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OBJECTIVE—Intravenous insulin infusion partly improves liver
glucose fluxes in type 1 diabetes (T1D). This study tests the
hypothesis that continuous subcutaneous insulin infusion (CSII)
normalizes hepatic glycogen metabolism.

RESEARCH DESIGN AND METHODS—T1D with poor glyce-
mic control (T1Dp; HbA1c: 8.5 6 0.4%), T1D with improved gly-
cemic control on CSII (T1Di; 7.0 6 0.3%), and healthy humans
(control subjects [CON]; 5.2 6 0.4%) were studied. Net hepatic
glycogen synthesis and glycogenolysis were measured with in
vivo 13C magnetic resonance spectroscopy. Endogenous glucose
production (EGP) and gluconeogenesis (GNG) were assessed with
[6,6-2H2]glucose, glycogen phosphorylase (GP) flux, and gluconeo-
genic fluxes with 2H2O/paracetamol.

RESULTS—When compared with CON, net glycogen synthesis
was 70% lower in T1Dp (P = 0.038) but not different in T1Di.
During fasting, T1Dp had 25 and 42% higher EGP than T1Di
(P = 0.004) and CON (P , 0.001; T1Di vs. CON: P = NS). GNG
was 74 and 67% higher in T1Dp than in T1Di (P = 0.002) and CON
(P = 0.001). In T1Dp, GP flux (7.06 1.6 mmol $ kg21 $ min21) was
twofold higher than net glycogenolysis, but comparable in T1Di
and CON (3.7 6 0.8 and 4.9 6 1.0 mmol $ kg21 $ min21). Thus
T1Dp exhibited glycogen cycling (3.56 2.0 mmol $ kg21 $min21),
which accounted for 47% of GP flux.

CONCLUSIONS—Poorly controlled T1D not only exhibits aug-
mented fasting gluconeogenesis but also increased glycogen
cycling. Intensified subcutaneous insulin treatment restores these
abnormalities, indicating that hepatic glucose metabolism is not
irreversibly altered even in long-standing T1D.Diabetes 60:1752–
1758, 2011

T
he liver is responsible for raising endogenous
glucose production (EGP) to maintain constant
plasma glucose concentrations mainly via glu-
coneogenesis during fasting (1) or via glycogen-

olysis as first-line response to hypoglycemia (2). Patients
with type 1 diabetes (T1D) not only have blunted glycogen
synthesis (3,4) but also impaired glycogenolysis during
hypoglycemia (5). This, in concert with impaired coun-
terregulatory hormonal responses, leads to a diminished
defense against hypoglycemia, one of the major concerns
of insulin treatment.

Short-term normoglycemia, induced by investigator-
controlled variable intravenous insulin infusion, improves
nocturnal hepatic glycogen synthesis in well-controlled
T1D (6). In everyday life, patients with T1D attempt to
achieve near-normoglycemia by intensified insulin therapy
using frequent insulin injections or continuous subcuta-
neous insulin infusion (CSII) pumps. However, the effects
on pathways of hepatic glucose metabolism during the
critical nocturnal fed-to-fasting transition have hitherto not
been described under real life conditions.

The postprandial fluxes of hepatic glucose metabolism
during the first 6 h after meal ingestion can be described
by a metabolic model (Fig. 1) and were measured in this
study in all groups. In addition to net substrate fluxes such
as conversion of glycogen to glucose, the model includes
the futile exchange between hepatic glycogen and glucose-
6-phosphate (G6P) that is driven by simultaneous glycogen
synthase (GS) and glycogen phosphorylase (GP) fluxes,
a process known as glycogen cycling (7). Although net
glycogenolytic fluxes have been previously characterized
in T1D (4,6), no measurements of glycogen cycling have
been reported in these patients. Aside from its possible
relevance to metabolic alterations in T1D, glycogen cy-
cling dilutes the enrichment of hepatic G6P from gluco-
neogenic tracers independently of net glycogenolytic flux.
Thus, with such methodologies, the contribution of gly-
cogenolysis to EGP may be overestimated, whereas that of
gluconeogenesis is correspondingly underestimated. Res-
olution of glycogen cycling from net glycogenolytic and
gluconeogenic contributions requires that the gluconeo-
genic tracer assay be supplemented by an independent
measurement of either net glycogenolysis (in vivo
13C magnetic resonance spectroscopy [MRS]) or absolute
GS flux (isotope dilution of labeled galactose at the level of
uridine diphosphate UDP-glucose [7]).

Glycogen cycling and net substrate fluxes were resolved
for humans with type 2 diabetes (T2D) or liver cirrhosis by
integrating direct in vivo 13C MRS measurements of net
glycogen depletion with isotopic tracer measurements of
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EGP, gluconeogenesis, and GP fluxes (8,9). Here, we
tested the hypothesis that patients with CSII-treated T1D
should have normal hepatic glycogen metabolism by ap-
plying an integrated approach comprising direct 13C MRS
measurements of liver glycogen and simultaneous assess-
ment of fluxes through GP, glycogen cycling, EGP, and
GNG using [6,6-2H2]glucose and 2H2O/glucuronide.

RESEARCH DESIGN AND METHODS

Volunteers. Twenty-two volunteers were included, comprising patients with
long-standing C-peptide–negative T1D and T1D poor (T1Dp) or T1D improved
(T1Di) glycemic control and nondiabetic humans without family history of
diabetes (control subjects [CON]) (Table 1). All participants underwent clin-
ical examination including medical history and laboratory tests to exclude
general internal, endocrine, and metabolic diseases. They were sedentary and
had comparable habitual physical activity as assessed with a self-administered
questionnaire (10). After detailed information, all participants consented in
writing to the study, which had been reviewed and approved by the Ethical
Board of the City of Vienna and registered at ClinicalTrials.gov (NCT00481598).
Study protocol. Patients with T1Dp were treated by multiple daily insulin
injections and instructed to omit NPH- or Zn-insulin and only use regular insulin
to control blood glucose for 24 h before the experiment. Although CON were
studied once, patients with T1Dp who responded to CSII with HbA1c levels
#7.2% for at least 5 months were studied before and after switching to CSII.
Six of the 10 patients did not meet this criterion and were therefore excluded
from the T1Di. Another four patients on CSII with target glycemic control for
at least 5 months were recruited and studied once.

After admission to the clinical research unit, all volunteers received in-
travenous catheters (Vasofix, Braun; http://www.bbraun.com/index.cfm) in
antecubital veins of both arms for blood sampling and infusions at ;7:00 A.M.
Three standard mixed meals (60% carbohydrate, 20% protein, 20% fat) were
served at 8:00 A.M. (737 kcal solid), 1:00 P.M. (735 kcal solid), and 6:40 P.M. (823
kcal liquid meal) (4,6). Patients received subcutaneous insulin injections be-
fore meals and when necessary to avoid excessive plasma glucose excursions.
13C MRS was performed in 60-min sessions to monitor liver glycogen at
5:30 P.M., 11.30 P.M., 2:00 A.M., and 7:00 A.M., respectively.

At 10:30 P.M., a primed-continuous (0.05 mg $ kg21 $ min21) infusion of
[6,6-2H2]glucose was started and continued until 6:00 A.M. the next day. To
confirm isotopic steady state, blood samples were drawn to measure tracer
enrichments at 12:30, 12:40, and 12:50 A.M.; at 3:10, 3:20, and 3:30 A.M.; and at
6:30, 6:40, and 6:50 A.M.

At 11:00 P.M., all volunteers drank a total of 3 g/kg body water of 2H2O
(99.9% enriched; Cambridge Isotope Laboratories, Andover, MA). Body water
was assumed to be 60% in men and 50% in women (11,12). Thereafter, they had
free access to drinking water containing 0.3% 2H2O to maintain isotopic
equilibrium in body water. At 03:00 A.M., they ingested 1,000 mg paracetamol.
Between 5:30 and 6:00 A.M., MRS was performed to measure hepatic lipid
content (HLC) and phosphorus compounds. Between 06:00 A.M. and 08:00 A.M.,
urine was collected and evaporated for measuring recovery of paracetamol
glucuronide (13). Blood was drawn to measure glucose every 30 min between
7:00 A.M. and 12:00 P.M. and then at timed intervals to determine [6,6-2H2]glu-
cose enrichments, metabolites, and hormones.
Measurement of glucuronide

2
H enrichment in urine water. Paracetamol

glucuronide was converted to monoacetone glucose (MAG) as described
(13,14). MAG was dissolved in acetonitrile/water (90/10% vol/vol) for NMR
analysis. Urinary paracetamol glucuronides were obtained in sufficient yields
for NMR analysis from 8 of 8 healthy subjects, 7 of 10 T1Dp, and 5 of 8 T1Di.
Proton-decoupled 2H NMR spectra were acquired with an 11.75-T Varian Unity
500 system equipped with a 5-mm broadband probe. For samples with low
amounts of MAG, spectra were obtained with a 14.1T VNMR600 spectrometer
equipped with a 3-mm microprobe (Varian, Palo Alto, CA). Spectra were ac-
quired at 50°C without field-frequency lock with 90° pulse angle, 10-ppm
sweep width, and 1.6-s acquisition time (Fig. 2). Between 11,100 and 50,000
free induction decays (FID) were acquired per sample for collection times of
6–27 h. Fully relaxed 1H NMR spectra were obtained under the same con-
ditions with 45° pulse width, 3-s acquisition time, and a 20-s delay. Each 1H
spectrum was acquired with a single FID. 2H enrichment of urine water was
analyzed by 2H NMR (15). All NMR spectra were analyzed using the curve-
fitting routine supplied with the NUTS PC-based NMR spectral analysis pro-
gram (Acorn NMR, Fremont, CA).
MRS and magnetic resonance imaging. Volunteers were examined in supine
position for MRS on a 3-T Bruker Biospin (Ettlingen, Germany) and for magnetic
resonance imaging (MRI) on a Siemens TIM Trio (Erlangen, Germany).

1H MRS was used for the determination of HCL using single voxel spec-
troscopy (STEAM) (16), jMRUI (17), and AMARES (18). 13C MRS was used for
quantification of liver glycogen with a circular, 10-cm diameter surface coil
placed over the lateral aspect of the liver, which was confirmed by MRI (4).
One session consisted of four to five 10-min blocks (19) during which 4,096
13C FIDs were acquired every 150 ms (pulse-acquire experiment, 500 ms adi-
abatic excitation pulse). For absolute quantification the experiment was also
performed on a glucose solution of known concentration and volume. Supple-
mental Figure 1 shows example spectra of one CON, T1Dp, and T1Di, respectively.

Liver volume was quantified by acquiring axial T1-weighted MRI of the
abdomen during one breath-hold and analyzed using home-built semi-
automatic software (20). Mean liver volume was not different between groups
(T1Dp: 1,602 6 380; T1Di: 1,402 6 164; CON: 1,451 6 366 cm3; P = NS).

FIG. 1. Metabolic model representing fluxes between G6P, glycogen,
glucose, and the parameters of glycogenolytic flux derived by 2H2O and
13C MRmethods. Component fluxes include GS flux, GP, GNG, and EGP.
The in vivo

13
C MRS assay measures the net loss of hexose from the

pool of glycogen metabolites (i.e., net glycogenolysis), and GNG is
calculated as EGP 2 net glycogenolysis. Net glycogenolysis represents
the difference between GP and GS, hence the fraction of EGP derived
from net glycogenolytic flux is equal to (GP 2 GS)/EGP. The

2
H2O

method measures the fractional contribution of GP to EGP flux. When
GS is zero, net glycogenolysis and GP are equal. During glycogen cy-
cling, where GS is active, GP is higher than net glycogenolysis.

TABLE 1
Anthropometric and fasting blood parameters (means 6 SD [95% CI]) in patients with T1Dp or T1Di glycemic control and in CON

T1Dp T1Di CON

N total (female/male) 10 [4/6] 8 [3/5] 8 [4/4]
Age (years) 35 6 10 [28–42] 35 6 10 [27–43] 31 6 11 [21–40]
BMI (kg/m2) 25 6 3 [23–27] 26 6 3 [24–28] 24 6 4 [21–28]
Physical activity 2.8 6 0.6 [2.2–3.3] 2.6 6 0.8 [1.9–3.3] 2.9 6 0.6 [2.3–3.4]
Diabetes duration (years) 20 6 13 [11–30] 17 6 14 [4–29] —

Hemoglobin A1c (%) 8.5 6 0.4 [8.1–8.8]† 7.0 6 0.3 [6.7–7.2]‡ 5.2 6 0.4 [4.9–5.5]*
Glucose (mmol/L) 10.6 6 3.2 [8.3–12.9] 7.6 6 3.3 [4.9–10.3] 5.0 6 0.4 [4.7–5.4]§

Mean physical activity is calculated from rating on a scale ranging from 1 [low] to 5 [high degree of activity] and given in arbitrary units. *CON
vs. T1Dp P , 0.001; †T1Dp vs. T1Di P , 0.001; ‡CON vs. T1Di P , 0.001; §CON vs. T1Dp P = 0.001.
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Metabolites and hormones. Plasma glucose was measured using the glucose
oxidase method (Glucose Analyzer II; Beckmann Instruments, Fullerton, CA).
Plasma insulin, C-peptide, and glucagon were determined by double-antibody
radioimmunoassays (Linco, St. Charles, MO; http://www.millipore.com/);
HbA1c using HPLC (Bio-Rad, Hercules, FL); and triglycerides, total, HDL-, and
LDL-cholesterol using routine laboratory methods (Abbot Aeroset LN09D05–
01, A1522460). Free fatty acids (FFA) were assayed microfluorimetrically
(Wako Chem; http://www.wakousa.com/) in orlistat-treated samples to pre-
vent in vitro lipolysis (21). Plasma growth hormone was measured by immu-
noradiated matrix assay (DiaSorin, Saluggia Vercelli, Italy; http://www.
diasorin.com).
Calculations. EGP was measured using isotopic dilution, whereas net hepatic
glycogenolysis (GLYnet) was simultaneously measured by in vivo 13C MRS,
yielding net GNG as the difference between EGP and GLYnet (22). Rates of
net hepatic glycogen synthesis during the absorptive period were calculated
from linear regression analysis of glycogen concentrations measured by
13C MRS from immediately before the meal at 5:30 P.M. until peak levels were
reached (4).

Rates of GLYnet during the postabsorptive period (6–12 h after dinner) were
calculated from linear regression of glycogen concentrations measured from peak
levels until 8:00 A.M. the following morning. Rates of EGP (in mmol $ kg21 $ min21)
were calculated by dividing the [6,6-2H2]glucose infusion rate times tracer
enrichment by the percent tracer enrichment in plasma and subtracting the
tracer infusion rate (23). Rates of GNG (in mmol $ kg21 $ min21) were es-
timated as follows (24): GNG = EGP 2 GLYnet.

Fractional GP flux contribution to EGP is given as 12 (H5/H2) where H5-to-
H2 is the ratio of glucuronide position 5 to position 2 enrichment from 2H2O
(8). Absolute GP flux (in mmol $ kg21 $min21) was calculated as follows: GP =
EGP 3 [1 2 (H5/H2)].

Given certain assumptions on the order of glucosyl uptake and release from
glycogen (7), GP flux reflects the sum of GLYnet and GS fluxes (8,9). When GS
activity is negligible (i.e., no glycogen cycling), GP flux by 2H2O equals GLYnet
flux by in vivo 13C MRS (7–9). However, in the presence of glycogen cycling
when both GP and GS fluxes are active, GP is higher than that of GLYnet, with
the difference being accounted for by GS (Fig. 1).

Glycogen cycling activity during net glycogen breakdown, defined as the GS
flux (mmol $ kg21 $ min21), was estimated as follows: GS = GP 2 GLYnet.

These calculations assume that 1) all EGP was derived from hepatic G6P
with no relevant extrahepatic glucose production, i.e., kidney, and 2) during
glycogen cycling, G6P molecules labeled in position 5 from the gluconeogenic
pathway that are recruited for glycogen synthesis are trapped in glycogen and
are not recycled back to G6P during the glycogenolysis step (7).

Areas under the curve of plasma glucose concentrations (AUCglu) were
estimated with the trapezoidal rule for defined time periods (25).
Statistics. All analyses were performed using SPSS 14.0 software (SPSS; http://
www.spss.com). Data are presented as means 6 SDs with 95% CIs. Between-
group comparisons were performed using ANOVA with Tukey post hoc testing
or the two-tailed Student t test when appropriate. Linear correlations are

Pearson product-moments correlations (R, P). Spearman correlations were
used for parameters with skewed distribution. P values of , 0.05 were con-
sidered to indicate significant differences.

RESULTS

Baseline data. Anthropometric variables were compara-
ble between groups (Table 1). Plasma glucose was higher
in T1Dp than in the other groups. HbA1c was lower in T1Di
than in T1Dp but higher than in CON. HCL were similar in
all groups (T1Dp, 2.5 6 1.6%; T1Di, 2.5 6 1.5%; CON, 3.9 6
2.4%; P = NS).
Fasting period. Plasma glucose was more than twofold
greater in T1Dp than in CON and tended to be higher (P =
0.162) in T1Di than in CON (Table 1). Fasting insulin
tended to be lower in CON (T1Dp 123 6 74, T1Di 188 6
253, CON 81 6 51 pmol/L; T1Dp vs. CON P = 0.829, T1Di
vs. CON P = 0.339, T1Dp vs. T1Di P = 0.627) (Fig. 3C).
Plasma glucagon (T1Dp 55 6 15, T1Di 72 6 19, CON 59 6
19 ng/L; Fig. 3D) and FFA were similar (T1Dp 564 6 374,
T1Di 778 6 463, CON 354 6 145 mmol/L; P = NS; Fig. 3B).
Plasma cortisol (T1Dp 8.46 5.4, T1Di 6.76 4.9, CON 9.46
6.6 mg/dL; P = NS) and growth hormone (T1Dp 3.1 6 1.8,
T1Di 4.4 6 2.0, CON 2.5 6 2.9 ng/mL; P = NS) were also
comparable across the groups.
Postprandial period (0–6 h after dinner). Mean plasma
glucose was lower in T1Di than in T1Dp but about twofold
higher than in CON (T1Dp vs. CON P , 0.001, T1Di vs.
CON P , 0.001, T1Dp vs. T1Di P = NS; Fig. 3A). AUCglu
was comparable between T1Dp and T1Di (T1Dp 1,088 6
345, T1Di 1,2906 488, CON 1756 119 mmol $ L21 $ min 21;
T1Dp vs. T1Di P = NS, T1Dp vs. CON P , 0.001, T1Di vs.
CON P , 0.001). Plasma FFA decreased in all groups
(T1Dp 57 6 31%, T1Di 23 6 10%, CON 33 6 16%; T1Dp P =
0.023, T1Di P = 0.013, CON P = 0.002 vs. predinner values;
Fig. 3B). Plasma insulin and glucagon, peripheral insulin-
to-glucagon ratios (Fig. 3C and D), cortisol (T1Dp 9.3 6
4.7, T1Di 6.3 6 3.6, CON 7.1 6 3.6 mg/dL; P = NS), and
growth hormone (T1Dp 3.1 6 2.6, T1Di 3.0 6 3.7, CON
2.2 6 2.4 ng/mL; P = NS) were not different between
groups.

T1Di accumulated slightly more hepatic glycogen upon
meal ingestion than T1Dp, but hepatic glycogen did not
differ between groups (T1Dp vs. CON P = 0.270, T1Dp vs.
T1Di P = 0.159, T1Di vs. CON P = 0.952; Table 2). Net
hepatic glycogen synthesis was lower in T1Dp than in CON
(1.0 6 1.8 vs. 3.3 6 2.3 mmol $ kg21 $ min21; P = 0.038)
but not different between CON and T1Di (2.7 6 1.4
mmol $ kg21 $ min21; P = 0.782; Fig. 4).
Postabsorptive period (6–12 h after dinner). Mean
plasma glucose was highest in T1Dp (T1Dp 14.7 6 2.3,
T1Di 9.7 6 1.8, CON 4.9 6 0.3 mmol/L; T1Dp vs. CON P ,
0.001, T1Dp vs. T1Di P , 0.001, T1Di vs. CON P , 0.001;
Fig. 3A). AUCglu was comparable between T1Dp and
T1Di (T1Dp 757 6 400, T1Di 1,041 6 452, CON 85 6 45
mmol $ L 21 $ min21; T1Dp vs. T1Di P = NS, T1Dp vs. CON
P , 0.001, T1Di vs. CON P , 0.001). Plasma insulin was
higher in T1Di compared with CON (T1Dp 19 6 12, T1Di
33 6 30, CON 10 6 4 pmol/L; T1Di vs. CON P = 0.05; Fig.
3C). Plasma FFA (T1Dp 574 6 244, T1Di 552 6 446, CON
399 6 198 mmol/L; P = NS; Fig. 3B), cortisol (T1Dp 12.5 6
3.7, T1Di 16.6 6 5.9, CON 13.0 6 5.3 mg/dL; P = NS), and
growth hormone (T1Dp 3.8 6 4.5, T1Di 3.6 6 3.7, CON
4.7 6 7.3 ng/mL; P = NS) did not differ between groups.

GLYnet varied considerably but was not different
between groups (T1Dp 3.3 6 1.6, T1Di 5.3 6 3.2, CON

FIG. 2.
2
H NMR spectra of urinary glucuronides following derivatization

to MAG from a healthy control subject, a diabetic patient with poor
glycemic control (T1Dp), and a diabetic patient with good glycemic
control (T1Di). The number above each signal represents its positional
origin in the MAG molecule. The ratio of signal 5 and signal 2 areas (H5-
to-H2) is also shown.
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4.0 6 1.5 mmol $ kg21 $ min21; T1Dp vs. CON P = 0.787,
T1Dp vs. T1Di P = 0.161, T1Di vs. CON P = 0.479; Fig. 4). EGP
was higher in T1Dp (16.5 6 2.3 mmol $ kg21 $ min21) than
in T1Di and CON (13.2 6 1.3 vs. 11.6 6 2.0 mmol $ kg21 $
min21; T1Dp vs. T1Di P = 0.004, T1Dp vs. CON P, 0.001).
Accordingly, GNG was greater in T1Dp compared with
both T1Di and CON (T1Dp 13.2 6 3.0, T1Di 7.9 6 3.1,
CON 7.6 6 2.3 mmol $ kg21 $ min21; T1Dp vs. T1Di P =
0.002, T1Dp vs. CON P = 0.001).

GP flux from 2H2O/glucuronide was lower in T1Di than
in T1Dp (T1Dp 7.0 6 1.6, T1Di 3.7 6 0.8, CON 4.9 6 1.0
mmol $ kg21 $ min21; T1Dp vs. T1Di P = 0.005, T1Dp vs.
CON P = NS; Fig. 4). Glycogen cycling was highest in T1Dp
(T1Dp 3.5 6 2.0, T1Di 22.3 6 1.9, CON 1.0 6 1.3 mmol $
kg21 $ min21; T1Dp vs. T1Di P = 0.008, T1Dp vs. CON P =
NS). In T1Dp, glycogen cycling accounted for 47% of total
GP flux. This degree of glycogen cycling activity resulted
in substantial overestimation of the contribution of glyco-
genolytic flux to EGP by 2H2O compared with the frac-
tional glycogenolytic contribution by in vivo 13C MRS
(43 6 8 vs. 20 6 9%; P , 0.001). In contrast, both methods
yielded equivalent glycogenolytic contributions to EGP in
both T1Di and CON groups reflecting less glycogen cy-
cling. For T1Di, GLYnet and GP flux accounted for 41 6 19
and 28 6 6% of EGP. For CON, the corresponding values
were 35 6 9 and 41 6 6% of EGP. Supplemental Table 1
shows the individual fluxes of GLYnet and glycogen
phosphorylase (GLYphos) fluxes.

Correlation analyses. EGP correlated positively with
glycogen cycling (R2 = 0.347; P = 0.008; Fig. 5A), HbA1c
(R2 = 0.525; P , 0.001; Fig. 5B) and fasting plasma glucose
(R2 = 0.382; P = 0.001). Insulin requirements (T1Dp: 43 6
12 units/24 h, T1Di: 54 6 14 units/24 h; P = NS) correlated
positively with BMI (R2 = 0.257; P = 0.032) and negatively
with GP flux (R2 = 0.445; P = 0.025) across all T1D.

DISCUSSION

This study shows that long-term improvement of glycemic
control using CSII-pump improves abnormal hepatic glu-
cose metabolism in T1D even despite short-term hyper-
glycemia. To mimic everyday life, the patients with T1D
applied insulin subcutaneously throughout the study days.
This is in contrast with previous studies, where short-term
normoglycemia was achieved by variable intravenous in-
sulin infusion and only at supra-physiological plasma insulin
concentrations (4,6). Thus, although our study recorded
marked improvements in average plasma glucose and HbA1c
levels, it could not obtain strict normoglycemia even in the
well-controlled T1Di. Nevertheless, CSII pump therapy im-
proved hepatic glucose metabolism, as seen by raised rates
of glycogen synthesis during meal ingestion and more ef-
fective suppression of EGP and GNG during fasting in T1Di.

During fasting, healthy humans appear to have only
minimal glycogen cycling activity as reported (8,15) and
confirmed by the current study. Acute hyperglycemia per se

TABLE 2
Hepatic glycogen concentrations before and after ingestion of an 823-kcal mixed meal at 6:30 P.M. in T1Dp, T1Di, and CON

Before dinner +5 h +7.5 h +12.5 h

T1Dp 190 6 66 [143–237] 209 6 68 [161–257] 210 6 55 [170–250] 157 6 40 [129–185]
T1Di 209 6 47 [170–248] 270 6 62 [219–322] 263 6 74 [201–325] 173 6 43 [137–209]
CON 197 6 67 [141–253] 260 6 74 [198–323] 225 6 76 [161–288] 174 6 57 [126–222]

Values are means 6 SD [95% CI] in micromoles per liter liver.

FIG. 3. Plasma concentrations of glucose (A), FFA (B), insulin (C), and glucagon (D) in CON (▲), T1Dp (●), and T1Di (○). Mean plasma glucose
from 6:30 P.M. until 5:30 A.M. is shown. *T1Dp vs. CON P < 0.001; **T1Dp vs. T1Di P = 0.017; †CON vs. T1Di P < 0.001; plasma insulin concentration
at 1:30 A.M. ‡CON vs. T1Di P = 0.036. Data are presented as means 6 SEM.

M. KACEROVSKY AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 60, JUNE 2011 1755



inhibits GP flux in healthy subjects (25). Stingl et al. (26)
showed modest glycogen cycling during hyperglycemic-
hyperinsulinemic clamps mimicking postprandial condi-
tions in healthy subjects. Other studies of healthy subjects
demonstrated that hyperinsulinemia and relative hypo-
glucagonemia may stimulate glycogen cycling (25,27).
Although its clinical relevance is not entirely clear, gly-
cogen cycling may serve to limit the accumulation of liver
glycogen at high glycogen concentrations (28). Under
hyperglycemic-hyperinsulinemic conditions, on the other
hand, glycogen cycling may be the principal mechanism to
inhibit GLYnet and EGP (27). In contrast, patients with
T2D exhibit substantial glycogen cycling of ;25% of EGP
after overnight fasting (8). In the fed state, this could ex-
plain lower glycogen stores and thus contribute to post-
prandial hyperglycemia (7).

Insulin and glucagon are also potent regulators of gly-
cogenolysis, as indicated by reduced glycogen breakdown
during hyperinsulinemia and hypoglucagonemia (25,27,29).
It was hypothesized that complete normalization of glycogen
metabolism could only be achieved by raising the insulin-to-
glucagon ratio (6). In the current study, peripheral insulin
and glucagon levels were comparable between CON and
T1D, and within the range of other studies (30). Because all

T1D were C-peptide negative, portal insulin concentrations
and portal insulin-to-glucagon ratios were about twofold
higher in CON than in T1D (31). Thus one might speculate
that glycogen synthesis should have been higher in CON
compared with either group of T1D, which was not the case
in the current study.

The marked decrease in plasma FFA levels after dinner
in all groups suggests normal insulin sensitivity at least
with respect to lipolysis. One could argue that significant
improvement of hepatic glycogenolysis after CSII pump
treatment was not achieved, because glycemic control was
insufficient compared with previous studies (6). Then
again, glycogen synthesis was significantly improved as
well as EGP was reduced, along with gluconeogenesis.
This leaves acute hyperglycemia as the most probable
cause for the incomplete restoration of glycogenolysis in
line with previous clinical data (32). Petersen et al. (27)
reported accordingly that in healthy humans, hyperglyce-
mia per se reduces net hepatic glycogenolysis primarily
through inhibition of GP flux. Hyperinsulinemia, on the
other hand, also inhibits glycogenolysis, but presumably
via the activation of glycogen synthase.

It is intriguing that EGP and GNG were near normal in
T1Di despite short-term hyperglycemia. Bock et al. (33)

FIG. 4. GNG, GP, glycogen cycling, and GLYnet in healthy CON (white bars), T1Di (hatched bars), and T1Dp (black bars). *CON vs. T1Dp P = 0.001;
**T1Di vs. T1Dp P = 0.002; †T1Di vs. T1Dp P = 0.021; ‡T1Di vs. T1Dp P = 0.02. Data are presented as means 6 SEM.

FIG. 5. Relationship between EGP and glycogen cycling (A) and HbA1c (B) across all groups: patients with poorly controlled type 1 diabetes (●),
improved glycemic control (○), and nondiabetic CON (▲).
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showed in subjects with impaired fasting glucose that
higher EGP as a result of GNG can be suppressed by portal
insulin levels of ;300 pmol/L, whereas glucose disposal
was still lower than in subjects with normal fasting glu-
cose. This indicates extrahepatic, but not hepatic insulin
resistance. Bischof et al. (6) demonstrated that even dur-
ing near normoglycemic long- and short-term control as
induced by manually adjusted variable insulin infusion,
patients with T1D displayed peripheral, but not hepatic,
insulin resistance, as seen by normal EGP despite aug-
mented contribution of GNG to glycogen synthesis. This
could be partly because of not completely normalized
control of immediate prandial glucose concentrations.
Taken together, our data indicate that intensified glycemic
control improved hepatic insulin resistance, whereas
short-term hyperglycemia might have contributed to di-
minished peripheral insulin resistance.

Although EGP and GNG in T1Di could be restored to
normal levels, glycogen metabolism failed to improve sig-
nificantly, suggesting that some alterations might be irre-
versible in long-standing T1D. In T2D, there is evidence for
a defect in the rapid suppression of hepatic glucose pro-
duction by blood glucose (glucose effectiveness) (34,35).
Hyperglycemia regulates hepatocellular G6P (36) in such
a way that the maintenance of intracellular G6P homeo-
stasis is achieved at the expense of aggravated hypergly-
cemia (glucose toxicity) (37). To this end, high G6P levels
suppress the expression of glucokinase (36) but increase
the expression of G6P (38). Since G6P, in concert with
glucose (39), inactivates GP and thereby glycogenolysis,
perturbation in the concentration of this metabolite might
lead to declined glucose effectiveness in diabetes (40).
Glycogen synthesis also might be negatively affected by
the deranged sensitivity of GP to glucose because both
elevation of G6P and inactivation of GP are needed to
activate glycogen synthase in concert (40). Notably, in-
hibition of GP and activation of glycogen synthase are not
necessarily coupled and coordinated in reciprocal fashion,
as also demonstrated by increased glycogen cycling under
hyperinsulinemia in healthy humans (27) and in insuffi-
ciently treated T2D (15) as well as in our T1Dp.

Other than the liver, the kidney also is able to release
glucose into the circulation. In healthy humans, the kidney
makes at most only a minor contribution to postabsorptive
glucose homeostasis and accounts for 20–25% of whole-
body glucose turnover only after 60-h fasting (41). Because
both renal and hepatic glucose release are increased at
least in T2D (42), our measurements may partly overesti-
mate hepatic glucose production.

In healthy subjects, the 2H2O/glucuronide method yielded
high signal-to-noise spectra and reliable 2H NMR enrich-
ment data because of the abundance of urinary glucuronide.
Based on previous studies (13,43–45), the low glucuronide
yields in T1Di were unexpected and precluded a rigorous
evaluation of fluxes for this group. Our previous experience
is that T1Dp tend to generate the lowest yields of urinary
glucuronides, in particular those with urinary glucose
excretion. Supplemental figure 2 gives the individual fluxes
of 2H NMR spectra of urinary glucuronide following
derivatization to monoacetone glucose. In CON, net
hepatic glycogenolysis accounted for about one-third of
EGP and glycogen cycling fluxes were minimal. EGP and
gluconeogenic flux ranges were in good agreement with
estimates from previous studies of overnight-fasted sub-
jects (46). T1Dp presented a different profile of fasting
hepatic glucose fluxes with greater EGP and hepatic

gluconeogenic rates but normal net hepatic glycogen
hydrolysis fluxes as reported (47,48). Moreover, in T1Dp,
glycogen cycling fluxes tended to be increased relative to
CON. As a result of glycogen cycling, the contribution of
hepatic glycogenolysis to EGP measured by 13C MRS
(20 6 9%) was significantly lower than the GP flux esti-
mated by 2H2O/glucuronide (43 6 8% of EGP). Thus, for
T1Dp, the decoupling of GP flux from GLYnet means that
the 2H2O measurement per se may overestimate the frac-
tional contribution of hepatic glycogenolysis to EGP. The
2H enrichment profile of glucose or glucuronide from 2H2O
does not provide any independent information on glycogen
cycling. Therefore, resolution of GP and glycogenolytic
fluxes requires that the 2H2O measurement be accompanied
by an independent measurement of net glycogenolysis via
13C MRS. Alternatively, these parameters can be resolved if
the 2H2O measurement is accompanied by an assay of UDP-
glucose synthesis flux via a primed infusion of labeled galac-
tose (net glycogenolysis being estimated as the difference
between the calculated GP and UDP-glucose synthesis rates).

For the T1Di, where both glucuronide and 13C MRS data
were obtained, EGP and GNG fluxes were reduced and
matched those of healthy CON. Moreover, glycogen cy-
cling fluxes were relatively low and reduced in comparison
with those from the T1Dp. In T1Di, GP fluxes (by 2H2O/
glucuronide) reflected GLYnet (by 13C MRS) so that both
methods gave consistent estimates of hepatic glycogeno-
lytic contributions to EGP (27 6 8 by 2H2O/glucuronide vs.
35 6 17% by 13C MRS).

One limitation of this study is that CSII treatment did not
normalize postprandial glycemia in T1Di. This is likely
because of the high-carbohydrate liquid dinner, which was
chosen to allow for comparison with previous studies in
patients with T2D and nondiabetic humans. We also
refrained from correcting blood glucose in very short time
intervals by intravenous insulin to mimic the everyday life
situation. Particularly, near-normoglycemic control with
subcutaneous insulin infusions remains challenging during
ingestion of an 823-kcal high-carbohydrate drink to maxi-
mize glycogen synthesis. In the face of different plasma
glucose levels, hyperglycemia per se might have diminished
glucose effectiveness, which can be restored even in poorly
controlled T2D by short-term normoglycemia (35). Fur-
thermore, portal vein insulin levels and insulin-to-glucagon
ratios were likely lower in T1D than in CON, which will
favor glycogenolysis. However, further raising of insulin
doses would have markedly increased the risk of hypogly-
cemia in the T1Di. Nevertheless, improvement of glucose
and insulin concentrations was sufficient to suppress both
GNG and EGP in T1Di.

Taken together, poorly controlled T1D not only exhibits
augmented fasting gluconeogenesis but also increased
glycogen cycling. Intensified subcutaneous insulin treat-
ment restores these abnormalities, indicating that hepatic
glucose metabolism is not irreversibly altered even in
long-standing T1D.
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