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The incidence of postoperative cognitive dysfunction (POCD) in orthopedic patients varies from 16% to 45%, although it can be
as high as 72%. As a consequence, the hospitalization time of patients who developed POCD was longer, the outcome and quality
of life were worsened, and prolonged medical and social assistance were necessary. In this review the short description of such
biomarkers of brain damage as the S100B protein, NSE, GFAP, Tau protein, metalloproteinases, ubiquitin C terminal hydrolase,
microtubule-associated protein, myelin basic protein, 𝛼-II spectrin breakdown products, and microRNA was made. The role of
thromboembolic material in the development of cognitive decline was also discussed. Special attention was paid to optimization
of surgical and anesthetic procedures in the prevention of postoperative cognitive decline.

1. Postoperative Cognitive Disorders:
Terminology, Clinical Spectrum, Incidence,
and Risk Factors

Postoperative cognitive disorders are common in elderly
(>65-year-old) patients. Cognitive dysfunction is present
more often in orthopedic patients than in any other hospital-
ized group. It includes the deterioration of perception, mem-
ory, information analysis, attentional focus, concentration,
and patients’ response [1]. Those disorders are divided into
postoperative delirium, postoperative cognitive dysfunction
(POCD), and dementia [2]. Delirium and dementia are
reported in the literature as parts of the continuum of
postoperative cognitive impairment [3].

Delirium characterizes the following: (1) a disturbance
of consciousness with inattention; (2) acute changes in
cognition (i.e., memory deficits, disorientation, language dis-
turbances, and perceptual disturbances); (3) the disturbances
that develop over a short period of time and fluctuate over
time; and (4) the disturbance is not caused by a general
medical condition [4].

In the terminology relating to time course, delirium
can be prevalent, incident, or persisting. Motor subtypes
are classified into hyperactive delirium (characterized by
increased psychomotor activity with agitation), hypoactive
or “quiet” delirium (with reduced psychomotor behavior and
lethargy), and mixed delirium, which alternates between a
hyperactive and hypoactive manifestation. Additional defi-
nitions include subsyndromal delirium or delirium superim-
posed on dementia [2, 4, 5]. POCD is the subtle impairment
of memory, concentration, and information processing [2,
4]. The symptoms of POCD vary from mild memory loss
to the inability to concentrate or process information [2].
The nature of postoperative cognitive disorders is frequently
subclinical and no changes in diagnostic imaging are present
[6].Therefore, in many cases, only the patient and/or partner
can recognize the onset of the pathology [2].

In clinical practice, postoperative delirium is diagnosed
by the Confusion Assessment Method (CAM). This method
assesses four features: (1) acute onset and fluctuating course,
(2) inattention, (3) disorganized thinking, and (4) altered
level of consciousness [2]. The diagnosis of delirium requires
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the presence of the first two features and either third or
fourth [2, 5]. In the diagnosis and grading of delirium, several
tests are validated, including the CAM, the Delirium Rating
Scale Revised-98, the Delirium Symptom Interview, the
NEECHAM Confusion Scale, and the Estimation of Psycho-
logic Ability and Surgical Stress (E-PASS) [5]. However, there
are no approved criteria for the assessment and diagnosis
of POCD [2, 5]. Therefore, POCD is much more difficult
to define. There are three types of POCD through which
patients can suffer from isolated learning/memory decline,
difficulties in executive functions, or combined cognitive
decline [7]. The diagnosis of POCD requires perioperative
neuropsychological testing. Several tests are used, such as
the Logical Memory Test, the CERAD word list memory,
the Boston Naming Test, the Category Fluency Test, the
Digit Span Test, the Trail Making test, and the Digit Symbol
Substitution test [5]. Common diagnostic criteria include a
20% change from the baseline evaluation and a predefined
(usually two or more) number of tests or an absolute decline
(>1 SD) from baseline scores in two or more psychological
tests [4].

Variability in the incidence of POCD can be caused by
variable test batteries, the nonstandardization of neuropsy-
chological tests performed at different times of the day, the
lack of a control group, differences in significance levels
between studies, significant loss of patients during follow-
up as well, and the so-called “learning effect,” which occurs
when the same test is applied to the same person many times
[2, 27]. Another question concerns the time at which the
diagnosis of POCD was made. Different drugs administered
in the perioperative period can affect patients’ cognition.
Thus, some authors believe that the diagnosis of POCD
should be made no earlier than two weeks after the surgery
[27].

Delirium is the manifestation of cortical dysfunction
resulting from disturbances in neurotransmitter systems.
Abnormal serum anticholinergic activity as well as mela-
tonin, norepinephrine, and lymphokines was described in the
etiology of delirium. A relationship with surgical stress and
inflammatory response was also suggested [5]. The risk fac-
tors of postoperative delirium include advancing age (>70),
sensory deprivation (visual or hearing impairment), sleep
deprivation, social isolation, physical restraint, use of urinary
bladder catheter, iatrogenic adverse events, polypharmacy,
preoperative use of opioids or benzodiazepines, severe illness
(especially infection, fracture, or stroke), cognitive impair-
ment, previous history of delirium or cognitive impairment,
decreased cerebral perfusion pressure, fever or hypothermia,
dehydration, malnutrition, low serum albumin, and a serum
urea nitrogen/creatinine ratio of 18 or greater. Significant
blood loss during surgery, blood transfusion, postoperative
hematocrit <30%, and severe postoperative pain also were
identified as a risk factors of postoperative delirium [2, 5].

According to Monk and Price [2], increasing age, lower
education level, a history of a previous cerebral vascular
accident with no residual impairment, and POCD at hospital
discharge are identified as independent risk factors for POCD
threemonths after surgery.Other studies included the follow-
ing factors for the risk postoperative cognitive impairment:

a general anesthesia rather than a regional one (although
some authors [5] did not found it to be significant), increasing
duration of anesthesia, reoperation, postoperative infections,
postoperative respiratory complications, lower preoperative
level of consciousness, and treatment with cholinergic drugs
and benzodiazepines. Additional risk factors are noise, bright
light, and physiologic disturbances, such as hyponatremia
or hypoalbuminemia, as well as male sex, depression, and
reduced activity in daily life [27–32]. Surprisingly, there
was no evidence that hypoxemia is associated with the
development of POCD [30, 33]. Some studies found that
hypotension was the only intraoperative risk factor respon-
sible for postoperative delirium [31]. However, other authors
did not support that observation [30].

The incidence of postoperative delirium varies from 5%
to 15%. In some patients, such as those with hip fracture,
the problem is common and varies from 16% to 62% [5].
The incidence of POCD is difficult to describe. According to
Deiner and Silverstein [5], it should be described at specific
intervals after surgery; between the second and tenth day
after surgery, the incidence is as much as 25%. The incidence
then decreases as follows: to 10% at three months, 5% at six
months, and 1% at one year [5]. According to Coburn et al.,
the incidence of POCD one week after surgery in patients
older than 18 years varies from 19% to 41%, and a rate of 10%
three months after surgery is detected in patients older than
60 years [34]. In 60-year-old patients who underwent major
surgical procedures under general anesthesia lasting over two
hours, 10% suffered memory impairment and concentration
problems for more than three months after the surgery.
The disorder occurred twice as often in patients between
70 and 80 years than in patients between 60 and 70 years
[35]. According to statistical data, about 70% of patients
with POCD die within five years, compared to about 35% of
patients without postoperative delirium [36].

2. Surgery-Induced Stress Response
and the Role of Anesthetic Agents in
Neuroinflammation

Surgery-induced stress response leads to the following: (1)
the cardiovascular effects of tachycardia and hypertension
resulting from the increased secretion of catecholamines
from the adrenal medulla and norepinephrine from the
presynaptic nerve terminals because of the activation of the
sympathetic nervous system; (2) changes in hormone secre-
tion in hypothalamic-pituitary-adrenal axis, which influences
the metabolism of carbohydrates, proteins, fat, salt, and
water; and (3) immunological and hematological changes
[37]. Immunological and hematological changes include
cytokine production, acute phase reaction, neutrophil leuko-
cytosis, and lymphocyte proliferation. Cytokines—mainly
interleukin-1 (IL-1), tumornecrosis factor-𝛼 (TNF-𝛼), and IL-
6, which are released from activated leukocytes, fibroblasts,
and endothelial cells—play an important role in systemic
inflammatory reaction [37]. Some authors [5, 15, 27, 32,
38–41] suggest that inflammation plays a substantial role
in the pathogenesis of POCD. Rudolph et al. [42] found
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that the chemokine concentration in the early postoperative
period was more elevated in patients who developed delir-
ium, compared to the matched controls. However, Lemstra
et al. [38], in comparison to 18 patients who developed
postoperative deliriumwith 50 controls, found no differences
in preoperative concentrations of C-reactive protein, IL-6,
and insulin growth factor 1 (IGF-1) between groups. Animal
studies also showed that the development of POCD in rats
was associated with glial activation and the expression of
proinflammatory cytokines within the hippocampal region
[27]. Some studies revealed the role of interleukin-18 (IL-
18) in the neuroinflammation and neurodegeneration of the
central nervous system. Patients with a defect in the IL-18
cytokine promoter gene had higher concentrations of serum
amyloid peptides [36].

The increased production of TNF-𝛼, IL-𝛽, and IL-6 in
mice neurons after isoflurane anesthesia was described by
Wu et al. [43]. However, Schilling et al. found that volatile
anesthetics (especially sevoflurane and desflurane) reduced
proinflammatory cytokine release [44]. The exact mecha-
nism by which volatile anesthetics increase proinflammatory
cytokines remains unknown. It was suggested that nuclear
factor kappa B-dependent (NF-𝜅B-dependent) pathways and
the receptor for advanced glycation end products (RAGE)
play a role in this mechanism [39].

The amyloid-𝛽 peptide concentration was related to
learning, memory deficiencies, and neurodegeneration. The
continuous infusion of amyloid-𝛽 peptide in rats resulted
in impairments in learning and memory. Higher levels of
amyloid-𝛽 peptide in the hippocampus were observed in
older rats, compared to younger rats [36].

The literature includes a discussion on the role of anes-
thesia in the development of postoperative cognitive decline.
However, the mechanism of the association of POCD with
surgery and anesthesia remains unclear. However, some theo-
ries consider these effects of anesthetics, which include direct
toxicity, alterations in calcium homeostasis, the systemic
inflammatory effect, the age-sensitive suppression of neu-
ronal stem cell function, and the acceleration of endogenous
neurodegenerative processes, as well as caspase activation
and apoptosis [45, 46]. Cell culture studies have shown that
volatile anesthetics (isoflurane, sevoflurane, and desflurane,
the latter in the presence of hypoxia) induce apoptosis and
increase amyloid-𝛽 formation [36, 45]. It was shown that
isoflurane is an agent promoting 𝛽-site amyloid precursor
protein-cleaving enzyme (BACE) activity and amyloid-𝛽
deposition [39]. In an animal model, Dong et al. found that
that sevoflurane increased BACE concentration and amyloid-
𝛽 [47]. In addition, halothane produced the concentration-
dependent enhancement of amyloid-𝛽 oligomerization [39].
Moreover, many anesthetics can promote the hyperphospho-
rylation of the microtubule-associated protein Tau, which
was observed in hypothermic conditions, but not normother-
mic conditions [36, 45]. Propofol increased Tau phosphory-
lation, even with normothermia [48]. Fodale et al. [36] found
that intravenous anesthetics, such as propofol and thiopental,
did not significantly change the amyloid precursor protein
[36].

Some authors discussed the role of genetic factors in the
pathogenesis of neurodegenerative disorders. They found an
association between the apolipoprotein 𝜀4 (APO-𝜀4) allele
and Alzheimer’s disease [27]. Hence, the APO-𝜀4 gene could
be a predictor of postoperative cognitive disorders [36].
However, in Abildstrom et al.’s study of 976 patients aged 40
years and older and undergoing noncardiac surgery, the 𝜀4
allele was found in 272 patients. No significant association
was found between the 𝜀4 genotype and POCD [49].

3. POCD in Orthopedic Patients

According to Scott et al. [50], the incidence of POCD after
big joint arthroplasty varies from 16% to 45%, although it was
reported [51] as high as 72% at six days and 30% at sixmonths,
postoperatively.The etiology of POCD in orthopedic patients
is unclear. Many factors are posited, including thromboem-
bolic complications, the influence of anesthesia, and the
influence of pain therapy in the postoperative period [50].
The high incidence of cognitive dysfunction in orthopedic
patients can result (in addition to the above-mentioned
risk factors) from long bone fractures, from prolonged
immobilization, and partially from perioperative stress [6]
or a surgery technique. Colonna et al. concluded that the
incidence of cerebral embolization after lower extremity
arthroplasty was between 40 and 60% [52]. Fatal cerebral
embolization constituted complications accompanying long
bone fractures [53], total knee replacements [54], hip arthro-
plasty [55], and vertebroplasty [56], in which the embolic
material passed into the brain through an open foramen ovale
[57], although postmortem examinations did not reveal it
[52].

4. Biomarkers of Brain Damage

Biochemical tests are useful diagnostic tools in the examina-
tion of functional brain disorders. Elevated serum concen-
trations of the markers of brain damage indicate a neuronal
and/or glial injury. The biomarkers are released because of
either transient ischemia or ultimate cell degradation. Their
serum concentration depends on the localization of patho-
logical changes, the degree of tissue damage, and the time
that has passed since the onset of changes. The ideal marker
of brain damage should have the following characteristics: (1)
highly specific; (2) highly sensitive; (3) released in only cases
of irreversible damage to cerebral neurons; (4) detectable in
the blood and/or cerebrospinal fluid within a short period
of time after the injury; and (5) released in well-known time
sequences after the injury. Furthermore, the marker should
be (6) age- and sex-independent and (7) easily detectable in
the blood because frequent drawing of cerebrospinal fluid
samples is impractical; and (8) its concentration should be
easily measureable in laboratory tests [58].

The following substances have been investigated as rele-
vant neurological biomarkers in the postoperative period.

4.1. S100B Protein. The S100B protein has a molecular weight
of 21 kDa. It belongs to the calcium-mediated proteins in
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the S100 proteins family, which consists of 24 members that
have similar structures and functions [59]. Somemembers of
the S100 protein family are specific for certain localizations
[60]. High S100B protein concentrations are present inside
the brain, mainly in astroglial and Schwann cells, as well as in
adipocytes, chondrocytes, and melanocytes [10, 61, 62]. The
S100B protein plays different roles in the human body and is
present in many types of cells and tissues [63]. It has intra-
and extracellular targets, and it has autocrine and paracrine
effects on glia, neurons, and microglia [64]. Although the
exact functions of the S100B protein are still unclear, it may
be involved in neuronal and glial growth, proliferation, and
activation [64].

Increased S100B concentrations in serum and cere-
brospinal fluid were observed after brain infarction, trauma,
and toxic injury [64]. The highest S100B protein serum
level was observed just after an injury [58] and was then
normalized within 24 hours, even in patients with poor
outcomes [65]. An increased concentration of the S100B
protein was shown on the sixth day after head trauma, which
was probably the result of a secondary injury [65]. Elevated
concentrations of S100B protein were also demonstrated in
a posttraumatic animal model [65]. The results of animal
studies suggested that S100B protein levels correlated with
the degree of shock: in moderate shock, they were higher
than in severe shock [66].The concentration of S100B protein
increased immediately after bilateral long bone fractures,
as well as after local ischemia and the reperfusion of the
liver, gut, and kidneys [10, 66]. In rabbits with femur frac-
ture and no evidence of neurological injury, S100B protein
concentration increased within minutes after bone trauma,
suggesting that the S100B protein was released from nonneu-
ronal sources [64]. This finding supports observations that
elevated levels of the S100Bprotein can be caused by increased
permeability of the blood-brain barrier, regardless of cerebral
damage [65].

Elevated levels of S100B protein were shown in basketball
and hockey players after competition, as well as in runners,
boxers [67], swimmers, and soccer players. In the latter,
however, latter there was a correlation between increased
protein concentration and frequency of head injury [13].
Intense physical exercise can remarkably increase serum
S100B concentration. It was shown that, after acute muscle
injury, S100B expressed in mature muscle myofibrils was
released from injured muscle tissue and could penetrate the
bloodstream [68]. Another possible cause of increased serum
S100B level is the catecholamine-dependent activation of
adipocytes [68].

A raised plasma level of the S100B protein also occurred
in melanoma patients [69] and in sepsis-associated
encephalopathy [70].

The possibility that the S100B protein could be released
from extracerebral localization restricts its utility as a marker
of brain damage, which, nonetheless, still ranges from 70 to
80% [62]. The S100B protein is a very useful biochemical
tool because of its short (25 minutes) half-life [58, 62, 64], as
well as the fact that its serum concentrations are not affected
by age or sex [58]. Moreover, serum concentrations are not

altered by alcohol overdose, moderate renal dysfunction, or
hemolysis [62, 64].

4.2. Neuron Specific Enolase (NSE). Neuron specific enolase
(NSE) is an enzyme that catalyzes the conversion of 2-
phospho-D-glycerate to phosphoenolpyruvate in a glycolytic
pathway. It is found in the cytoplasm of neurons and neu-
roendocrine cells and its subunits, and 𝛼 and 𝛾 are specific
for neurons. NSE is also found in red cells and platelets
[64, 71]. The molecular weight of NSE is 78 kDa, and its
half-life is 24 hours [64]. The normal serum concentration
of NSE varies between 2 and 20mg/L; values >30mg/L are
pathological, and ≥115mg/L are related to poor prognosis
[64]. Increased levels of NSE were observed after cortical
brain injury and severe head trauma and in patients with
temporal lobe epilepsy as well as in the patients with internal
cardiac defibrillators, where correlations were found between
NSE levels and the number of shocks and the cumulative time
of cardiac arrest [64].

This protein is effective in predicting neurological out-
comes after cardiac arrest and in patients with ischemic
stroke [64]. The results of a study on cardiac surgery patients
were ambiguous. In some studies, the correlation of NSE
with POCD was observed [12, 20], but not in others [11].
The NSE concentration in the cerebrospinal fluid in patients
after aortic aneurysm repair surgery was increased regardless
of the presence or absence of neurological symptoms [64].
Gempp et al.’s study of recreational divers found that NSE
levels >15.9 𝜇g/L predicted the development of neurological
decompression sickness with a specificity of 100% [26].
Observations of patients undergoing liver transplantation
revealed that the postreperfusion concentration of NSE
correlated with decreased regional oxygen saturation [64].

Similarly, the results of studies analyzing the correlation
between theAPOE4 genotype and cognitionwithNSE serum
levels in the postoperative period were inconclusive [64].

4.3. Glial Fibrillary Acidic Protein (GFAP). The glial fibrillary
acidic protein (GFAP) is amonomeric filament protein found
in the astroglial skeleton [71]. It is a specific marker of
brain damage and is potentially useful in predicting clinical
outcomes [71]. It was shown that the serumGFAP levels were
higher in patients withmass lesions than in those with diffuse
brain injury [71]. Pelinka et al. [72, 73] found that serum
GFAP levels were increased in patients with intracranial
pressure (ICP) above 25mmHg. However, the cutoff value of
GFAP for detection ICP elevation was not defined.

Clinical data suggests that GFAP provides important
information for the prognosis of traumatic brain injury as
well as for differential diagnosis and prognosis in various
types of stroke [74]. The most recent data showed that,
in intracerebral hemorrhage, GFAP sensitivity is 0.8 and
specificity is 0.97 [75].

4.4. Tau Protein. TheTau protein is a microtubule-associated
protein that stabilizes the axonal microtubules [64]. It is
found in the brain and the spinal cord [64]. The tau protein
has different isoforms, with molecular weight varying from
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45 to 68 kDa [64]. The phosphorylation of the Tau protein
is associated with neuronal death, and it is observed in
neurodegenerative diseases [64]. Increased concentrations of
the tau protein were observed in patients who developed
postoperative cognitive decline [64]. A correlation between
increased serum levels of the tau protein and the size of brain
infarction was observed in noncardiac surgery patients [64].

4.5. Metalloproteinases (MMP). Metalloproteinases (MMP)
are zinc-dependent endopeptidases that degrade most extra-
cellular matrix proteins [64]. MMPs are secreted as cells
in blood vessel walls as myocytes, endothelial cells, and
macrophages [64].

MMPs are divided into the following: (a) gelatinases
(MMP-2, MMP-9); (b) collagenases (MMP-1, MMP-8, and
MMP-13); (c) matrilysins (MMP-7); (d) membrane-type
MMPs (MMP-14, MMP-15, MMP-16, and MMP-17); and (e)
others (MMP-11, MMP-12) [64].

MMP-9 was observed to be a marker of blood-brain
barrier dysfunction, and elevated concentrations of this
protein were noted in patients with stroke [64]. Gaudet et
al. [16], in their study of 73 patients undergoing carotid
surgery, found elevated serum concentrations of MMP-9
in patients who developed postoperative cognitive decline.
This finding is supported by Taurino et al., who found
that, in patients undergoing carotid surgery, MMP-9 levels
were significantly higher in those with cerebral lesions at
neuroimaging, compared to the healthy controls [14].

4.6. Ubiquitin C Terminal Hydrolase-L1 (UCH-L1). Ubiquitin
C terminal hydrolase-L1 (UCH-L1), also called neuronal-
specific gene product (PGP 9.3), is a highly specific neuronal
protein with a molecular weight of 24 kDa. It is found in
perikarya in gray matter. Its role is removing excessive,
oxidized, or misfolded proteins in the central nervous system
[64, 71].

Because it is not found in nonneuronal sources, UCH-L1
is a specific biomarker of brain lesions [64]. After traumatic
brain injury and subarachnoid hemorrhage, this protein is
released to CSF [64]. In Papa et al.’s study, which includes 96
patients with traumatic brain injury and 199 controls, UCH-
L1 was detectable in serum within one hour after the injury
and was associated with GCS scoring, CT lesions, and the
need for neurosurgical intervention [22].

4.7. Microtubule-Associated Protein 2 (MAP2). Microtubule-
associated protein 2 (MAP2) is thought to be a dendrite-
specific protein and, according to some authors, it is a good
biomarker for dendritic injury [71]. InMondello et al., MAP2
concentrations correlated with the Glasgow Outcome Scale
Extended (GOSE) and the Levels of Cognitive Functioning
Scale (LCFS), measured at six months after injury [21].

4.8.Myelin Basic Protein (MBP). Myelin basic protein (MBP)
represents 30% of the protein content of myelin. The protein
consists of four isoforms with molecular weights ranging
from 14 to 21.5 kDa. Changes in MBP concentrations were

observed after cortex contusion in an animal model. How-
ever, there is no evidence for the use of MBP as a biomarker
after traumatic brain injury or in intracranial hypertension in
humans [71].

4.9. 𝛼-II Spectrin Breakdown Products (SBDP) 150, 145, and
120. The 𝛼-II spectrin protein forms part of the axolemmal
cytoskeleton, stabilizes the structure ofmyelinated axons, and
is a major substrate in calpain-1 and calpain-2 and caspase-
3, which are involved in cellular necrosis and apoptosis [71].
The calpain-specific 150- and 145-kDa SBDPs are used as
biomarkers of necrotic neuronal death, and the caspase-3-
specific 120-kDa SBDP is used as a biomarker of apoptosis
[71]. In study of 40 adult patients with traumatic brain
injury, mean CSF concentrations of SBDP-145 and SBDP-120
were higher in patients with brain injury who died than in
those who survived. SBDP-145 levels >6 ng/mL and SBDP-
120 levels >17.55 ng/mL strongly predicted death.The authors
concluded that SBDP-145 seems more accurate in predicting
outcomes in patients suffering from traumatic brain injury
[17].

4.10. Micro-RNA (miRNA). Micro-RNA (miRNA) particles
are small molecules involved with regulation of gene expres-
sion [70]. MiRNA plays an important role in orthopedic
diseases, such as osteoarthritis and rheumatoid arthritis [76].
Changes in microRNA concentrations were observed in
patients with bone tumors [77]. The comparison of patients
with severe brain injury and healthy volunteers revealed that
decreases in the levels of miR-16 and miR-92a and increased
levels of miR-765 were strong markers of severe traumatic
brain injury at 25 to 48 hours after injury [71].

5. Biomarkers of Brain Damage in
Orthopedic Patients

Increased levels of biomarkers were observed after orthope-
dic procedures and bone fractures.

Kinoshita et al. [9] examined 14 patients, half of which
underwent total knee arthroplasty (TKA) with bone cement.
The other half underwent intramedullary nail stabilization of
the tibia. All procedures were performedwith tourniquet and
ischemia. In the TKA group, in blood samples withdrawn
15 minutes after tourniquet release, there was a statistically
significant elevation of S100B serum level in comparison to
the group in which tibial fracture was stabilized with an
intramedullary nail. The authors suggested that the increase
was caused by the transient injury of brain tissues caused by
the bone cement [9].

Tomaszewski et al. examined changes in S100B protein
levels in patients who underwent total hip arthroplasty, with
or without bone cement. In both groups of patients, themean
preoperative concentration of S100B protein was comparable
to that in the healthy subjects and reached the maximum
just after the operation. In the cemented group, the level
was significantly higher than in the noncement group, and
normalization was slower. Elevated serum S100B protein
levels may be due to the release of S100B protein from bone
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marrow, as well as the transfer of cellular materials from
the site of the surgery through the bloodstream into the
brain. Because all patients with intraoperative mean blood
pressure dropping below 50mmHg were excluded from the
study, hypotension was eliminated as a possible cause of the
elevation of S100B concentration [18].

In their study of 83 patients older than 65 years under-
going elective total hip arthroplasty, Ji et al. analyzed the
perioperative concentration of the Tau protein, the phos-
phorylated Tau protein (pTau), 42 amino acids in the form
of amyloid 𝛽1 (A𝛽1-42), Tau/A𝛽1-42, pTau/A𝛽1-42, brain-
derived neurotropic factor (BDNF), IL-6, IL-1𝛽, C-reactive
protein (CRP), and malondialdehyde (MDA). They found
that patients who developed POCD had significantly higher
levels of IL-1𝛽, Tau/A𝛽1-42 ratio, and pTau/A𝛽1-42 ratio
and the lower level of A𝛽1-42 in the cerebrospinal fluid,
compared to the non-POCD group. There was no difference
in CFS levels of tau protein, pTau, BDNF, and IL-6 between
both groups. The authors concluded that such biomarkers
might predispose the development of POCD in aged patients
after hip replacement surgery under spinal anesthesia [23].
Similarly, Xie et al.’s study involving 136 patients who had
total knee or hip replacement surgery found that preoperative
CSF A𝛽40/Tau and A𝛽42/Tau ratios were associated with
the postoperative scores of neurocognitive tests. Therefore,
the A𝛽/Tau ratio may identify patients with a higher risk of
POCD development [24].

However, increased serum concentration of the S100B
protein was observed after injuries, which did not include
brain damage. The highest levels of the S100B protein were
noted in patients with long bone fractures [8]. Studies con-
ducted on patients with isolated bone fractures without brain
injury revealed that patientswith hip, radius, or tibia fractures
had significantly higher concentrations of the S100B protein,
but those with phalange, hand, or foot fractures did not [78].
Animal studies showed increased S100B serum levels after
bilateral femur fractures in rats; these results indicated that
bonemarrow could be a potential source of the S100B protein
[10]. Increased serum levels of the S100B protein were found
in patients with acute spinal fracture, but without head injury
[79]. Observations of 233 patients after trauma found that
the highest concentrations of S100B (1.68𝜇g/L on admission
and 0.31 𝜇g/L after 6 hours) were noted in patients suffering
frommultitraumawith head injury.Therewere no differences
in the S100B levels in patients with or without isolated head
injury (0.47 and 0.14 𝜇g/L and 0.49 and 0.15 𝜇g/L, resp.) [80].

van Munster et al. analyzed the serum concentrations
of S100B protein and NSE in 120 patients with hip fracture
and a mean age of 83.9 years. Sixty-two patients experienced
delirium. The authors observed a difference between the
levels of S100B, but not NSE, in the first samples taken during
delirium and the samples fromnondelirious patients [15].The
simultaneous comparison of cortisol, IL-6, IL-8, and S100B
protein revealed that the highest levels of cortisol and IL-8
were observed before delirium but the highest levels of IL-6
and S100B were observed during delirium. In multivariable
analysis, cortisol, logIL-6, and logS100B were associated
with delirium, but when adjusted for preexisting cognitive
impairment, only logS100B remained associated [81]. With

the exception of the previously cited work of van Munster et
al., NSE concentration and delirium in orthopedic patients
have received scant attention in the literature published in
English.

Anckarsäter analyzed the perioperative levels of five CSF
biomarkers: the Tau protein, pTau protein, A𝛽42, neuro-
filament light (NFL), and GFAP in 35 patients undergoing
knee arthroplasty under regional blockade. CSF Tau and
GFAP concentrations increased, whereas pTau, A𝛽42, and
NFL were unchanged. CSF Tau and pTau significantly cor-
related with the CSF/serum albumin ratio as an indicator
of blood-brain barrier permeability. The CSF Tau protein
concentration also correlated with the administered doses
of bupivacaine [25]. Witlox et al.’s study of 66 older adults
with hip fracture found no differences in preoperative CSF
A𝛽1-42, Tau protein, and pTau in patients who did and did
not develop delirium during hospitalization [19]. Summary
of clinical studies on biomarkers of brain damage and their
relation to orthopedic surgery and/or postoperative cognitive
disorders was shown in Table 1.

6. Possible Explanation of Increased
Concentration of Biomarkers of Brain
Damage in Orthopedic Patients

The relationship between stress response, neuroinflamma-
tion, and biomarkerswas previouslymentioned.Thequestion
of surgical technique is also important. During some ortho-
pedic procedures, bone cement is used to fix the elements of
the implants to the bone base. However, it has been shown
that the use of cement can lead to hemodynamic instability,
a decrease in cardiac output, heart contractility, systemic
vascular resistance, and blood pressure, that is, the so-called
bone cement implantation syndrome [82]. Hemodynamic
changes affect cerebral perfusion, as in the relation between
S100B concentration and degree of shock [66]. Although the
presence of bone cement inside the medullar cavity itself
did not produce hypotension, hemodynamic instability was
often observed when the prosthesis stem into the bone is
hammered into the bone [83] and when the pressure inside
the marrow cavity increases. The higher the pressure, the
better the penetration of the cement into the bone and
the greater the strength of osteosynthesis. However, because
of the increased pressure, the translocation of the cellular
material at the site of the surgery into the systemic circulation
was facilitated, causing this material to reach the lungs via
the bloodstream.The diameter of the lung capillaries is about
8 𝜇m. In 1956, Niden and Aviado showed the possibility
of transferring glass spheres up to 420 𝜇m in diameter
through the pulmonary vessels [84]. The second method
used to circumvent the pulmonary filter was via the foramen
ovale, which in one-third of the population is closed only
functionally.Thus, embolicmaterial could be transferred into
the brain. In ultrasound examination the presence of cellular
material from the site of the surgery in the circulatory system
is shown by as a “snow flurry.” In Hayakawa et al. [85],
the “snow flurry” was observed from the beginning of the
reaming of the femoral canal until the end of the surgery, and
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it intensified while the cemented prosthesis stem was being
inserted into the bone.This was not noted during procedures
that did not use bone cement. A histological examination of
the elements forming the “snow flurry” revealed the presence
of amorphous eosinophilic particles with fibrin attached to
their surface. The same effect was noted in patients who
had undergone cemented hip arthroplasty during the whole
procedure, either before or after the use of bone cement. Fat
particles or bone marrow was not detected in any sample;
the authors thought that they had examined “bone dust”
particles with attached fibrin fibers [85].Theworkwas limited
to a relatively small group of only seven patients. In Kim et
al., the histological examination of samples from the right
atrium revealed the presence of fat particles in 34% and
44% of procedures and the presence of bone marrow cells in
13% and 11% of procedures, with and without bone cement,
respectively [86]. The contribution of bone cement to the
etiology of thromboembolic events was suggested [56]. Clark
et al. showed a transient, but statistically significant, decrease
of cardiac output by 33% and of stroke volume by 44%
during procedures that used bone cement. Before the use
of bone cement, there were no changes between the two
(i.e., with and without cement) groups. Because embolic
material was released either before or after the use of bone
cement, the decrease in cardiac output and stroke volume
might have been followed by the embolicmaterial originating
from bone marrow or vasodilatation caused by a monomer
[87]. An animal studies with dog showed that an intravenous
injection of the acrylic acid monomer did not affect the
partial pressures of oxygen and carbon dioxide in the arterial
blood. Mild and transient hypotension was observed, while
monomer concentration in the pulmonary artery was much
higher than that noted in usual clinical situations [88].

It should be noted that discussing the role of bone cement
only in increased concentrations of biomarkers and the etiol-
ogy of POCD is an oversimplification. The role of advanced
age in the patients, their comorbidities, disturbances in blood
flow (because of such problems such as atrial fibrillation and
immobilization), and the consequences of long bone fractures
can lead to the increased incidence of thromboembolic
events, as described above.

Another issue concerns the effect of previously pre-
scribed medications, the duration of hospitalization, the role
of administered pharmacotherapy, and the impact of the
anesthetic procedure on the development of postoperative
cognitive decline.

7. Biomarkers of Brain Damage, Delirium,
POCD, and Anesthetic Procedures

Previous research has considered the influence of different
types of anesthesia (general versus regional) on elderly
patients. Previously published clinical studies did not show
the prevalence of any anesthesia in POCD prevention [6].
Evered et al. compared the incidence of POCD in 644
patients who underwent coronary angiography under seda-
tion, total hip replacement surgery under general anesthesia,
and coronary artery bypass graft surgery (CABG) under

general anesthesia to 34 subjects in control group.Theauthors
observed a higher incidence of POCD in elderly patients
at day 7 after CABG than after the orthopedic procedure.
However, the POCD at three months after the operation
was independent of the type of surgery and anesthesia
used [89]. However, a systematic review of Zywiel et al.
on the influence of anesthesia and pain management on
cognitive dysfunction after joint arthroplasty suggested that
general anesthesia might be associated with increased risk
of postoperative cognitive decline in the early postoperative
period, compared to regional anesthesia, although the effect
was not seen beyond seven days [90]. Some predisposing and
precipitating factors associated with delirium and/or POCD,
such as age, preexisting cognitive impairment, severe illness,
anemia, immobilization, decreased oral intake, dehydration,
sleep deprivation, and urinary catheter use, were common
in all patients, regardless of the type of anesthesia. Regional
anesthesia can be induced with a lower number of drugs,
compared to general anesthesia.Moreover, the pain control is
better and the incidence of thromboembolic complications is
lower. However, the contraindications to neuroaxial blockade
include disturbances in coagulation and circulatory failure.
Thus, a number of orthopedic procedures on the lower limbs
are performed under general anesthesia.

Neurotransmitters take part in the regulation of con-
science, memory, and learning through the central choliner-
gic system [36]. Hence, the interactions between anesthetic
drugs and this system may be important in the pathogenesis
and development of POCD. There are two main classes of
cholinergic receptors: nicotinic and muscarinic. Nicotinic
acetylcholine receptors (nAChRs) are ligand-gated cation
channels, and muscarinic acetylcholine receptors (mAChRs)
are ligand-gated K+ channels, which are divided into five
subtypes (M1–M5). The agonists of central mAChRs and
nAChRs may improve, while the antagonists could impair
performance in cognition, learning, and memory [36].

Volatile anesthetics and ketamine are potent inhibitors
of nAChRs. Desflurane selectively binds the M1 subtype.
Sevoflurane depresses the M1 and M2 subtypes, whereas
isoflurane interferes only with the M3 subtype. All barbi-
turates are competitive antagonists of mAChRs. Propofol
acts on mAChRs and nAChRs, but in concentrations higher
than those used clinically do. Fentanyl and morphine inhibit
signals mediated by both types of receptors, and remifentanil
does not change the release of acetylcholine from cholin-
ergic nerves. Furthermore, neuromuscular blocking agents
or neostigmine administered during general anesthesia can
influence cholinergic transmission [36].

Another question concerns the possible neurotoxicity
of general anesthetics. The findings of both cell-culture
and animal studies suggest that anesthetics may cause
neuroapoptosis, caspase activation, neurodegeneration, 𝛽-
amyloid protein accumulation, and oligomerization, leading
to deficits in cognition. It has been shown that desflurane has
a less harmful neurotoxic profile compared to other volatile
anesthetics [46]. This finding was supported by Zhang et al.
[91], who observed that the administration of isoflurane, but
not desflurane, was associated with an increase in human
CSF amyloid-𝛽 40 concentrations at 24 hours after anesthesia,
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compared to the values observed in patients under spinal
anesthesia. Desflurane, but not isoflurane, was associated
with the decrease in amyloid-𝛽 42 levels at two hours after
anesthesia. In this study, both isoflurane and desflurane did
not significantly affect the concentration of the tau protein in
human CSF [91].

Hudetz et al. [92, 93] found that a single administration
of the intravenous anesthetic ketamine at 0.5mg/kg during
the induction of anesthesia reduced the incidence of POCD
to one week after cardiac surgery.The authors concluded that
the anti-inflammatory properties of ketamine produced this
result.

The results of two studies [94, 95] analyzing the influence
of the multimodal anesthetic technique on the incidence of
POCD were conflicting. However, methodological inconsis-
tencies obscured the clear interpretation of the results [90].

7.1. Postoperative Pain Management Strategy and Postoper-
ative Cognitive Decline. Effective postoperative pain man-
agement in the postoperative period minimizes the use of
opioids, which can decrease the incidence of postoperative
cognitive decline [90]. Zywiel et al. [90] cited 12 studies
that analyzed the influence of different postoperative pain
management strategies on the risk of POCD. Langford et al.
[96], in their study of 525 patients who underwent major
noncardiac surgery, found decreased incidence of POCD
on the second day after surgery (1.8% versus 5%), with
the intravenous administration of parecoxib, compared to
the placebo. Marino et al. [97] investigated the efficacy of
continuous lumbar or femoral block, and YaDeau et al. [98]
described the efficacy of single-shot femoral nerve block
after TKA.These regional techniques decreased the incidence
of POCD in orthopedic patients. Interestingly, the intra-
articular administration of bupivacaine did not change the
incidence of POCD after TKA, compared to the placebo [90].

The postoperative use of opioids is associated with a
higher risk of development of POCD, regardless of par-
enteral drug administration (intravenous, intramuscular, or
epidural). The use of morphine, compared to fentanyl, was
associated with the increased risk of POCD, when opioids
were administered either intravenously [99, 100] or epidurally
[101]. It also was found that the intravenous administration of
opioids was associated with the higher incidence of POCD,
compared to oral drug administration [90].

8. Presurgery Neuroanatomical Biomarkers
for Postoperative Cognitive Decline

Previous studies have focused on the evaluation of brain dam-
age markers in the postoperative period and their correlation
with postoperative cognitive decline. However, of greater
importance is the identification of the predictive factors of
postoperative cognitive disorders amongst patients sched-
uled for surgery. It is known that certain cerebral regions,
such as the entorhinal cortex (ERC) and the hippocam-
pus, may change with Alzheimer disease. Leukoaraiosis and
lacunae volume may indicate vulnerability for postoperative
executive dysfunction [102]. Price et al. [102] analyzed the

hypothesis that presurgical neuroanatomical markers, such
as MRI-based hippocampus/ERC and leukoaraiosis/lacunae
volume, may predict cognitive changes in the postoperative
period. Their findings suggested that the value of presurgery
ERC/hippocampal volumes as neuroanatomical predictors
for cognitive decline was limited. However, perioperative
leukoaraiosis and lacunae volume, as neuroimaging evidence
of microvascular disease, helped explain postoperative exec-
utive function decline.

The results are preliminary as yet; nevertheless, these
observations are interesting and should be a stimulus for
further research.

9. Optimization of Surgical and Anesthetic
Procedures in the Prevention of POCD

A fast-track set-up reduces the duration of hospitalization.
Krenk et al. showed that when the length of stay of patients
who underwent hip and knee arthroplasty was reduced from
7 to 10 days, with amedian of 3 days, no cases of postoperative
deliriumwere observed in the analyzed population [103]. In a
series of 225 patients over 60 years, no cases of postoperative
delirium were observed, and the incidence of POCD was
reduced bymore than 50% at oneweek, postoperatively [104].
Themost recent data confirmed the above observations [105].

It is important to achieve the proper level of anesthesia
during surgery. As mentioned previously, surgery-induced
stress response has unwanted cardiovascular, metabolic, and
immunological effects. On the other hand, overly deep levels
of anesthesia may decrease cardiac function and organ perfu-
sion.Therefore, the question of the potential neurotoxicity of
general anesthetics remains unanswered. Farag et al. analyzed
patients under general anesthesia; those with lower values on
the Bispectral Index (BIS) had fewer disturbances in cognitive
functions, especially in information processing, between the
fourth and sixth weeks after surgery [106]. However, this
observation seems isolated. Steinmetz et al. analyzed 70
patients with cerebral state indexmonitoring (CSI) and found
no significant association between deep (CSI < 40) and light
(CSI> 60) anesthesia [107]. Chan et al. found that BIS-guided
anesthesia reduced anesthetic exposure and decreased the
risk of POCD at three months after surgery. The authors
concluded that when the depth of anesthesia is maintained at
BIS values from 40 to 60, for every 1,000 patients undergoing
major surgery, 23 were prevented from POCD and 83 were
prevented from delirium [108]. BIS-guided anesthesia also
improved the outcomes of surgical procedures [109].

During noncardiac surgery, significant cerebral desatura-
tion occurred in up to 30% of patients [109]. Papadopoulos
et al. described the association of cognitive dysfunction in
elderly patients with hip fractures and low values of cerebral
oxygenation [110]. Thus, the monitoring of cerebral oxygen
saturation may be promising in the reduction of subtle
neurologic deficits [111], particularly in patients who undergo
total hip arthroplasty [112]. However, in a systematic review
of cardiac surgery patients, Zheng et al. suggested that data
are insufficient to conclude that interventions to improve
cerebral regional saturation prevent stroke or POCD [113].
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10. Summary

Although cognitive dysfunction in hospitalized patients is
important both clinically and socially, it is difficult to ana-
lyze methodologically. Disturbances at the cellular level can
manifest as mood disorders and lead to deterioration in
patients’ functioning and social assessment. It is very difficult
to define either the normal state or the pathology of cognitive
functions.

Because of the increase in age at hospitalization as
well as in the number of orthopedic procedures, the issue
of postoperative cognitive decline is gaining importance.
A previous review on POCD and brain damage markers
following large joint arthroplasty was published in 2011 [114].
Since then, knowledge on the biomarkers of brain damage
and their correlation with cognitive impairment is becoming
much more detailed. Studies on the utility of the different
substances as potential biomarkers are being performed. The
results of studies on cerebral oxygen saturation measured by
near-red spectroscopy and its correlation with postoperative
cognitive decline carry great promise. Despite the need
for further tests, it is now known that patients at risk of
postoperative cognitive disorders should be identified before
surgery. From this perspective, the results of studies on
neuroanatomical biomarkers will likely have future clinical
applications.

The identification of patients with preexisting risk factors
for POCD, shortening the period of time preceding the
surgery, the appropriate technique used in the procedure,
and adequate intraoperative monitoring as well as physical
and intellectual exercises, nutrition, and medication play
important roles in decreasing the incidence of neurocognitive
deficits in the elderly.
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