yp
ro

pi
on

ic
 a

ci
d 

(3
-H

B)
 b

io
se

ns
or

 
w

it
h 

te
tA

 a
ct

ua
to

r 
(r

es
is

ta
nc

e 
ag

ai
ns

t 
te

tr
ac

yc
lin

e)
.

G
ro

w
th

-c
ou

pl
ed

 p
ro

du
ct

io
n 

of
 3

- 
hy

dr
ox

yp
ro

pi
on

ic
 a

ci
d

3-
H

B 
pr

od
uc

ti
on

 y
ie

ld
 c

lo
se

st
 t

o 
th

e 
th

eo
re

ti
ca

l 
m

ax
 (

0.
91

 g
/g

 g
ly

ce
ro

l)
[8

5]

P.
 p

ut
id

a 
K

T2
40

0
M

9 
gl

uc
os

e
M

uc
on

at
e 

bi
os

en
so

r 
w

it
h 

fl
uo

re
sc

en
t 

re
po

rt
er

 
ac

tu
at

or
Re

st
or

at
io

n 
of

 fi
tn

es
s 

de
fe

ct
 (b

ut
 fa

ile
d 

to
 i

so
la

te
 h

ig
h-

m
uc

on
at

e 
pr

od
uc

in
g 

st
ra

in
)

3-
fo

ld
 i

nc
re

as
e 

in
 m

uc
on

at
e 

pr
od

uc
ti

on
 

FA
CS

-m
ed

ia
te

d 
is

ol
at

io
n 

of
 g

ro
w

th
- 

re
st

or
ed

, h
ig

h 
m

uc
on

at
e 

pr
od

uc
er

 
m

ut
an

t

[5
8]

* 
IP

TG
 -

 i
so

pr
op

yl
-β

- D
-t

hi
og

al
ac

to
py

ra
no

si
de

.

K. Kim, M. Kang, S.-H. Cho et al. Computational and Structural Biotechnology Journal 21 (2023) 563–573

566



flux into biomass precursors are selected during ALE, rendering the 
primary objective function as maximization of growth rate, instead 
of target compound production [58] (Table 2); this is especially 
prevalent when the target products are metabolically costly, favoring 
mutations that reduce the metabolic burden by disrupting the bio-
synthetic capacity of the desired products [59] (Table 2).

Metabolic engineering strategies have been established to couple 
target chemical production with adaptive phenotypes to implement 
a driving force for the selection of evolved strains with enhanced 
bioconversion capacities (Fig. 2B). In one instance, synthetic de-
pendency on the heterologous 1-butanol biosynthetic pathway was 
established in an anaerobically cultured E. coli by inactivating the 
native NAD+-replenishing pathways (ΔadhEΔldhAΔfrdBC). Notably, 1- 
butanol biosynthesis was inactive in minimal medium, suggesting 
an imbalance in cellular resource distribution for the intracellular 
redox balance. Engineering evolution was conducted in a conducive 
environment that fine-tuned resource utilization and redox 

metabolism, demonstrating an effective approach for synthesizing 
non-native 1-butanol in E. coli [55]. In another instance, E. coli 
lacking fumarate reductase (frdC), which represses hydrogen 
synthesis during glycerol fermentation, adaptively evolved in gly-
cerol minimal medium to bioconvert glycerol into biofuels (hy-
drogen and ethanol). Under alleviated repression of the target 
compound, ALE led to an evolved strain producing 20- and 5-fold 
more hydrogen and ethanol, respectively, than those produced by 
the non-ALE control strain [30]. Innate tolerance towards a target 
product can be configured with genetic engineering in conjunction 
with ALE to improve product yield. For example, an E. coli strain 
lacking the L-serine degradation pathway was adaptively evolved 
with increasing concentrations of L-serine, which was toxic even at 
low concentrations. The L-serine tolerant strain achieved an L-serine 
titer (37 g/L) comparable to the highest L-serine production recorded 
to date [60]. This workflow of strain engineering – metabolic en-
gineering in tandem with ALE was dubbed “Metabolic engineering to 

Fig. 2. Summary of representative ALE methods. (A) Classic ALE with the primary objective of optimizing strain fitness in sub-optimal environments (containing alternative 
carbons or inhibitory compounds). Target biochemical compound production can be enhanced but is not the primary objective of ALE optimization. (B) Metabolic ALE involves a 
metabolic engineering effort that couples target metabolite production with adaptive phenotypes, rendering target compound production as the primary objective. (C) Systems 
metabolic ALE entails the use of GEM-based simulations to determine growth-coupling strategies for an enhanced target compound production. The investigation of a feasible 
solution space within the in silico metabolic network often yields engineering targets that are unpredictable a priori. (D) Biosensor-assisted ALE leverages the ability of sensor 
domains to sense (target molecule) and actuate response (designed to confer growth advantage). Ideally, the schematic couples target metabolite production with strain fitness in 
a dose-dependent manner.
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guide evolution (MGE)” [61] and continues to be an effective means 
to engineer microbes for industrially relevant applications [62].

2.3. Systems biology-driven ALE

The MGE approach is largely reliant on rational engineering de-
sign, which requires a priori knowledge of the genetic features of 
targeted phenotypes, thereby limiting the scope of its application to 
relatively few well-known targets (Table 2). In this context, GEM was 
employed in designing growth-coupled ALE for bioproduction 
(Fig. 2C). The GEM constitutes a matrix of stoichiometry-balanced 
cellular biochemical reactions represented in a computational fra-
mework [63]. With constraint-based approaches, the framework 
defines a range of metabolic flux solutions that satisfy the reaction 
stoichiometry. Specific predictions, such as the metabolic flux 
through biomass generation, can be achieved by implementing an 
objective function, referred to as flux-balance analysis (FBA) [64]. 
FBA is used to describe a metabolic system that is akin to the ex-
ponential phase of growth, with linear programming to balance the 
total inputs and outputs of metabolite stoichiometry that satisfy the 
assumption of maximal cellular growth [65]. Such modeling fra-
mework has been proven to be well fitted to describe (laboratory) 
adopted cellular states, such as growth rate and metabolite secretion 
rates, across various carbon substrates [13,14].

The earliest example of GEM-guided engineering involved the 
use of a bi-level optimization approach, Optknock [15], which si-
mulates metabolic fluxes that satisfy two objective functions: opti-
mization of target metabolite secretion and growth rate [66]. Similar 
algorithms are available, allowing target metabolite secretion to be 
effectively coupled with strain fitness resulting from gene knockout 
(s) [67–72] (Fig. 2C). Initially applied in E. coli for the overproduction 
of native and heterologous compounds [15–20,70,73–76], this ap-
proach now extends to a diverse array of “GEM-accessible” micro-
organisms [77]. Evolutionary engineering is increasingly 
implemented in tandem with GEMs to enhance the target product 
titer, largely by optimizing cellular metabolism or compensating for 
fitness defects that would result from metabolic engineering. For 
instance, in an attempt to achieve growth-coupled ethylene pro-
duction in E. coli, a constraint-based simulation using the model, 
iJO1366, was employed to identify novel growth-coupling targets 
[17]. Assuming that growth rate was maintained, deletion of proB 
(glutamate-5-semialdehyde dehydrogenase) was predicted to render 
the ethylene pathway as the sole passage for L-proline production, 

thereby coupling ethylene production with growth via L-proline 
biosynthesis. Subsequently, the deletion strain was subjected to ALE 
with random mutagenesis in the absence of L-proline to select for a 
high ethylene-producing strain, resulting in a final strain with en-
hanced solubility of the ethylene-producing enzyme and a 49-fold 
increase in ethylene production [17].

The GEM framework can be used in parallel with multi-omics 
datasets to overcome the shortcomings of the FBA. Although FBA can 
seamlessly capture biological phenotypes, the inherent limitation of 
linear programming precludes an accurate representation of the 
underlying flux distribution in the in silico metabolic network 
[78,79]. As a result, efforts have been made to refine GEM by in-
tegrating experimental data such as transcriptomic and metabo-
lomic data with the GEM [78,80,81]. The central idea is to impose 
additional constraints, such as mRNA abundance, to minimize the 
uncertainty of the metabolic flux assigned to each reaction. The re-
sulting model framework, known as a context-specific model, en-
ables condition-specific systems-level analyses of metabolic flux 
distributions with improved accuracy [82]. In one study, researchers 
constructed the GEM iCLAU786 developed for Clostridium auto-
ethanogenum, to infer the metabolic basis of ethanol and 2,3-BDO 
production in the strain [83]. Initially, the FBA calculations failed to 
predict 2,3-BDO production, which might be due to the fact that FBA 
selects for the most efficient pathway for optimizing biomass gen-
eration [79]. Integration of the RNA-Seq data that reflect the tran-
scriptome state of 2,3-BDO-producing conditions into the GEM 
enabled in silico 2,3-BDO production, which closely aligned with the 
experimental results [83]. These findings demonstrate the robust-
ness of the omics-integrated GEM framework in reflecting condi-
tion-specific metabolic states and the extended utility of systems 
metabolic engineering approaches (encompassing GEM, Omics, and 
ALE) in harnessing highly efficient production strains [20].

2.4. Synthetic biology approach

With the advent of synthetic biology, more innovative strategies 
have been developed to streamline strain evolution for bioproduc-
tion. Genetic biosensors are increasingly being used to couple bio-
chemical production with adaptive phenotypes [5,58,84,85]. 
Importantly, biosensor-assisted evolution exploits the chemical- 
sensing and signal-transducing nature of biosensors, where che-
mical signals are relayed via the sensor domain to regulate the ex-
pression of downstream genes [5,84]. The biosensor output is 

Table 2 
Characteristics and limitations of ALE methods outlined in this study. 

Method Characteristics Limitations

Classical ALE - ALE with the primary objective function designed to select for end- 
point strains with improved adaptive fitness under a selective 
environment.

- Maximization of strain fitness (i.e. specific growth rate) as the 
primary objective function does not necessarily correlate with 
maximization of target metabolite production. Target compound 
production can be selected against when target products are 
metaboically costsly.

Metabolic ALE - Implementation of metabolic engineering schemes to couple target 
compound production with adaptive phenotypes. May help circumvent 
negative selection against the production of metabolically costly 
chemicals. Effectively selects for the end-point adaptive strains with 
metabolism rewired for the production of target chemicals.

- Metabolic perturbation may impose severe fitness defects in the 
engineered strain. 
- Requires a priori knowledge on the metabolic network for the 
effective coupling of adaptation and target compound production. 
May limit the application to a relatively few well-known targets

Systems 
metabolic ALE

- Use of genome-scale metabolic models (GEMs) to probe for non- 
intuitive metabolic engineering targets that may be more effective (in 
metabolite-growth coupling) compared to traditional targets. 
- Simulation of growth rate following gene knockouts can help inform 
the user the feasibility of metabolic engineering designs (i.e. growth 
defects). 
- Integration of multi-omic data along with GEM can help infer 
metabolic bottlenecks (for target compound production) for 
consideration in ALE design.

- May not be applicable for non-model strains lacking a high-quality 
GEM. 
- The limitations in linear programming may preclude accurate 
representation of strain metabolism and knockout simulations, 
resulting in disparities between in silico simulations and empirical 
results.

Biosensor- 
assisted ALE

- Use of a genetic circuit that sense the target compound (using an 
orthogonal sensor protein) and respond by controlling the expression 
of growth-associated genes.

- Non-target 'escapee' mutations can render the biosensor-imposed 
selection pressure obsolete.
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coupled with fitness-enhancing traits, such as resistance to anti-
biotics, making cell fitness to be a proxy for assessing target com-
pound production (Fig. 2D).

An L-lysine riboswitch controlling the expression of the tetA gene 
was used to select L-lysine overproducers using a plasmid-based 
promoter library designed to alter metabolic flux through phos-
phoenolpyruvate carboxylase (ppc). The propagation of the library in 
the presence of NiCl2, which was designed to select clones with high 
tetA expression, led to a meaningful increase in the final lysine titer 
(from 0 to 0.6 g/L) [5]. Similarly, ribozyme-guided ALE, which cou-
ples 3-hydroxypropionic acid production to cell growth, has led to 
optimal metabolic flux rewiring in E. coli, resulting in the highest 
product yield (closest to the theoretical maximum yield) reported to 
date (0.91 g/g glycerol) [85]. Accordingly, serial propagation of bio-
sensor-embedded strains facilitates the enrichment of “directed 
evolution” of the desired phenotypes by coupling adaptive fitness to 
metabolite production. However, non-target mutations that escape 
selective pressure (and compromise product-growth coupling) can 
render the biosensor-guided evolution approach infeasible (Table 2), 
highlighting the need for an additional quality-control measure to 
maintain low false-positive rates [84]. The target product con-
centrations can be transduced into a reporter readout using product- 
specific biosensors, allowing selective enrichment of the desired 
mutants in a facile manner. For example, active sorting of evolving 
populations using fluorescence-activated cell sorting (FACS) enables 
a product concentration-dependent isolation of viable mutant 
strains in a high-throughput manner [58,86]. Such a selection 
system proves to be particularly useful when the selective pressure 
for the target compound production is insufficient, and the incidence 
of viable mutants are rare. In an attempt to isolate a hyperproducer 
of muconate, a muconate-producing Pseudomonas putida suffering a 
substantial growth defect due to metabolic engineering was sub-
jected to ALE in minimal glucose medium. However, the authors 
failed to screen for isolates that satisfied both objectives (of high 
muconate titer and growth) until a fluorescence reporter protein 
under the control of a muconate biosensor was implemented for 
high-throughput screening, where they successfully isolated a 
growth-restored mutant with a 3-fold increase in muconic acid 
production [58]. The inherent properties of biosensors, including 
dynamic range, promiscuity, and cross-strain genetic compatibility, 
are some of the confounding variables that complicate their practical 
applicability.

The ad hoc nature of ALE can fully utilize enabling technologies 
in synthetic biology for the design of novel growth-coupling stra-
tegies. Notable examples include the substitution of rare codons 
(that are orthogonal to specific amino acids) in antibiotic markers for 
the overproduction of target amino acids [87], and the use of phage- 
assisted continuous evolution (PACE) with a target-sensitive bio-
sensor to optimize target biosynthetic pathways [86]. The afore-
mentioned studies represent only a subset of synthetic biology 
approaches for designing and guiding ALE for the growth-coupled 
production of desired products. Further details on the application of 
synthetic biology to expedite ALE experiments, that is, automated 
multiplex culture, have been reviewed elsewhere [8].

In summary, engineering evolution guided by synthetic biology 
has many advantages. First, biosensor-guided selection allows mul-
tiplexed phenotype screening [58], which streamlines the screening 
process for high-performing mutants in an evolving population that 
can be as large as 1010 CFU/mL [88]. Second, a broad catalog of 
biosensors orthogonal to diverse ligands is available [89], and novel 
biosensors can be genome-mined [90] or synthetically engineered 
[5], enabling biosensor-assisted evolution to serve as a generalizable 
approach for strain engineering. The use of synthetic biology 
toolkits, such as synthetic bioparts libraries, as part of the selection 
machinery also enables the investigation of an even broader 

spectrum of mutational landscapes, facilitating the fine-tuning of 
metabolic flux for optimized target compound production.

3. Systems biology approach to understand the adaptive changes 
in synthetic microbes

The ultimate goal of synthetic biology is to construct a “plug- 
and-play” chassis strain that is user-tailored to execute specific 
functions using modularized bioparts. Accordingly, synthetic cells 
with minimal genetic redundancy [3,12], recoded genomes [29], and 
reconfigured trophic states [22,35], have been highlighted in the past 
decade, with potential applications in industrially relevant traits 
such as heterologous protein synthesis [91] and biochemical pro-
duction [92].

Despite the advances in state-of-the-art manipulation and ana-
lytic techniques, avenues that existing techniques struggle to ad-
dress still remain. Rationally designed genome-wide perturbations 
in synthetic cells result in severe fitness defects [3,12,29]. A promi-
nent example is the de novo synthesized Mycoplasma mycoides 
genome (JCVI-syn3.0), which was designed to retain minimal genetic 
components essential for sustaining life [3]. Nonetheless, un-
expected phenotypic defects, such as severe growth retardation, 
called for serial propagation as a contingent protocol to construct a 
fully viable synthetic cell [3]. This reflected our limited under-
standing of the complex biology that governs cell fitness, such as 
synthetic lethality and interlaced regulatory networks. A continued 
effort to elucidate the remaining biological uncertainties have cul-
minated in the development of a nearly complete whole-cell com-
puter model tailored to simulate the minimal synthetic cell (JCVI- 
syn3A) which harbors the minimal set of life-supporting 493 genes. 
Owing to the reduced complexities in the genomic, genetic and 
metabolic networks, a fully kinetic model incorporating various 
experimental parameters (i.e. enzyme kinetics, gene expression, 
spatiotemporal dynamics) was made possible. The model allows 
simulation of dynamic changes in particular chemicals in terms of its 
concentrations, spatial locations, rate of diffusion, as well as the 
energy expenditures simultaneously in a time-course manner. The 
model also houses 3D spatial reconstructions of macromolecules 
such as ribosomal coordinates and cognate DNA binding sites, ex-
panding the scope of in silico simulation to ‘real-time’ monitoring 
and assessment of cellular processes [93]. However, implementing 
such whole-cell model for lab-grown microbes is challenging (due to 
biological complexity and uncertainties) and computationally ex-
pensive [94]. More generalized systems biology approach is available 
to aid interpretation of biological processes.

The molecular and mechanistic basis of fitness restoration during 
ALE is hidden within the “biological black box,” which can be deci-
phered, at least partially, by systems analysis of the evolved genome. 
System analysis largely entails the use of NGS technologies, which 
allow genome-wide characterization of mutation profiles [23], 
global changes in transcription [57] and translation levels [95], and 
the characterization of regulatory interactions in transcription fac-
tors [96]. In this section, we briefly describe the systems biology- 
guided analysis of ALE strains using the smallest minimal E. coli 
genome (eMS57), which represents some of the most extensively 
perturbed cell systems [12]. eMS57 adaptively evolved from a 
minimal E. coli genome MS56, which is an E. coli MG1655-derivative 
free of all insertion elements (plus other non-essential genes, with 
∼25% reduction in the genomic content) constructed to enhance 
recombinant protein production through genome stabilization and 
reduction of genetic redundancies [97]. However, MS56 had a pro-
nounced fitness deficit on minimal media and became viable only 
after an 800-generation ALE experiment in glucose minimal medium 
supplemented with Luria Bertani broth [12].
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3.1. NGS-based approach to identify causal mutations

Whole-genome resequencing allows high-throughput profiling 
of genome-wide mutations, followed by the determination of the 
causality of mutations (Fig. 3A). Mutations, which are beneficial 
drivers or neutral hitchhikers, can be inferred via several ap-
proaches. First, recurrent mutations across independent replicate 
lineages strongly imply causality [23]. Second, a public ALE database 
depositing mutant data from hundreds of ALE experiments provides 
users with insights on the causality of mutations [9]. Lastly, manual 
inspection of gene annotation and pathway information helps to 
infer the functional attributes of a mutation [6]. In the MS56 ALE 
experiment, the authors identified a large deletion in the genomic 
region containing mutS and rpoS. MutS is a part of a post-replicative 
mismatch repair system, and its inactivation has been demonstrated 
to confer a hypermutator phenotype that expedites adaptive evo-
lution [6], with proven utility in ALE of genome-recoded synthetic E. 
coli [29]. In contrast, RpoS is a general stress response regulator that 
controls over 50 regulons in response to different stressors, in-
cluding nutrient deprivation [98]. Reverse engineering of the rpoS 
deletion in MS56 restored its growth rate to 80% of that in eMS57, 
highlighting the dominant role of rpoS in restoring the fitness of the 
minimal genome. As such, the cycle of whole-genome resequencing, 
mutation profiling, and reverse-engineering workflow presents a 
straightforward yet robust approach for identifying the genetic basis 
of fitness restoration (Fig. 3A).

3.2. Elucidation of the altered regulatory landscape using NGS-based 
omics tools

Notably, mutations in the subunits of RNA polymerase, such as 
rpoS, rpoD, and rpoC, have been implicated in the global rewiring of 
transcription regulation during evolution [12,28]. Understanding 
multi-layered regulations involving tens, if not hundreds, of TFs and 
regulons requires specialized sequencing techniques to probe the 
reprogrammed regulatory landscape. For example, chromatin 

immunoprecipitation coupled with sequencing (ChIP-Seq) enables 
the identification of TF binding sites on the genome by sequencing 
segments of DNA bound to the TF of interest [96] (Fig. 3B). Using 
RNA-Seq, eMS57 was discovered to harbor a set of unique (mutant) 
rpoD-binding sites that led to alterations in the expression profiles of 
several metabolic pathways, including dNTP salvage and redox bal-
ance, revealing an adaptive response to the reduced genetic burden 
in the minimal genome. In addition, to probe for the changes in post- 
transcriptional regulations that impacted translatome profiles [99], 
genome-wide translation efficiency (TE) was quantified by selec-
tively sequencing the abundance of ribosome-protected mRNA 
fragments (Fig. 3C) and comparing them with the corresponding 
mRNA transcript abundance [95]. Typically, ribosomal occupancy in 
an actively transcribed mRNA exhibits markedly less variation than 
mRNA abundance, resulting in highly variable TE levels, a phenom-
enon known as translational buffering [12,95,99]. Unexpectedly, the 
TE levels in eMS57 remained constant regardless of the gene ex-
pression levels, demonstrating reduced translational buffering that 
led to improved protein production as measured by fluorescence 
reporter proteins [12].

Overall, the above examples highlight the utility of high- 
throughput analytic techniques of systems biology for revealing the 
molecular basis of adaptation, from routine genotype-phenotype 
profiling to global-scale remodeling of cellular metabolism, tran-
scription, and translation regulations; and to build a novel hypoth-
esis based on data-driven discovery.

4. Summary and outlook

Initially employed in an attempt to understand the mechanism of 
evolution, ALE now constitutes an important part of the engineering 
principles in biotechnology, with as many as 18,000 ALE experi-
ments conducted to date [100]. Leveraging the natural process se-
lection, the evolving strains acquire mutations from within the 
breadth of the genotype solution space, which is often deemed in-
accessible (or unpredictable) with our current understanding of 

Fig. 3. Systems biology approach to elucidate the molecular basis of adaptation. (A) A workflow for genotype-phenotype characterization of causative mutations. (B) The use of 
transcriptome-sequencing and ChIP-Seq in tandem help identify changes in TF-mediated transcriptome regulation. (C) Ribosome profiling to indirectly infer regulation at the 
translation level. Low TE refers to low ribosomal occupancy on mRNA transcripts, where translation presents a bottleneck for protein synthesis in a (highly expressed) gene.
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biology. Being independent of the need for a priori knowledge of the 
genetic basis of a target phenotype, ALE has markedly expanded our 
ability to harness non-model microbes, including those that are 
highly recalcitrant for engineering. Although growth optimization of 
ALE aids in improving target product titers, additional metabolic 
engineering efforts can effectively promote target metabolite pro-
duction, leading to metabolite production as the main objective of 
ALE. In silico metabolic models can further refine the metabolic ALE 
design to achieve stringent coupling of the desired compound with 
adaptive fitness. On the other hand, the ad hoc nature of ALE ex-
perimental design, aligned with the expanding availability of genetic 
and in silico toolkits, has led the development of various ALE tech-
niques with increasing sophistication. The non-intuitive aspects of 
the evolved phenotypes, particularly the molecular basis of adap-
tation that has hitherto remained elusive, are becoming increasingly 
evident due to advances in NGS analytic tools. Recently, molecular 
characterization of the adaptive changes in E. coli lacking the elec-
tron transport system led to the elucidation of an expanded cata-
logue of genes associated with oxic respiration, termed ‘Aero-Type 
System’ [101]. In addition, systems analysis of extensively perturbed 
cellular systems (such as the minimal genome) provides for an in- 
depth comprehension of biological mechanisms that have been 
previously unaccounted for, opening untapped grounds to learn, 
build, and test novel hypotheses.

Automated, multiplexed ALE experiments are becoming in-
creasingly popular owing to the ease of manipulation, precise con-
trol of experimental parameters, and higher throughput (of 
biological replicates) than in manual transfer [102,103]. Increasing 
throughput translates to even larger volumes of downstream data, 
where strain screening and data analysis present daunting tasks. A 
high-throughput, rapid screening for high producers among millions 
of variant libraries can be achieved via the use of biosensors speci-
fically sense and respond to target metabolites [104]. Tethering the 
target metabolite production with a reporter output (i.e. fluores-
cence proteins) by means of a biosensor-based genetic circuit fol-
lowed by a massively parallel screening (i.e. FACS) allows for a rapid 
and efficient selection of high-producers [104]. On a side note, bio-
sensor-based screening alone stands out as a robust mean to opti-
mize metabolite production, where it was demonstrated that 
fluorescence-based, real-time screening of product formation fa-
cilitated the identification of the process parameter that led to a 3- 
hydroxypropionate production that was 23-fold higher than pre-
viously reported [105]. The past years have seen the development of 
various analytic tools tailored for high-throughput datasets. For ex-
ample, the latest updates on the E. coli GEM iML1515 have focused 
on the extraction and analysis of publicly available high-throughput 
data, including transcriptomics, metabolomics, and proteomics, ul-
timately providing an in silico platform to characterize the E. coli 
metabolic network using constraint-based modeling, protein struc-
ture, or genetic variations [106]. Recently, machine learning work-
flows tailored for the analysis of relevant data have proven to be 
useful in providing inference on the hidden layers of regulation, such 
as condition-specifically modulated gene sets and their TFs [101] and 
evolutionary constraints with different degrees of contribution to 
adaptive phenotypes [107]. Meta-analysis of large-scale mutational 
data [9] can also be extrapolated to predict novel genome en-
gineering targets unforeseen in contemporary ALE designs [108]. The 
AlphaFold deep learning network designed for protein structural 
prediction [109] enables facile analysis of the implication of struc-
tural variants of mutant enzymes on strain phenotype [34]. Similarly, 
breakthroughs in deep-learning based protein structural prediction 
has allowed de novo protein design with high accuracy [110]. It is 
envisaged that ALE will serve as a testbed to assess the properties of 
artificial enzymes with regards to strain fitness, implications on 
adaptive phenotypes, and presence of epistatic interactions that can 
shape evolutionary trajectory of evolving populations. In conclusion, 

increasing throughput of biological data, in conjunction with data- 
compatible simulation platforms and effective machine learning 
workflows, is expected to streamline the deciphering of complex 
biological phenomena.
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