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’ INTRODUCTION

HCC is the third most common cause of cancer-related
mortality.4 It is usually distinguished against other forms of cancers
in that its etiology is primarily due to tissue damage. Risk factors of
HCC include (i) chronic infection via hepatitis B or C virus (HBV
or HCV), (ii) germline mutations, (iii) cirrhosis, (iv) alcoholic liver
disease, (v) hemochromatosis, and (vi) other liver diseases.5 Such
diverse etiologies imply high variability in the initiation mechanisms
leading to HCC. HCC can be categorized histologically into three
progressive stages: well, moderately and poorly differentiated.While
histological distinguishing aids stratification, HCC differentiation is
notoriously heterogeneous—it is difficult to divide borderline cases,
histological criteria variability exists, and they do not necessarily
correlate well with clinical outcome such as prognosis and survival.

Hence, the ability to comprehensively characterize and quantify the
changes in protein expression at the molecular level may better
distinguish HCC progression, enhance our understanding of cancer
pathogenesis, and also yield molecular targets for the treatment of
HCC and other cancer types.

To systematically quantify differences between paired human
cancerous and the noncancerous HCC tissues, we used Isobaric
Tag for Relative and Absolute Quantitation (iTRAQ) in combi-
nation with 2D-LC�MS/MS. iTRAQ has gained popularity for
its ability to perform concurrent identification and relative
quantification of hundreds of proteins for up to 8 biological
samples in a single experiment, and has been employed in several
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ABSTRACT: Current limitations in proteome analysis by high-
throughput mass spectrometry (MS) approaches have sometimes
led to incomplete (or inconclusive) data sets being published or
unpublished. In this work, we used an iTRAQ reference data on
hepatocellular carcinoma (HCC) to design a two-stage functional
analysis pipeline to widen and improve the proteome coverage
and, subsequently, to unveil the molecular changes that occur
during HCC progression in human tumorous tissue. The first
involved functional cluster analysis by incorporating an expansion
step on a cleaned integrated network. The second used an in-
house developed pathway database where recovery of shared
neighbors was followed by pathway enrichment analysis. In the
original MS data set, over 500 proteins were detected from the
tumors of 12male patients, but in this paper we reported an additional 1000 proteins after application of our bioinformatics pipeline.
Through an integrative effort of network cleaning, community finding methods, and network analysis, we also uncovered several
biologically interesting clusters implicated in HCC. We established that HCC transition from a moderate to poor stage involved
densely connected clusters that comprised of PCNA, XRCC5, XRCC6, PARP1, PRKDC, andWRN. From our pathway enrichment
analyses, it appeared that the HCCmoderate stage, unlike the poor stage, is enriched in proteins involved in immune responses, thus
suggesting the acquisition of immuno-evasion. Our strategy illustrates how an original oncoproteome could be expanded to one of a
larger dynamic range where current technology limitations prevent/limit comprehensive proteome characterization.
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oncoproteomics studies.6,7 One major drawback however is data
inconsistency (in protein identification) across repeated mass
spectrometric runs of the same sample (by the same operator or
different laboratories). Although this could be partially resolved
by increasing the number of repeated injections,8,9 it is not always
practical.

With the human HCC iTRAQ data set as a reference, we
proposed a set of complementary methods that can help to
overcome incomplete data coverage and inconsistency, and
present functional information by combining iTRAQ data with
network and pathway information. Themapping of genomic data
onto biological networks is not a novel concept unto itself.10 In
Ramakrishnan et al., it was demonstrated that the use of gene
interaction network information can meaningfully expand the
repertoire of proteins returned via MS analysis.10 In microarray
screens, genomic expression combined with network analysis can
yield important information on how expression variation relates
to differences between observed states.11 As closely connected
genes tend to be involved in similar functions, network annota-
tion can complement clusters obtained via fold change analysis.12

Microarray and deep sequencing methods tended to provide a
much larger information pool relative to proteomic platforms. In
addition, the general reproducibility is more amendable to
statistical analyses. However, they are less able to provide
information at the functional level. Alternatively, the smaller
information yield and general inconsistency in iTRAQ screens
impedes analysis. The former increases false negatives that are
not taken into consideration during analysis. As a result many
important pathways and components are missed. We show here
that recovering shared components or closely associated neigh-
bors can attenuate this problem. The latter case is harder to solve.
Because the various protein (data) points are not all accounted
for, it is difficult to establish if a protein is indeed differential. For
example, if only one out of six samples reports a protein as being
differential and there is no reading in the other five, it is harder to
establish if the protein is truly important. It is possible to increase
the confidence by increasing sample size, but not always feasible.
Alternatively, it is not unreasonable to hypothesize that lowly
supported differential proteins could become important if they
are linked to high confidence differential proteins in the network,
indicating that they share similar properties or a dysregulation in
any of them could be phenotypically equivalent. A scoring
function that takes into account low and high confidence
proteins in a cluster can help recover important information that
may be lost due to overstringent filtering. Here, we looked to two
elements of biological networks that can be applied toward
improving MS analysis. These are the clusters/cliques, and the
chains (or biological pathways).

Clusters in networks are functionally related components in a
protein�protein interaction network (PPIN) as they correspond to
protein complexes or tightly interconnected subcomponents in
biological pathways.13,14 A cluster may be a clique, or composed of
several overlapping cliques that is, a completely connected sub graph.
Many clusters are probably not cliques since the latter is strictly
mathematically defined. To find interesting clusters in the mapped
network, clique percolation is a useful method for detecting over-
lapping cliques given a defined core size.15 Other suitable cluster
finding methods include the Girvan-Newman algorithm,16 CMC,14

MCODE,17 and MCL.18 Because clusters are strongly connected
internally, those that contain a high proportion of detected differ-
ential proteins can yield novel testable targets. They also allow
discovery of closely associated differential proteins. A second

advantage of using cluster information is recovery of interesting
associations between proteins that are lost due to using a threshold.

A biological pathway, also referred to as a chain, is composed
of several biological molecules known to be involved in a specific
biological system. This can be metabolic, signaling, etc. Chains
are better defined biologically than clusters due to curation and
established literature sources. For the same reason, chain in-
formation is also relatively scarce. Despite the fact that chains are
better annotated, surprisingly, the components within a chain are
not always agreed on across various data sources. Chain analysis
is also generally not straightforward due to difficulties in extract-
ing information from data repositories such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG), or costs incurred
from subscribing to commercial databases such as Ingenuity
Pathway Analysis (IPA). Furthermore, it is known that despite
being better annotated than protein complexes, pathway agree-
ment across various databases such as KEGG and IPA is also
generally low.19 In addition, their overlaps are also low. To
improve the coverage of pathway information, we built and
utilized an integrated Pathway database, PathwayAPI19 so that
robust data evaluation could be performed.

Combining network cleaning with community finding meth-
ods, we uncovered several biologically interesting clusters, one of
which comprises of a heavily targeted protein kinase (which is
found in most poor patients and is also strongly differentially
expressed) and surrounded by an array of DNA repair enzymes,
each of which is found in less than half the patients.

The reference HCC data was also comprised of two biological
stages (moderate and poor). To better understand how these
two stages could be understood in terms of pathway progression,
we developed a method of tracing links based on average path
lengths from pathways found in both (mod and poor) to
poor only.

Our method differs from previous approaches as first, we based
our analysis on an integrated gene interaction network that has been
evaluated for functional coherence. Second, we performed a similar
analysis on an integrated and curated biological pathway database
consisting of the widely used KEGG, WikiPathways as well as IPA.
Third, by combining both pathway and functional interaction
analyses, it is possible to derive a more comprehensive under-
standing of the experimental data. Finally, it is observed that
expansion of the data to incorporate highly connected neighbors
is crucial in overcoming data sparseness in MS. Detecting
HCC�associated molecular changes could help manage
HCC�staging, improve surveillance and also in development of
stage-specific therapeutic intervention or biomarker discovery.

’MATERIALS AND METHODS

Tissues
Liver tissues were obtained from 12 male patients diagnosed

with HCC and suffered from cirrhosis with chronic HBV
infection. There was nometastasis at the point of surgery. Tissues
collected were grouped according to histology report; 5 had moder-
ately differentiated HCC (mod) and 7 had poorly differentiated
HCC (poor). Supplementary Table 1 (Supporting Information)
shows the designated identifier and their HCC grade. Paired tissues
were obtained from each patient, one from the adjacent nontumor
region (normal) and the other from the tumor region of the resected
liver. The tissues after resection were immediately snap-frozen in
liquid nitrogen and stored at �151 �C until use. Usage of these
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samples was approved by the National University Hospital Ethics
committee.20

Tissue Sample Preparation
Human liver tissues were ground into a fine powder in liquid

nitrogen and subsequently solubilized in a cocktail of 7 M urea,
2M thiourea, 4% (w/v)CHAPS, 10mMTris supplemented with
1� HALT protease inhibitor cocktail, 50 μg/mL DNase I and
50 μg/mL RNase A. The lysates were then centrifuged at
50 000� g for 2 h at 15 �C to remove any insoluble cell debris.
The supernatant was stored at �80 �C. All protein estimations
were carried out using the Coomassie Plus Protein Assay Reagent
kit with minor modifications. Bovine serum albumin provided in
the kit was used as the standard.21

Quantitative Proteomics using iTRAQ
Protein lysates from either the nontumor or tumor were first

precipitated using the 2-DClean-Up kit. The protein pellets were
subsequently resuspended in either dissolution buffer (500 mM
triethylammonium bicarbonate and 0.1% (w/v) SDS) for
iTRAQ labeling. iTRAQ labeling and processing of the samples
were carried out as described by the protocol with minor
modifications and using the reagents provided from Applied
Biosystems. One-hundred micrograms of protein from each
sample was reduced with 50 mM of TCEP at 6 �C for 1 h and
subsequently alkylated with 200 mM of methyl methanethiosul-
fonate (MMTS) for 10 min at room temperature. Each sample
was diluted to achieve a final concentration of 0.05% (w/v) SDS
prior to trypsinization at 37 �C for 16 h. Following this, each
tryptic digest was labeled for 1 h with one of the four isobaric
amine-reactive tags. The labeling was carried out at random
ensuring that 2 pairs of patient tissues were labeled as follows:
Channel 114 (nontumor); Channel 115 (tumor); Channel 116
(nontumor); and Channel 117 (tumor samples). These four
iTRAQ-labeled samples were then pooled and passed through a
strong cation exchange cartridge as recommended by the man-
ufacturer (Applied Biosystems). This eluate was further desalted
using a Sep-Pak cartridge (Millipore), lypholised and reconsti-
tuted in appropriate buffers for 2-D LC.22

Two-Dimensional Liquid Chromatography Separation of
Labeled Peptides

iTRAQ-labeled peptide mixtures was further separated using
an Ultimate dual-gradient LC system (Dionex-LC Packings)
with a Probot MALDI spotting device. A two-dimensional LC
separation was performed as follows: the labeled peptide mixture
was first dissolved in 2% (v/v) acetonitrile (ACN) containing
0.05% (v/v) TFA and injected into a 0.3 � 150 mm strong
cation-exchange (SCX) column (FUS-15-CP, Poros 10S; Dio-
nex-LC Packings) for the first dimensional separation. The
mobile phase A was 5 mM KH2PO4 buffer, pH 3, 5% ACN
and mobile phase B 5 mM KH2PO4 buffer, pH 3, 5% ACN þ
500 mMKCl respectively. The flow rate was 6 μL/min. A total of
9 fractions were obtained using step gradients of mobile phase B:
unbound, 0�5, 5�10, 10�15, 15�20, 20�30, 30�40, 40�50,
50�100% of B. The eluting fractions were captured alternatively
onto two 0.3� 1-mm trap column, washed with 0.05% TFA and
followed by gradient elution in a 0.2 � 50-mm reverse-phase
column (Monolithic PS-DVB; Dionex-LC Packings). The mo-
bile phase used for this second-dimensional separation was 2%
ACN with 0.05% TFA (A) and 80% ACN with 0.04% TFA (B).
The gradient elution step was 0�60%B in 15min at a flow rate of
2.7 μL/min. The LC fractions were mixed directly with MALDI

matrix solution (7 mg/mL CHCA and 130 μg/mL ammonium
citrate in 75% ACN) at a flow rate of 5.4 μL/min via a 25-nl
mixing tee (Upchurch Scientific) before they were spotted onto a
192-well stainless steel MALDI target plate (Applied Bio-
systems) using a Probot Micro Precision Fraction collector
(Dionex-LC Packings), at a speed of 5 s per well. 50 fmol of
ACTH (18�39) peptide (m/z = 2465.199) was spiked into each
well as internal standard.23

Mass Spectrometry Analysis and Database Search
The samples on the MALDI target plates were analyzed using

a 4700 Proteomics Analyzer mass spectrometer (AB SCIEX)
with MALDI source and TOF/TOF optics. MS/MS analyses
were performed using nitrogen at collision energy of 1 kV and a
collision gas pressure of 1 � 10�6 Torr. The GPS Explorer
software Ver. 3.6 (AB SCIEX) was used to create and search files
with the MASCOT search engine (version 2.1; Matrix Science)
for peptide and protein identifications. The International Protein
Index (IPI) human database (Version 3.31) was used for the
search and this was restricted to tryptic peptides.One thousand
shots were accumulated for each MS spectrum. For MS/MS,
6000 shots were combined for each precursor ion with signal-to-
noise (S/N) ratio greater or equal to 100. For precursors with
S/N ratio between 50 and 100, 10 000 shots were acquired. The
resolution used to select the parent ion was 200. No smoothing
was applied before peak detection for both MS and MS/MS, and
the peaks were deisotoped. For MS/MS, only the peaks from 60
to 20 Da below each precursor mass, and with S/N greater than
or equal to 10 were selected. Peak density was limited to 30 peaks
per 200 Da, and the maximum number of peaks was set to 125.
Cysteine methanethiolation, N-terminal iTRAQ labeling, and
iTRAQ labeled-lysine were selected as fixed modifications while
methionine oxidation was considered as a variable modification.
One missed cleavage was allowed. Precursor error tolerance was
set to 100 ppmwhile MS/MS fragment error tolerance was set to
0.4 Da. Maximum peptide rank was set to 2. iTRAQ quantifica-
tion was performed using the GPS Explorer software and
normalized among samples.23 For MS/MS, only the peaks from
50 to 20 Da below each precursor mass, and the minimum S/N
filter was designated at 10. The mass exclusion tolerance was 3
Da around 115.5 m/z. Peak density was limited to 50 peaks per
200Da, and themaximum number of peaks was set to 80. iTRAQ
ratios were calculated based on the areas of the iTRAQ reporter
fragment peaks (114, 115, 116 and 117), and the ratios calcula-
tion included only peptides identified with C.I. % above cutoff
thresholds as described below. The average iTRAQ ratio and
standard deviation (S.D.) were determined using the GPS
Explorer software (Ver. 3.6). In order to verify the identified
proteins and degree of quantification, the same set of spectra
were run on a different database se\arch algorithm, the Paragon
algorithm in Protein Pilot 4 software (AB SCIEX). Autobias
correction was applied and the Unused ProtScore was >1.3
(C.I.% > 95%).

Establishment of Differential Candidates
Proteins identified and quantified by iTRAQ (Supplementary

Tables 3 and 4, Supporting Information) formed the basis of our
seed selection. For each patient, a ratio was obtained for each
protein by self-comparison to nontumorigenic liver tissue. The
definition of a differential protein required passing two levels.
First, the protein should meet the expression threshold of 1.25
and 0.8 (reciprocal of 1.25) for overexpressed and under-
expressed proteins respectively. We chose a slightly lower cutoff
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as this would help bolster sensitivity. Traditionally, the significant
cutoff threshold proposed was based on the standard deviation
(S.D.) of all the ratios of the respective labeled peptides and this
would theoretically be 1.3/0.77 (based on 1( 2 S.D.).23 Second,
the other requirement is that the protein has to be consistently
detected in at least 3/5 of patients for the moderately differ-
entiated samples and 5/7 patients for the poorly differentiated
tumors. Of note, there were cases where proteins met the
expression threshold but did not meet the second requirement
and thus were removed (Supplementary Figure 1, Supporting
Information). Taken together, proteins that meet the require-
ments in both filters (expression change and patient support)
were maintained as seeds for neighbors and cluster analysis.

Protein�Protein Interaction Network (PPIN) Cleaning
An integrated PPIN was built comprising of data from

HPRD,24 BioGRID,25 INTACT26,27 and DIP28�30 as well as
data from literature.31,32 This network was then filtered using
CMC/FilterNadd, and the top 90% of highest scoring edges
kept. The resultant combined network (pathway and PPIN
information) displayed the properties of a typical PPIN (data
not shown).

To evaluate the effect of network cleaning on the integrated
network, we measured Gene Ontology (GO) Biological Process,
Cellular Component and Molecular Function term coherence
for every edge pair in the cleaned and uncleaned integrated
network. Edge coherence is calculated by counting the number of
shared GO terms in each category for every GO-annotated edge
pair divided by the total number of considered edges.

The cleaned integrated PPIN was then used as the reference
protein interaction network for cluster identification.

Identification of Functional Clusters as Overlapping Cliques
Figure 1 shows the overview of the integrated bioinfor-

matics pipeline. To identify relevant subnets, we used differ-
ential proteins obtained above as seeds and mapped them
onto the cleaned PPIN. They were then expanded to include
their first-degree neighbors. Identification of overlapping
clusters was performed using Palla’s Clique Percolation
Method.15 In this paper, we will discuss the largest clusters
obtained with k = 5�8. Smaller clusters (k = 3�4) are available
upon request. The clusters were then scored and ranked by the
following method.

S ¼
∑
n

i¼ 1
Ei

n
ð1Þ

Where S is the calculated score and E is the expression value
for a detected protein (if protein is underexpressed, then the
reciprocal score is used).

Identification of Enriched Pathways and Tracking Pathway
Associations

To find enriched pathways, we mapped the seeds onto our in-
house developed database PathwayAPI,19 which comprises of
information extracted from KEGG,33 WikiPathways34,35 and
IPA.36 The online repository is available at http://pathwayapi.
com/. There are 4268 nodes and 35307 edges, corresponding to

Figure 1. Schematic of integrated analysis pipeline. The analysis pipeline can be broadly divided into two major components. On the left block, MS
protein list is first filtered for seed proteins. The expansion step is done in relation to the cleaned protein�protein interaction network or PPIN (for
information on how this is done, please refer to Materials and Methods). Clique analysis is then performed to obtain tightly connected clusters. The
clusters are then scored and ranked. For pathway analysis, we used an integrated pathway database developed in-house (Pathway API). Similarly, theMS
protein list is expanded by locating shared neighbors in the list of pathways. Pathways significant in mod and poor respectively were identified. The
shortest path distances between the mod to poor pathways were then identified on an integrated gene network combining both pathway and PPIN
information. Finally, the set of significant pathways can be compared to the significant clusters to identify overlaps in function and annotation.
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544 pathways. Significance (P e 0.05) was calculated using the
hypergeometric method in eq 2. For the hypergeometric test,
shared neighbors that were recovered were also considered in the
set of proteins in the poor or mod list. This helped to increase the
significance of those pathways that have a higher preponderance
of indirectly linked genes. The pathways were then scored and
ranked by using eq 3.

hðx;N , n, kÞ ¼

N � k
N � x

 !
k
x

 !

N
n

 ! ð2Þ

WhereN is the number of proteins in the pathway network, x is the
number of proteins in the poor or mod list, m is the number of
proteins in current pathway, and k is the number of same proteins
between the poor or mod gene list and the pathway.

S ¼
∑
n

i¼ 1
Ei

n
ð3Þ

where S is the calculated score and E is the expression value for a
detected protein (if protein is underexpressed, then the reciprocal
score is used).

We tracked the progression of moderate into poor stage by
first taking into account all significant pathways that are common
to both mod and poor stage. We then considered pathways that
are found only in mod, and in poor stage and calculated the
minimum and average distance needed to go from one pathway
to another using the Floyd-Warshall algorithm.37 Distance d, is
defined as the number of steps (in terms of biological molecules)
needed to reach one pathway from another. A distance of 0
implies shared common node(s). Average distance is the average
number of steps from one pathway to another. That is, for each
node Nx in first pathway, Ny in second pathway, find the
minimum distance from Nx to Ny, then averaged over all
combinations of Nx, Ny.

’RESULTS AND DISCUSSION

Result Correlation between Mascot and Paragon
Combining multiple search engines has the dual advantages of

checking reproducibility and providing complementary data from
the same raw results.38 To leverage on the different search algorithms
we performed a search using Paragon on ProteinPilot and Mascot.

Using a cutoff of 5% protein “local” FDR on Paragon, we
found that the agreement, in terms of common protein identi-
fications, between Mascot and Paragon was good (Table 1).
Interestingly, it also appeared that Paragon consistently returned
more protein hits (Table 1). That many, if not most of the
Mascot hits were also found in the Paragon list showed that
despite differences in database search algorithm methods, pro-
teins, especially those of high confidence identifications (see
below) were repeatedly identified. This is plausible in that
multiple search engines adds to the confidence of original protein
identifications by working through different algorithms and
assigning previously unassigned high quality MS/MS spectrum
to peptides.39 To further determine the degree of similarity in
both Mascot and Paragon, we performed correlation analysis on
the intersection for proteins from all 12 patients of their list Rank
and list Ratio scores (Supplementary Figure 2, Supporting
Information). Our results indicated that for proteins agreed on
by both Mascot and Paragon, there is a clear positive correlation
for both ranks and ratio.

As Paragon was returning manymore protein hits, it is of interest
to establish if these additional Paragon unique proteins were of
lower confidence. We performed a one-sided Wilcoxon Ranked
Sum test on Paragon-only proteins and compared it to the
distribution of ranks in Paragon. It was found that the distribution
of ranks in the Paragon-only list was always significantly greater than
that in the full data set. In 11 of 12 patient, the values were close to
zero (<2.2� 10�16) with only one patient giving a value of 0.00064.
This confirms that the Paragon-only list is of lower confidence than
the intersection set. Hence, only proteins that are supported by both
Mascot and Paragon were retained for establishment of differential
candidates.

Expansion by First-Degree Neighbors Improves Coverage
Significantly

From the original data set of approximately 500 proteins
detected from iTRAQ 2D LC�MS/MS we were able to expand
to approximately 1500 proteins, an additional 1000 proteins,
through the use of our bioinformatics pipeline (Figure 2). Proteins
classified as “differential” given the expression ratio threshold and
patient count criteria are used as “seeds” for first-degree neighbor
expansion. A first-degree neighbor is a protein that has a direct
connection or interaction with a seed. Second-degree neighbors,
that is, proteins that are linked to seeds via a single intermediary,
were also considered but due to the wide dispersal of the proteins
in the network, resulted in coveringmost of the reference network.
Hence, only first degree clique analysis results were retained.

A clique is a fully connected graph, and its size is denoted by
the constant k. For instance, all cliques consisting of 3 proteins is
referred as k = 3. To show that expansion of seeds is necessary, we
mapped nonextended seeds onto the reference network, and
retrieved only 31 edges. In the case of cliques obtained via
nonextension, only four k = 3 cliques were returned. These are
(FGA, FGB, FGG), (HSPA8, YWHAG, YQHAQ), (TGM2,
TUBB, ALDOA) and (YQHAB, TUBB, YWHAG). Mapping
first-degree neighbors and the seeds returned 3378 edges and
returned a much larger number of clusters, approximately 120

Table 1. Overlaps between Mascot and Paragon Protein Hits
for All Samples

patient

identifier

intersection

(common toMascot

and ProteinPilot)

Mascot

only

Protein

Pilot

only

199 197 28 63

131 246 16 120

215 499 33 250

196 247 16 119

200 198 28 62

207 498 33 251

126 531 30 287

155 531 30 287

203 586 41 180

120 586 41 180

157 696 34 376

187 697 36 375
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unscored clusters from k = 3 to 8 (Figure 2). Score-able clusters
(with at least one differential protein) provide some indication of
function within HCC. We also recovered many other clusters
that did not contain differential proteins but which appeared to
be interesting and relevant to cancer (data not shown).

Cluster-Based Analysis Reveals Functional Relationships
between Identified-Differential Proteins

Uncovering communities requires a well-annotated network
with high coverage. Currently, PPINs are extremely noisy and are
also incomplete. Agreement across various PPIN databases is
also extremely low.40 Combining PPINs can improve coverage
but may give rise to compounded errors. Functional evaluation of
edges in a PPIN is therefore an important first step. We used the
algorithm CMC14 to reduce the PPIN to only high confidence
edges based on CD distance (Czekanowski-Dice Distance). We
also introduced a GO term coherence cutoff as a second filter.

Although in the cleaning proess, about half of edges were lost, it
corresponded to a 3�4 fold enrichment for GO term coherence.
While integration of several PPINs improved coverage, data quality
is also important. We demonstrated here that by coupling integra-
tion to our data cleaning algorithm, there is an appreciable
improvement (3�5 times) in data quality (Supplementary Table
2, Supporting Information).

For brevity, we limited our discussion to the larger clusters. That
is, overlapping cliques with a core comprised of at least 5�8
proteins. Some smaller clusters might be meaningful and could be

isolated through scoring function, but these were few and usually
were subsets of a larger cluster.Moreover, larger clusters provided an
initial list of higher confidence proteins that could aid in under-
standing the biological significance of the data. To build the clusters,
all poor stage proteins found to be differential, and their first-degree
neighbors, were used (mod differential proteins are a subset of the
poor differential proteins; Figure 3). The top-ranked clusters were
found associated with expected functions such as stress, DNA
damage, apoptosis and differentiation (Figure 4A).

One interesting cluster is the PRKDC cluster which com-
prised of six members, PRKDC, XRCC6, PCNA, XRCC5, WRN
and PARP1 (Figure 4B, top left). XRCC5/6, and PCNA and
PARP1 are repair factors, while WRN is a nuclear protein that
could be involved in maintaining genomic stability. PRKDC is a
protein kinase that is capable of targeting p53, and found to be
differential in a majority of poor patients (5 out of 7). It was
interesting to note that the repair factors were all low count,
between 1 and 2 patients each (Supplementary Tables 3 and 4,
Supporting Information). It might be that mutations of these
repair factors are crucial in affecting the functionality of this
group of functionally close knitted proteins. In particular, these
repair factors all appear to interact with PRKDC. Checking the
cluster against a reference microarray database (Cancer Gene
Expression Database41) indicated that the low count repair
factors have been previously reported to be differentially ex-
pressed in earlier screens. This lends further support that the

Figure 2. Expansion of candidate proteins from mod and poor. MS-detected proteins from mod and poor stages show smaller, sparser networks and
there are too few targets for clustering analysis. Note that mod is a subset of poor, hence only proteins from the poor stage were expanded. Expansion of
first order candidates helps to create a much larger set of candidates for further functional analysis.
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cluster identification can identify meaningful biological relation-
ships and establish a functional context for our data.

Only XRCC5 was found to be differentially expressed by
comparing the PRKDC cluster to the patient data in the mod
stage. Taking the ratio between the scores in this cluster for both
mod and poor revealed this cluster to have the greatest score
jump (that is, in poor, the score in poor is approximately 10 times
greater than the mod stage). This cluster therefore appears to be
important in the transition between mod and poor stage
(Table 4). The exact functional significance and its possible role
in triggering liver cancer progression to the poor stage require
further wet-lab validation.

We also found TP53 in several high ranking clusters. TP53 is
well established in cancer but was not detected in the iTRAQ
screen. p53 is a small protein of low abundance and detection of
low abundant proteins by MS-based proteomics have limited
success. To this end, innovative protocols have emerged to
improve the detection of low abundant proteins such as extensive
fraction by MuDPIT42 and targeted proteomics by MRM.43

However, extensive time and resources are required before
detecting such low abundant proteins is possible. As an alter-
native, our pipeline offers the prospect of detecting such proteins.

Recovery of Clique Proteins from MS Spectra
Based on the cliques isolated for analysis, we found a total of

160 unique proteins of interest. These were formed from 14
participating seed proteins. We combined Mascot- and Paragon-
only proteins into an excess list and identified 23 of these in the
cliques. However, this subset of 23 proteins did not possess any
enrichment for ranks or ratio scores (Wilcoxon ranked sum test,
P = 0.512).

Some MS spectra may match to a particular protein, but
because their scores were below the defined cutoff threshold they
may not be reported initially in the first round of data analysis.
Our bioinformatics pipeline by improving the coverage of
protein communities could have highlighted these proteins. In
an iterative approach, we are empowered now to return to the
original MS/MS spectra to look for evidence to support the
existence of these recovered clique proteins. There are a few
reasons for not reporting these proteins in the initial round of
data analysis: (1) they did not satisfy the two unique peptides
requirement, that is protein identification by a single peptide, (2)
they were identified by short peptides, and (3) they were not
consistently found in the patients. To this end, we selected
several proteins (ACTR2, CDC42, GNB2L1, KIF5B, PPP2R1A,

Figure 3. Network of differential candidate proteins in mod and poor. Network of poor proteins shows the emergence of a giant connected-component
(gray and yellow nodes) by overlaying differential proteins onto HPRD. Since mods are a near perfect subset of poor we overlaid the former onto this
network (yellow nodes) and found that while there appeared to be some pockets where mod proteins tended to aggregate, we found that overall, poor
and mod proteins are interspersed.
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PKACA and TOP1) from the top 34 cliques/chains and not
detected by Paragon, and manually examined their GPS and
Mascot search results and also their MS/MS-to-peptide assign-
ments to verify the legitimacy of the predictions. Assessment of
MS/MS spectra of their top ranked peptides revealed accurate y
and b ion assignments and were of good quality (Expectation

value <0.05) supporting and verifying the in silico expansion
(Supplementary Figure 3); with the exception of KIF5B whose
top scoring peptide had an Expectation value of >0.05. PKACA
could not be found in any of the 12 patients, possibly due to the
Mascot peptide significance P-value >0.05. Proteins of low copy
numbers and high cellular turnover such as transcription factors

Figure 4. Top 6 Clusters. (A) In the context of the network, from the top down view, the top six clusters (yellow nodes) are shown to be related to each
other. Highlighted in red are the links of clusters to each other and to the network. (B) Clusters are the top six ranked clusters obtained in the HCC poor
stage. Each cluster consists of both MS-detected and undetected proteins. The GO term analysis reveals that many of the clusters are involved in cancer
causing events such as apoptosis and cell growth. Calculation of scores in both the mod and poor stage, and comparing their ratio allows identification of
the clusters most involved in the transition event.
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and protein kinases however still cannot be found through
retrospective assessment of original MS/MS data and high-
lighted the utility of our bioinformatics pipeline in circumventing
such challenging MS tasks.

Chained-based analysis supports cluster-based analysis but
reveals many more functional relationships

Cluster based analysis showed that the DNA damage cluster
was most pertinent in the poor stage relative to the mod stage,
exhibiting the largest jump in score ratio. Ranking the top scoring
pathways in the poor stage showed that the top ranking pathways
included mostly detoxification and metabolic pathways. It would
appear therefore chain and cluster�based analysis yielded dif-
ferent results. A closer check against the top clusters GO terms
against significant pathways in poor revealed that it was not so.
The top PRKDC cluster was mapped to stress responses
(P = 3.09 � 10�11). Significant pathways in poor include
Oxidative stress, FAS pathway and Stress induction of HSP
regulation, and ER stress responses. The PEBP1 cluster, also
highly ranked in our list, comprising members PEBP1, AKT1,
ESR1, HSP90AA1, CHUK,HSP90AB1, HSPA8,MAP3K7,
CASP8, MAP3K8, SRC, TBK1, MAP3K14, IKBKB, IKBKG
and NFKB2 corresponded to the term “nuclear receptor”.
Interestingly, this set of proteins is also implicated in stress
responses and immune response to infection. This is of particular
relevance since the liver cancer subtype being considered is
hepatitis induced. We also uncovered apoptosis-associated clus-
ters, which matched to apoptotic pathways in the poor stage
(RAF1,MAP3K5,YWHAZ,CDC25A,YWHAE and ABL1, BCR,
YWHAB, YWHAH, SRC, YWHAE and YWHAG). Proteins
involved with focal adhesions, cell�cell junctions and adherens
which were strongly represented in the PARD cluster (CDC42,
RAC1, YWHAH, PRKCI, YWHAZ, PARD3, PRKCG, PARD6A
and PARD6B) were also found in the poor list. The good
correspondence between top cluster GO annotation and sig-
nificant pathways suggested that the results were congruent.
However, the chains revealed that cluster analysis has several
limitations in understanding the functional and biological differ-
ences between the two stages. Because cluster analysis does not
consider the functional biological units a priori, it is limited by the
size cutoff for the clusters. Moreover, if many of the relationships
do not exist in at least a clique of size 3, it would not be detectable.

Chain analysis, however, was not as useful in yielding novel target
proteins, or unveiling new interactions, as they are already well
studied to begin with.

Chain-based Analysis Reveals Cancer Progression Mainly
Occurs in Mod Stage while Poor Stage Exhibits Most Da-
mage-Specific Effects

HCC progression can be categorized into three stages:
(i) well-differentiated, where HCC cells resemble hepatocytes,
are hypovascularised and considered the early form of HCC,
(ii) poorly differentiated, which is characterized by diffused
growth suggesting advanced HCC progression, and (iii) mod-
erate HCC, which is an intermediate stage between the two. We
compared pathways that are shared in both mod and poor, and
ranked them by their scores to obtain a list of pathways most
affected in the mod stage, and poor stage respectively. For
pathways that are significantly common (P e 0.05) in both
mod and poor, dysregulation of the cytoskeleton, cell�cell
interactions and immune responses are strongly represented.
In the mod stage only pathway list (Table 2), there appears to be
strong enrichment for immune-specific responses. These include
pathways involved in antigen presentation and processing, T-cell
receptor signaling, and proteins involved with InterLeukin-2/4
and interferon pathways. Differential proteins found in these
pathways may be able to provide suitable marker candidates for
early detection for patients that have yet to develop to mod stage.
HCC is a complex, multistep process that commonly develops
against a cirrhotic background (largest risk factor) that arises
from chronic liver inflammation. HBV and HCV infection are
known etiological factors to HCC, accounting for approximately
80% of all HCC cases.21 Patients who are seropositive with
chronic HBV infection are 5�15-fold more likely to develop
HCC.44 HBV and HCV infections induce liver inflammation by
continuous cycle of hepatocyte death and their regeneration.
This leads to the development of chronic hepatitis, liver fibrosis
and cirrhosis, eventually leading to HCC. In particular HCV
RNA and core proteins have been implicated in T-cell
activation45 and evade immune-mediated cell death by interac-
tions with Interferon-R.46 HCV core proteins have also been
shown to interact with MAPK signaling to modulate cell
proliferation. Our results that inflammation-associated pathways
were overrepresented were in line with the conjecture that
chronic inflammation drives hepatocytes to a malignant pheno-
type into the mod stage. Major signaling pathways activated
during HCC progression include Insulin/IGF-1/IRS-1/MAPK
and Wnt/Frizzled/beta-catenin signaling.47

Our analysis found the enrichment of MAPK and Wnt signaling
pathways in both mod and poor, confirming evidence that aberrant
signaling of these two important signaling cascades help shape
cancer transformation. Inflammation induces oxidative stress and
the latter is another important factor contributing towardHCC.We
did not find oxidative stress in the top 20; however, it ranked 67 (P=
1.27� 10�10) in mod and 87 in poor (P = 2.20� 10�13; data not
shown). Signaling pathways such as mTOR, insulin and MAPK are
known to contribute to cancer metabolic transformation. In poor
only pathways, there was enrichment in metabolic pathways
(Table 3). Histologically, HCC is classified as poor when specimens
are noted to be highly vascularised and suggest advanced HCC
progression. To the extent that several metabolic processes were
over-represented, we reasoned that the observed perturbation in
metabolic pathways represented a gross effect on the transformed
liver cells beyond a “threshold of no return”. In addition, they may

Table 2. Pathways Unique to Mod Stage

Mod only pathway

Antigen processing and presentation - Homo sapiens (human)

Cell adhesion molecules (CAMs) - Homo sapiens (human)

FGF Signaling

Id Signaling Pathway

IL-2 Signaling

IL-4 Signaling

Insulin Recpetor Signaling

Interferon type I

mTOR signaling pathway - Homo sapiens (human)

Natural killer cell mediated cytotoxicity - Homo sapiens (human)

Neurotrophin/TRK Signaling

Peptidoglycan biosynthesis - Homo sapiens (human)

T-cell receptor Signaling

Triacylglyceride Synthesis

Vitamin B6 metabolism - Homo sapiens (human)
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confer an advantage that promotes the survivability of tumor cells.48

This metabolic transformation creates a phenotype for sustained
tumor growth and survival, cell-death signals resistance as character-
ized by the histological features of poorly differentiated HCC.
Increased amino acid synthesis, lipid metabolism and synthesis
were found enriched in poor. In conjunction with perturbations in
G1 to S cell cycle control (and G2M DNA damage checkpoint
regulation; Table 3), these observations suggest that amino acids
and lipids synthesis are modulated for the actively dividing tumor
cells. Interestingly, eicosanoids are known to promote secretion of
angiogenic factors. Angiogenesis and vasculogenesis implement the
formation of the vascular network characteristic of poorly differ-
entiated HCC. Eicosanoids such as prostaglandins and leukotrienes
modulate angiogenesis at different levels49 and our data are
congruent with this observation.

Chain Distances in Mod and Poor Reveals Key Roles in IL-2
Signaling and Monoterpenoid Biosynthesis, Respectively

In mod, the integrated network revealed that IL-2 signaling
pathway appeared closely associated with many growth-signaling
pathways such as TGF-β, PDGF, EGF and hepatocyte growth
factor signaling. It is also closely associated to cancer associated
signaling pathways such as Jak-Stat, as well as the stress-signaling
pathway, SAPK/JNK. This suggests that the mod specific IL-2
pathway is important, and possibly quite involved in cancer

progression. In poor, it appears that many of the metabolic
process such as arachidonic acid, linoleic acid, as well as
antitoxicity processes such as drug metabolism (CYP-P450),
tetrachloroethane degradation, and styrene degradation are
closely associated with the monoterpenoid synthesis pathway.
The latter does not appear to be significantly involved in cancer.
However, this pathway, and its constituent proteins may be
closely related tomany of the damage-associated events observed
in poor. We also observed a close connection between p53
signaling (significantly present in both mod P = 4.32� 10�5 and
poor P = 9.24 � 10�8) and the Cell Cycle-G2M DNA Damage
Checkpoint Regulation, which was significantly enriched in the
poor stage (P = 0.017).

’CONCLUSIONS

The integration of networks and pathways with proteomic
data generated from iTRAQ 2DLC-MS/MS enhanced our
understanding of the functional relationships of proteome
changes during HCC progression. Using our developed pipeline
on HCC samples, we were able to expand the proteomic data to
recover common neighbors. This in turn made it possible to
expand the set of dysregulated biological pathways. By applying
both cliques and chains analyses our results suggest that HCC
late stage is characterized by heavy metabolic defects which may
be related to the large scale tissue damage characteristic of HCC.
It also implies that intervention at the moderate stage is
important in preventing further irreversible damage. This offers
the opportunity to better characterize tumor proteomes of a
small sample set and can be used for informed clinical decision-
making for individual cases.

We also examined the possibility of integrating the outputs of
several database search algorithms in enhancing the protein list
for analysis. Although we found that the protein set in Mascot
was largely covered by the Paragon, the large excess list in
Paragon turned out to be of lower confidence. Given that the
overlaps between Mascot and Paragon were strongly linearly
correlated, it indicated that despite different approaches, they
generally give rise to similar results. In future work, it may be
worth exploring combining the results of even more database
search algorithms to improve the confidence level of the protein
set despite the time-consuming searches.

’ASSOCIATED CONTENT

bS Supporting Information
Supplementary Figure S1. Histogram of Frequency Distribu-

tion of Patient Counts. Support for proteins given patient size is

Table 4. Clusters with Highest Score Jump Ratioa

clique p_C m_C p_S m_S ratio members

K = 6_0 5 1 3.74 0.38 9.7 PRKDC XRCC6 XRCC5 WRN PARP1 PCNA

K = 5_1 5 1 2.8 0.28 9.7 PRKDC TP53 XRCC6 XRCC5 WRN NCOA6 PARP1 PCNA

K = 5_3 1 1 2.34 1.35 1.72 CHUK IKBKB MAP3K14 MAP3K7 PEBP1

K = 5_5 2 2 2.17 2.03 1.06 YWHAE YWHAZ CDC25A RAF1MAP3K5

K = 6_5 4 3 2.16 1.09 1.97 ABL1 BCR CDKN1B YWHAB YWHAE YWHAG YWHAH SRC

K = 5_1 1 1 1.95 1.13 1.72 RAF1MAP2K1 PRKCZ PRKCD PEBP1MAPK1

K = 5_3 1 1 1.59 1.66 0.96 YWHAZ EGFR KRT18 CBL PRKCA

K = 5_4 3 1 1.4 1.03 1.34 YWHAH YWHAZ CDC42 PARD6A PRKCI PARD3 PRKCG PARD6B

K = 5_2 1 1 1.1 0.28 3.82 TP53 PIAS4 SMAD3 SMAD2 KPNB1
a p_C, poor count; m_C, mod count; p_S, poor score; m_S, mod score.

Table 3. Pathways Unique to Poor Stage

poor only pathway

Alkaloid biosynthesis II - Homo sapiens (human)

C21-Steroid hormone metabolism - Homo sapiens (human)

Cell Cycle-G2M DNA Damage Checkpoint Regulation

D-Arginine and D-ornithine metabolism - Homo sapiens (human)

Eicosanoid Synthesis

Ether lipid metabolism - Homo sapiens (human)

G1 to S cell cycle control

Glucocorticoid and Mineralcorticoid Metabolism

Glycerophospholipid metabolism - Homo sapiens (human)

Glycogen Metabolism

Jak-STAT signaling pathway - Homo sapiens (human)

Monoterpenoid biosynthesis - Homo sapiens (human)

Nuclear Receptors

Pantothenate and CoA biosynthesis - Homo sapiens (human)

Riboflavin metabolism - Homo sapiens (human)

Selenium metabolism/Selenoproteins

Steroid Biosynthesis
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small with most proteins only having support from one to two
patients. Therefore, even if a protein is defined as “differential”
given a large change, the lack of patient support may cause it to be
filtered. Dotted lines correspond to the minimum number of
patients we kept for each of HCC phases. Supplementary Figure
S2. Ranks and ratio correlation analysis of proteins detected by
Mascot and Paragon. The intersection for proteins agreed on by
both Mascot and Paragon from all 12 patients were analyzed for
their (A) list Rank and (B) list Ratio scores. Supplementary
Figure S3. Mascot and MS/MS fragmentation information of
clique recovered proteins. High quality MS/MS spectra and
good Mascot information of Paragon-unique and clique recov-
ered proteins retrospectively verified our in silico protein com-
munity expansion. While the Expectation value of KIF5B (D) is
insignificant, its MS/MS spectrum demonstrated reasonably
good ion assignment. Supplementary Table 1. Patient HCC
grade and identifier. Supplementary Table 2. Edge GO term
Coherence for cleaned and uncleaned integrated PPIN. Supple-
mentary Table 3. List of Proteins detected from patients with
moderate HCC. Supplementary Table 4. List of Proteins de-
tected from patients with poor HCC. This material is available
free of charge via the Internet at http://pubs.acs.org.
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