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ABSTRACT

The COVID-19 pandemic has led to widespread attention given to the notions of “flattening the curve”
during lockdowns, and successful contact tracing programs suppressing outbreaks. However a more
nuanced picture of these interventions’ effects on epidemic trajectories is necessary. By mathematical
modeling each as reactive quarantine measures, dependent on current infection rates, with different
mechanisms of action, we analytically derive distinct nonlinear effects of these interventions on final
and peak outbreak size. We simultaneously fit the model to provincial reported case and aggregated
quarantined contact data from China. Lockdowns compressed the outbreak in China inversely propor-
tional to population quarantine rates, revealing their critical dependence on timing. Contact tracing
had significantly less impact on final outbreak size, but did lead to peak size reduction. Our analysis sug-
gests that altering the cumulative cases in a rapidly spreading outbreak requires sustained interventions
that decrease the reproduction number close to one, otherwise some type of swift lockdown measure

may be needed.

© 2021 Published by Elsevier Ltd.

1. Introduction

The COVID-19 pandemic began in Wuhan, China, where infec-
tions grew rapidly and spread throughout the country in late
December 2019 and January 2020. In order to contain the virus,
drastic measures, such as travel restrictions alongside extensive
lockdowns and contact tracing efforts, were implemented. The
overall success of these control strategies in suppressing the out-
break in China has been recognized in several studies (WHO,
2020; Kraemer et al., 2020). An important question is which inter-
vention had the largest impact, or in more detail, quantifying the
effect of each intervention on case reduction. The problem is rele-
vant not only for retrospective analysis, as all countries including
China face the task of controlling ongoing or possible second wave
outbreaks of COVID-19, along with future emerging epidemics.

Important strategies for the fight against COVID-19 are often
classified as non-pharamaceutical interventions (NPIs) because
consensus vaccines or treatments may not be widely available or
enough effective. The effectiveness and aims of NPIs may vary by
country and type of intervention. While the goal of large-scale
lockdowns and social distancing is often characterized as “flatten-
ing the curve”, whereas successful contact tracing may suppress
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outbreaks, a more nuanced picture of their potential impact on epi-
demic trajectories is necessary. A few studies have quantified
impact of travel restrictions (Lai et al., 2020; Tian et al., 2020)
and lockdowns inducing large-scale changes in contact patterns
or depletion of susceptible individuals (Zhang et al., 2020; Maier
and Brockmann, 2020), showing the efficacy of these interventions
in China. Yet, the precise qualitative and quantitative effect of
brute force interventions such as lockdowns (or widespread social
distancing), versus the more targeted strategy of contact tracing,
on the outbreak shape is less explored.

Traditionally the influence of control strategies on outbreaks
has been theoretically investigated in compartmental ordinary dif-
ferential equation models of the susceptible-infected-recovered
(SIR) type. Analysis yields the herd immunity (or critical vaccina-
tion) threshold for suppressing an outbreak by proportionally
reducing the effective reproduction number, R., below one, along
with a nonlinear relationship between R, and final outbreak size
when R, is above one. Furthermore, inference of parameters by fit-
ting the model to data can help to determine the effect of interven-
tions. However both the analytical and parameter estimation
approaches are challenged by the dynamic nature of control strate-
gies as public health authorities and individuals react to an evolv-
ing outbreak.

While the early phase of COVID-19 can be characterized by expo-
nential growth, case saturation occurred much earlier than would be
predicted by the basic SIR model due to the comprehensive control


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2021.110919&domain=pdf
https://doi.org/10.1016/j.jtbi.2021.110919
mailto:cameron.browne@louisiana.edu
https://doi.org/10.1016/j.jtbi.2021.110919
http://www.sciencedirect.com/science/journal/00225193
http://www.elsevier.com/locate/yjtbi

CJ. Browne, H. Gulbudak and J.C. Macdonald

measures that have been deployed. In particular, stringent lock-
down with broad (self- and contact tracing) quarantine interven-
tions reduced the pool of susceptible individuals, effective contact
rate and secondary transmissions. Several models have utilized
time-dependent transmission or isolation rates to capture the
dynamics(Laietal.,2020; Tang et al., 2020), and recent work has also
considered removal of susceptible individuals at a constant rate
(Maier and Brockmann, 2020). Here we develop a generalized SIR-
type model incorporating a total (government mandated and indi-
vidual) self-quarantine rate, along with contact tracing, both de-
pending on force of infection, to fit an observed reactionary public
health system and derive novel formulae for outbreak size.

To quantify the impacts of contact tracing and comprehensive
social distancing (self-quarantine or lockdowns), we simultane-
ously utilize case and quarantined contact data from China to esti-
mate parameters in our model. Furthermore, through
computational and theoretical analysis of the model, we can
explore the sensitivity of distinct epidemic measures (e.g. outbreak
size, peak number of infected, timing and extent of self-
quarantine) to interpretable control parameters. These investiga-
tions allow us to dissect how combinations of NPIs, such as contact
tracing and lockdowns, may influence sequential outbreaks
through loosening and tightening of control measures. The emer-
gent picture is of distinct qualitative impacts of contact tracing
and lockdowns on the outbreak, variable in scope and timing,
and dependent on underlying disease parameters. A better under-
standing of these differential effects can help shape or suppress the
epidemic curve of COVID-19 in a sustainable and socially accept-
able manner.

2. Model with self-quarantine and contact tracing

We develop a disease outbreak model (Fig. 1) with contact trac-
ing and lockdown (self-quarantine) measures. For a population
with fixed size N, we first divide the non-quarantined individuals
(not contact-traced or self-quarantined) into susceptible (S),
exposed (E) and infectious (I) classes. We define the mean incuba-
tion period 7, baseline transmission rate f and mean infection per-
iod T associated with the infected compartments. A widely used
intervention for COVID-19 (and other infectious diseases) is con-
tact tracing; where contacts of infected cases are tracked and mon-
itored, informed of their risk status, quarantined or tested, in order
to effectively isolate infected individuals, reduce secondary infec-
tions, and identify transmission chains (Bradshaw et al., 2021). In
prior work on contact tracing during Ebola outbreaks (Browne
et al., 2015), we derive an SEIR model by approximating integral
equations, which led to all transmission events being stratified
according to whether they will be contact traced and, if so, the con-
tact’s infection status (incubating or infectious for some average
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period) at the time of tracing. Motivated by this approach, and
for fitting our model to data on total quarantined contacts in China
(Section 4), we consider contact traced susceptible (S.), exposed
(Ec), and infectious individuals (I;) in our model.

Susceptible individuals whom contact infectious individuals
(resulting in the contact tracing), are transitioned to S, and E. com-
partments at the rates %qﬁi(t) and ¢A(t), respectively, where A(t)

is the force of infection, ¢ is the proportion of contacts with an
infected case that are traced, and p is the probability of transmission
upon contact. To justify these transition rates, consider the sim-
plest case where only non-quarantined (not traced) infectious indi-
viduals can transmit the virus, where /(t) = I(t)/N with B the
product of transmission probability p and the contact rate c. Then
(%Pdur ¢) pe(I(£)/N)S(t) = pc(I(t)/N)S(t) yields the total amount
of contact events at time t which will be contact traced. While there
are inherently delays between contact event and tracing, our
model separates contact traced individuals at the moment of con-
tact into the S. and E. compartment (we do adjust for this delay
when fitting contact tracing data). For the proportion of contacts
whom are infected and traced (E.,I.), we assume an associated
transmission rate . and infectious period T, reflecting the effec-
tive reduced secondary transmissions induced by the action of con-
tact tracing which is generally imperfect (for example, due to
tracing individual after they become infectious). We also consider
the reduction in susceptibility due to contact tracing, v., and the
mean duration of quarantine (or monitoring), 1/o., for contact
traced susceptible individuals (S.). While our formulation simpli-
fies some aspects of Browne et al. (2015), by explicitly linking trac-
ing to contact events and its mode of action, we capture the
essential mechanisms of contact tracing in a tractable way.

In order to describe the lockdowns and self-quarantine actions
taken by both governments and individuals reacting to COVID-19
incidence, define the self-quarantined classes of susceptible (S,),
exposed (E;), and infectious (I;) individuals. We model the primary
mechanism of lockdown/self-quarantine - sheltering large portions
of susceptible population - by having susceptible individuals tran-
sition to Sq at rate o A(t), where ¢ is a proportionality constant with
respect to force of infection A(t), denoted as the self-quarantine
(rate) factor. The product of ¢ with force of infection is a phe-
nomenological relation between lockdown/self-quarantine rates
and current infection levels. Indeed, several studies from various
countries (Fang et al., 2020; Chudik et al., 2020; Sheridan et al.,
2020; C. Xiong et al., 2020; Gupta et al.,, 2020; Goolsbee and
Syverson, 2021) have shown that population activity measures
(e.g. within-city mobility, economic transactions, percentage of
people staying/working at home) were primarily driven by individ-
ual reaction to media and perceived risk tied to COVID-19 case
incidence, and secondarily influenced by government mandates,
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Fig. 1. Full model of COVID-19 with reactive contact tracing and self-quarantine. We extend the basic SEIR model describing Susceptible (S), pre-infectious Exposed (E),
Infectious (I), and Reported case (R) compartments to also include contact-traced (S, E.,I.) and (lockdown or social distancing following) self-quarantined (S,, Eq, 1)
individuals. See Table 1 and SI Appendix for model descriptions, and (2) for simplified “perfect quarantine” system.
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also inherently related to case counts, but enacted in a temporally
discrete manner with other factors affecting their proclamation.
Although reporting accuracy and delays in response complicate
the relationship between human behavioral changes and raw
infection incidence, for simplicity, here we consider self-
quarantine (o) proportional to force of infection (i(t)). In C.2, we
adjust for the response delay by rescaling ¢ so that susceptible
quarantine rate depends on instantaneous change in reported case
numbers, and also check robustness of results with a delay model
for self-quarantine proportional to daily reported cases.

We define susceptibility, transmissibility and infectious period
for self-quarantined compartments, determined by parameters
Vg, B, and T, respectively, measuring the looseness of lockdown
or social distancing measures. The exit rate or rate of return from
self-quarantine is given by constant (per-capita) rate «,. For ana-
lytical tractability and superior parameter identifiability, we
neglect transiting of non-quarantined infected individuals (E,I) to
E4, I, status. Thus the overall infectious and exposed period (serial
interval) remain constant, which can be interpreted as averaging
an evolving serial interval (e.g. due to improving non-
pharmaceutical interventions (Ali et al., 2020)) over the outbreak
timeframe. However, in Appendix C.3 we do consider fitting an
alternative version of our simplified model below with non-
constant serial interval, where infected individuals become self-
quarantined (locked-down) as formulated above.

The full system of equations, including susceptible (S), exposed
(E) and infectious (I) individuals; self-quarantined susceptible (S),
exposed (E;) and infectious (I,) individuals; contact-traced suscep-
tible (S.), exposed (E.), and infectious (I.) individuals; and the
decoupled compartments of (safely) isolated reported cases (R)
with a subset of currently quarantined contact-traced cases (R.),
is given below.

Full Model:

=S(T+y)A+ (1 = 0c)oeeSe + 04Sq
(S = STEGA+ R hSed — oSe — VeSch

(S) = 0Si—0gSy + 0c0cSe — Vg (1 + %qaq)sqz

E = (1-¢—08Si+(1—¢— E)VeSch

+(] 7¢q764)vqsq’17%E S (1)

(E) = ¢Si+ $VeSch+ gVSel — LE,
(E)) = ESi+ EVeSch+ EqVeSeh —LE,

I' = E-M, () = E 1L
) = tEo—7lg R = 1l+41,
(R) = 1l—oRe

Here i = (B + Bylq + fclc) /N is “force of infection”, y = L ¢ + &
is total (contact-traced and self-) quarantine factor and
Cq =Sc + Ec + I + R. is the number of quarantined contacts at time
t. In addition to the proportion ¢ of non-quarantined contacts
(from S(t)) whom are traced, we let ¢, and ¢, represent the propor-
tion of self-quarantined and traced contacts (from S; and S,
respectively) whom will become traced (or remain traced for S;)
after a contact at time t. We also introduce the proportion of tran-
sitions to self-quarantine states after infection, &,¢&;, and & from
S,Sq, and Sc compartments, respectively. The parameter 6. defines
the fraction of susceptible individuals who return to “social-
distanced” (self-quarantined) after completing contact-traced pro-
tocol. The additional transition probabilities allow flexibility in the
model for deriving final size relations and reducing to special cases
of the model. When fitting the full model, we take
=g, . =1,E=¢(=0,6=1— ¢, (see Fig. 1), which specifies
that the proportion of non-quarantined and quarantined suscepti-
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ble individuals contact-traced upon infection is uniform, while all
contact-traced susceptible individuals continue to be traced, along
with assuming that the only transmission events resulting in
immediate transition to a self-quarantined infected state (E;) are
among self-quarantined susceptibles whom become infected
(and are not contact traced).

A simplified version of the model assumes no secondary trans-
missions derive from self-quarantined or contact traced states,
Ve = Vg = B = f, = 0, an indefinite self-quarantine period, o,y =0,
100 % of susceptibles returning from contact traced quarantine
become self-quarantined, 0. = 1, along with the assumption (ex-
plained in paragraph above) that ¢ = ¢ = 0. This “perfect quaran-
tine” model, reduces to the following system:

§ = ~(1+52+0)SI/N,

E' = (1-¢)pSI/N - 1E,

I' =1E-1I, R=1+1I,
(Se) =L $pSI/N — acSe,  (Ec) = ppSI/N —LEe,
() =tEe—qle (R =gl - ok,
(Sq) = aBSI/N + 0.S,

where we included decoupled compartments of contact-traced (fit
to data) and self-quarantined susceptible individuals, for clarity.
We use the simplified system (2) as our main model for fitting data
on daily provincial cases and quarantined contacts in Section 4. The
vastly reduced number of parameters increases model identifiabil-
ity in the data fits, which we also show to be robust in generating
our main conclusions. Because of data uncertainties discussed fur-
ther in Section 4, we also consider versions of the models which
include unreported cases. In particular, we introduce an additional
parameter p, the probability a non-traced infected individual
becomes a reported case (see (C.1) in C.3). Finally, we note the util-
ity in the perfect quarantine model (2) for obtaining simple formu-
las for final and peak outbreak size, which we derive in the next
section.

3. Reproduction number and outbreak size

The (time-dependent) effective reproduction number, R, = Ro(t)
can measure pathogen transmission potential throughout the out-
break, even as the susceptible pool is reduced through self-
quarantine and infection. Define the current susceptibility and
infection transition probabilities of the population by
S=(1-¢=9S[t) + (1 — ¢ — E)VeSe(t) + (1 — g — &q) VaSq(D),
8= S+ PVSc + ¢gVqSq and ST = &S+ EVeSe + £4V,Sy, and by the
next-generation approach (Van den Driessche and Watmough,
2002), we calculate R.:

Re = (BTS + B TS + pT4S7)/N (3)

At the outset of the outbreak or initial time of consideration,
t = to, we denote the baseline reproduction number (without contact
tracing, ¢ = 0), R, and basic reproduction number Ro. We summa-
rize definitions of key parameters and quantities in Table 1 In the
“perfect quarantine” model (2), the reproduction numbers reduce
to the simple formulas:

RO,b = ﬁT and Ro = Ro_b(1 — ¢) (4)

Note that in model (C.1) with unreported cases,
Ro = Rop(1 — ¢p), where the impact of contact tracing is reduced
by the proportion of reported cases, p.

Next we present novel analytical relations between R, self-
quarantine factor , and the final and peak size of an outbreak in
our model. To do so, we assume an indefinite quarantine period
(0g = 0), as in system (2). In this way, the outbreak size can repre-
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Table 1
Key model parameters and quantities.

force of infection of non-quarantined, self-quarantined &
contact-traced infected.

¢ Proportion of contacts traced & quarantined

o susceptible self-quarantine factor

p probability of transmission upon contact

W =0+1Bg total susceptible quarantine factor (proportionality constant
relative to force of infection)

o BByl el
A=TTN

Vq Relative susceptibility of self-quarantined

g, oe Exit rate from self-, contact-traced quarantine

T time to infectious (incubation period)

T,Tq,Tc infectious period (time to isolation) of non-quarantined, self-

quarantined, contact-traced
reproduction numbers (baseline, with contact tracing,
effective).

sent magnitude of first, second or subsequent waves dependent on
contact tracing and self-quarantine parameters. First, denote the
total self-quarantined or traced (quarantined) susceptible popula-
tion with variable S, =S; +S;, and define the final (cumulative)
epidemic size C,, := N — S(o0) — Sp(oc0), along with the final propor-
tion of (not quarantined) susceptible S, =S+ S, individuals

U.. := 37 (starting from t = to). We derive the following theorem
about asymptotic behavior and final size starting from the outset
of an outbreak (proof and general formula for arbitrary initial con-

ditions in A).

Theorem 1. Consider model (1) with non-negative initial conditions
satisfying

B(E(to) +1(to)) + Bg(Eq(to) +Iq(to)) + Bc((Ec(to) +Ic(to)) > 0. Then
all variables remain non-negative and lim¢.. (E(t)+I(t)+
Eq(t) +1Iq(t) + (Ec(t) +Ic(t)) = 0. Next suppose that ¢ = ¢. = ¢,
E=¢=¢g,09=0,(1—0c)oc =0. In addition let vc = vq =: v, and
suppose that to = 0 with 1(0) + I4(0) + I(0) ~ 0. Then the following
final size formula holds:

In(Us) = (1+¥)Ro(Us =1+ (U - U))

(5)

Co =N(1- i (LrUe+UL)).

In the special case of the “perfect quarantine” (2), the formula
reduces to:

1
14y

where Ry = (1 — ¢)Rop, as defined in (4). Furthermore, in this case,
we find the peak non-quarantined infected (and exposed) individu-
als, Zpea := maxeo(E(t) +1(t)), to satisfy the following relation
(derivation in Appendix):
Zpeak:ﬁ%(Ro—lnRo—1)~ (7)
In (6) and (A.6), note the classical relation between final or peak
outbreak size and Ry when = 0. Self-quarantine (o) is expected
to have almost all weight in the total susceptible quarantine factor
(¢ = a + ¢(1 — p)/p) because the goal of lockdowns, as opposed to
contact tracing (¢), is to shield large segments of susceptible pop-
ulation. Even if p becomes small, the amount of contacts traced will
be limited by resources, whereas very large segments of population
can self-quarantine through lockdowns or behavioral change. Thus,
both final and peak outbreak size, Z . and C., have an approxi-
mate simple inverse proportionality relationship with ¢. In con-
trast, contact tracing, primarily acting through the proportional
reduction in baseline reproduction number (Ro = (1 — ¢)Rop),
has distinct influences on peak and final size. We calculate relative
sensitivities of 6-(A.6) to y and ¢,

In(Uy) =Ro(Uy — 1), C N(1-U.), (6)
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Observe that as Ry /' oo, Z¢ « \ —oo, whereas, although diffi-

pea
cult to show analytically, we numerically observe that ¢? goes to
zero as Ry becomes large. Thus, contact tracing has more influence
on peak size, but less impact on final size.

Although there are inherent issues with measuring rate of new
incidence due to the delay between transmission and case report-
ing, the inverse proportions dependent on susceptible quarantine
factor (/) can be used as a simple retrospective or implementation
guide for lockdown efficacy. For instance, given that y is relative to
force of infection, to reduce the outbreak size by 90% (compared to
no lockdown case y ~ 0), the authorities would need to have
implemented strict quarantine at approximately 9 times the force
of infection. Note that Ry, is the ratio of force of infection (%’) and
reported prevalence rate (). Thus, as a rule of thumb, the quaran-
tine rate (or magnitude in a defined time period) must be 9 x Rg
times the rate (or amount) of incoming reported cases to reduce
the outbreak size by 90%. If case underreporting is also considered,
then the quarantine rate factor must be increased even more to
control an outbreak, with o then rescaled by R,,/p, where p is
proportion of cases reported. In practice, officials may look at
aggregated cell phone or mobility data to assess population quar-
antine behavior and compare with case reports. Quarantine rate
may need to far exceed the pace of new infections, as shown below,
very large values of  were instrumental for China rapidly curbing
their epidemic.

4. Data fitting & distinct quarantine efficacies in China

In order to quantify relative efficacies of contact tracing and
self-quarantine (lockdown) interventions during the COVID-19
outbreak in China, we performed model fitting using reported case
and mortality data for each province of China, along with (daily
number of) quarantined contacts in all of China obtained from
daily reports by NHC (NHC, 2020). The outbreak was not localized
to a single population during the timeframe of our study, Jan. 21-
Mar. 19 2020, although the province of Hubei had a large share of
the total cases. Because the large number of parameters in the full
model (2) and the likelihood that fitting a total of 30 provincial
case and quarantine data sets may result in overfitting, we first uti-
lize the simplified model (2) to obtain parameter estimates for
each province. A change in case counting procedures around Feb.
12 in Hubei province prevented us from reliably fitting daily case
counts in this province from Feb. 11-Feb. 13, and certainly there
were a large number of unreported cases over the timeframe. Later
in this section, we adjust our provincial daily case fitting by infer-
ring the ratio of unreported cases (1/p in model (C.1)) in all of
China using daily reported case and death data, along with the
quarantined contacts. Furthermore, we verified robustness of our
parameter estimations and results by fitting the full model (1)
and Fig. 1) simultaneously to cumulative reported cases and daily
quarantined contacts in all China, along with exploring alternative
formulations of self-quarantine rate (e.g using mobility data) and
different quarantine/infection residence time distributions, and
decreasing infectious periods due to lockdowns (see C). Details of
fitting procedures and results not contained in this section can
be found in B.
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First, for each province in China we simultaneously fit model (2)
to daily case incidence and an inferred number of quarantined con-
tacts, weighting the available aggregated quarantine contact data
for all of China by province reported case load distributed by an
assumed exponential quarantine duration of mean 14 days with
delay of 3 days between contact and tracing (see B.1). We imple-
mented a nonlinear weighted least squares algorithm, using daily
reported cases (R;(t) — Ri(t — 1) in (2)) and the inferred quarantined
contacts (multiplied by a positive weight). To increase model iden-
tifiability, we reduced the number of parameters in (2) to 4 param-
eters (lp,Rop, 0 and ¢) by fixing the incubation period (time to
infectiousness, T = 3 days (He et al., 2020)), infectious period (time
to isolation, T = 4.64 days (Bi et al., 2020)), and probability of
transmission given contact, p = .06, in line with other studies (Bi
et al., 2020; Sun et al., 2020). Plots for these fits can be found in
Figs. S1 and S2, and parameter values are presented in Table D.5.
We find that ¢ and ¢ being significantly higher in these other pro-
vinces than in Hubei (or the all China fit). Indeed, comparison of
the values in Tables D.5 and D.6 suggests that segregating between
China Less Hubei and Hubei alone is sufficient to capture this dif-
ference. The higher values for ¢ in China Less Hubei are likely
explained by the other provinces having the advantage of respond-
ing to the outbreak in Hubei, along with their local cases, so that
their lockdowns could be enacted faster (with larger magnitude
relative to local force of infection). The larger values of contact
tracing coverage ¢ in China Less Hubei may be attributed to a
smaller caseload enabling this relatively resource-intensive control
strategy.

We refined our analysis by fitting the two corresponding daily
reported case datasets from Hubei and China less Hubei, along
with the sum of their respective quarantine contact compartments
to the aggregated China daily quarantine contacts (Fig. 2). The esti-
mated basic reproduction numbers (with contact tracing) are
Ro=4.07 (C1354-4.12) and R, =247 (CI12.16-2.77) for

Hubei
10000 : e : :
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Hubei and China less Hubei, respectively. Complete parameter val-
ues and uncertainty analysis (method described in B.5) are pre-
sented in D. We also calculate time-dependent R. by directly
utilizing the daily case data and estimates of the serial interval
(generation time) distribution (Browne et al., 2015; Bi et al,,
2020; Ferretti et al., 2020), alongside R, obtained from our esti-
mated parameters from model fitting. Although China less Hubei
had larger contact tracing level than Hubei (¢ = 0.59 versus
¢ =0.32), it also had significantly higher estimates of self-
quarantine rate (¢ = 1.14 x 10° versus ¢ = 1.26 x 10%). The results
indicate strict population-wide lockdowns were the main quaran-
tine measure (as opposed to contact tracing) which rapidly con-
tained the outbreak in China by rapidly decreasing R. (see Figs. 2
(a), 2(b)).

Next, we observe an inverse proportionality relationship
between province outbreak size and corresponding estimated
self-quarantine factor (o), supporting theoretical predictions of
our final size formula (6) (Fig. 3). Indeed, the 30 provincial cumu-
lative case counts over the study period are inversely proportional
to fitted o values, whereas contact tracing (¢) did not have a signif-
icant correlation with province outbreak size. This inverse relation-
ship was also true of province peak size versus self-quarantine
factor, but contact tracing had a larger impact here than for the
case of cumulative cases, as illustrated by distinctly flatter peak
size sensitivity curves (with respect to varying ¢) for provinces
with larger proportion of contacts traced, ¢. The small effect of
contact tracing on final size, but larger influence on peak size, con-
curs with our derived sensitivity analysis when R, is relatively
large. To further corroborate the heterogeneous impacts of contact
tracing, we calculate outbreak sizes if ¢ = 0, finding peak infection
reductions of 28% in Hubei versus 45% in China less Hubei. How-
ever, the decrease in final outbreak size due to contact tracing was
only 1.6% (Hubei) and 5.6% (China less Hubei), respectively.

China Less Hubei
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Fig. 2. Model recapitulates case and contact tracing data, estimates large rate of self-quarantine (via lockdown) rapidly contains outbreak. (a), (b) Daily reported cases (incidence)
of Hubei and China less Hubei fit to model (2). Also, average and daily impact of contact tracing on R, (inserted figures) from estimated parameters and statistical generation
time distribution approach. (¢) Daily number of quarantined contacts in mainland China simultaneously fit with daily incidences of Hubei and China less Hubei (in (a), (b))
shown alongside inferred cumulative cases from sum of incidence fits and data. By quantifying relative magnitudes of contacts traced and incidence, we can determine
efficacy of contact tracing versus broader lockdowns in our distinct quarantine model. The reduction in R, with or without contact tracing due to self-quarantine/lockdowns

was the major factor to rapidly contain the outbreak in China.



CJ. Browne, H. Gulbudak and J.C. Macdonald

1071Sensitivity of Province Cases to Self-Quarantine & Contact Tracing

= Provinces (high to low cumulative cases) 0.65
B - ® Hubei ® Heilongjiang ® Hebei

5 2 Solid lme§ md)c]ate Cases ® Macau ® Guangdong @ Guizhou 0.6

j 10| versus o from g0 to oy, o Beijing © Ningxia ® Yunnan -

N where oy is fitted o value. Zhejiang Tianjin © Shanxi 055 S

g 3 © Jiangxi Jiangsu ® Jilin U E

= <107 ® Chongging © Shandong @ Xinjiang 05 &

= § @ Hainan ® Fujian ® Qinghai -

g 80 Anhui Sichuan © Inner Mongolia 0.45 g

= \% 10—4 © Shanghai @ Shaanxi @ Liaoning T8

2, © Hunan ® Guangxi ™ =

2 * ® Henan ® Gansu -
3]

ST b N . 0.35~

x T T Ld

2 e 0.3

&) 108

0.5 1 1.5 2 25 3 35

Self-quarantine factor o x10°

Sensitivity of Province Cases to Self-Quarantine & Contact Tracing (log-log scale)
10°

=
- 0.65
£
= 102 06 o
= E
=
Bl 0.55 E
8~ £
=20t 05
=8 Provinces (high to low cumulative cases) S g
S & ® Hubei @ Heiongjiang ® Hebei g
- 4 ®Macau  ® Guangdong ® Guizhou 045 2
= =10 @ Beiing O Ningxia ® Yunnan 8
2 Zhojang © Tianjn O Shamxi 04 E
Q © Jiangxi Jiangsu ® Jilin 42
a @ Chongging ® Shandong @ Xinjiang t g
xR 10'5 ® Hainan ® Fujian ® Qinghai » 0.35%
— » Sichuan O Inner Mongolia L]
] © Shanghai ® Shaanxi  ® Liaoning - .(
2 O H ® Guangxi . 0.3
3 ® Gansu
2 4
10 10° 10 10°
Self-quarantine factor o (log scale)

(b)

Journal of Theoretical Biology 532 (2022) 110919

Sens;livity of Provinc Peaks to Self-Quarantine & Contact Tracing(log-log scale)
—~ 10"

S Provinces (high to low peak size)
= ® Hubei > Hunan ® Guizhou 0.65
3 ® Macau ® Guangdong @ Qinghai
2 3 Zhejiang O Ningxia © Shanxi
210 @ Jiangxi Shandong @ Yunnan 0.6 -
= ® Chongaing O Tianjin @ Guangxi s
=1 ® Hainan ® Fujian ® Hebei 055 S
S ® Beijing © Shaanxi @ Liaoning -1
<10 L4 Anhui Jiangsu ©- Inner Mongolia =}
= ® Heilongjiang ® Sichuan @ Xinjiang 05 %
2 © Shanghai @ Jilin g
9] @ Henan ® Gansu g8
A s 045 ¢
10 E
% 0.4 :‘é
g 15
s 3
S 10 = 0.35£
3 b
g 2 los
1 077 2 3 4 5
10 10 10 10
Self-quarantine factor o (log scale)
()

Fig. 3. Model fitting shows that COVID-19 outbreaks in Chinese provinces mimic derived inverse proportionality relationship with self-quarantine rate and limited
differential impacts of contact tracing. (a) Data points represent cumulative reported cases during Jan. 21-Mar. 19 of 30 provinces in China plotted at estimated self-
quarantine factor (o) obtained from provincial daily incidence data and inferred daily number of quarantined contacts (weighted from aggregated China data) simultaneously
fit to model (2). The solid lines represent calculated cumulative cases from final size formula (6) while varying ¢ from 1% to 100% (fitted value) of the estimated ¢ (gy) and
fixing other parameter estimates for each province. All province output is colored according to a colormap from minimum to maximum estimated contact tracing parameter
¢. (b) The same output as (a) displayed on log-log scale. (c) Analogous graph as (b) with respect to peak size for each province instead of cumulative cases (again displayed on
log-log scale to aid viewing distinct province curves). Note the distinctively flatter peak size curves (with respect to varying o) of provinces with high estimated contact
tracing (¢) demonstrating the larger influence of contact tracing in keeping peak size small even as the lockdown scale (o) decreases.

5 ars “ R bacts i
<10° Daily Cases 95 % 10 Quarantined Contacts Daily Deaths
35 - Model fit, quarantined contacts 200 ™ - -
----- Reported+unreported daily cases s Data
3 Model fit, reported daily cases > Data
# Data
25 150
1.5
2
e 100
15 1 e
1
0.5 30
0.5
0 0¢ J 0 -
10 60 70 10 20 30 40 50 60 70 0 20 40 60 80
Days Since January 11, 2020 Days Since January 11, 2020 Days Since January 11, 2020
(@ ® ©

5

---9=0
|——2 10% fit value!

Daily total (reported-+unreported) cases

60

40 50
Days Since January 11, 2020

Fig. 4. Results for fitting model (C.1) in all of China simultaneously to daily reported case, quarantined contact, and death data. The model allows inference of ratio of “true”
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days) has large impact on outbreak.
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To quantify how large numbers of unreported cases associated
with COVID-19 impacts our results on overall contact tracing and
self-quarantine effectiveness in China, we simultaneously fit sys-
tem (C.1) to daily reported cases, deaths, and quarantined contacts
(Fig. 4(a)-(c)). By using the additional mortality data, in conjunc-
tion with estimates of the case fatality ratio within feasible bounds,
true infection numbers can be inferred. Because of dates where
both reported case and mortality data in Hubei province are
skewed by large number of cases being added, we re-distribute
the excess cases according to proportion of the cumulative count
occurring in a day, so that the daily incidence curve shape and total
(cumulative) reported infections and deaths are retained over the
timeframe. We assume that the delay between infection and death
follows a gamma distribution, with mean time until death esti-
mated at i = 14.64 days, in line with retrospective studies from
China (Zhou et al., 2020). The infection fatality ratio (IFR) was
found to be ¢ =.0109, which is in the lower range of Wu et al.
(2020). The rather large estimate of unreported cases, in which
“true” total (reported and unreported cases are 1/p =7.78 x
reported case count (p is estimated proportion of reported cases),
likely leads to decreased IFR. In addition, we find an increased esti-
mate of Ro = 4.5475 when starting from the earlier date of Jan. 11
and incorporating the unreported cases, the parameter fits for ¢
and ¢p (3365 and 0.0542, respectively) suggest even a larger dif-
ference in the relative efficacies of self-quarantine and (reported
case) contact tracing in controlling the outbreak in China. When
accounting for the estimated low reporting rate, contact tracing
only results in 0.3% reduction in total (reported and unreported)
cases and 3% reduction in peak total cases. In contrast, reducing
self-quarantine rate factor to 10% of fitted value, equivalent to an
approximate 10day delay in 50% of population being self-
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quarantined, leads to 10 x more cases (Fig. 4(d)). However, the
unreported cases may include asymptomatic infections, exhibit
reduced transmission, share clustered contacts with reported
cases, and have different onsets than redistributed excess cases.
Thus we conduct further sensitivity analysis below on fitting all
cumulative reported cases and quarantined contacts without
smoothing datasets.

We extend the simplified model (spatially segregated) daily
incidence fits to estimate additional parameters in full model by
simplifying the fitting procedure using cumulative cases for all of
China. Sensitivity analysis on the main control parameters for the
all China fit (Fig. 5) reveals minimal contact tracing level impact
on final outbreak size, yet larger effect on reducing peak infection
levels (Fig. 5(d)), concurring with our analytical calculations ((6),
(A.6), (8), (9)) and results when fitting province daily incidence.
In general, we observe that the time to peak increases with ¢,
reflecting the curve flattening, however this time period eventually
decreases for sufficiently large values of ¢ as contact tracing effec-
tively suppresses the outbreak (Fig. S8 in Supplementary Materi-
als). In addition, with sufficiently large contact tracing coverage,
outbreak size can be significantly reduced when there is less strin-
gent lockdown (less total quarantined and more time to enact
quarantine). Yet even in this case, some level of broader social dis-
tancing measures is almost certainly needed in combination with
contact tracing.

As predicted by our derived inverse proportionality relationship
(6), there are escalating costs as ¢ decreases, i.e. as self-quarantine
action lessens relative to ongoing infection rate (Fig. 5(b)). For
example, if the estimated time for 50% of initial susceptible popu-
lation of China to be self-quarantined (~ 2 weeks from Jan. 21) had
been delayed by just one week, then the total number of cases
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would be approximately 10 times larger (Fig. 5(c)). Notice that
population self-quarantine dynamics are similar whether the
model is fit from Jan. 11 (Fig. 4) or Jan. 21, showing the advantage
of the infection-rate dependent “lockdown factor” being indepen-
dent of start time in our model. In the full model, the additional
parameters Vg, f, (measuring looseness of the lockdown) also
impacts the outbreak size (Fig. 5(b)). Going from vg, 8,/ ~ 0 (as
predicted for China) to vq =,/ =0.05 to vq = §,/f = 0.15, the
outbreak size would increase by a factor of 1.14 and 1.45, respec-
tively. In addition, the estimated exit rate from self-quarantine
(o) for China was estimated to be very small, emphasizing the
strictness of the lockdown.

5. Quarantine Interventions for COVID-19 2nd Wave

A major question has been how lockdown measures should be
loosened after some level of controlling COVID-19, while optimally
responding to any subsequent outbreaks induced by the relax-
ations. Here we analyze how the scale and rate of different reactive
contact-based interventions affect 2nd wave outbreaks under two
different scenarios of loosening, namely Instantaneous Return of
Several Sectors (IRSS) or via Gradual Return of Self-Quarantined
(GRSQ). The goal is to attain qualitative insights on strategies for
shrinking, flattening or delaying (not necessarily independent phe-
nomena (Feng et al., 2020)) subsequent outbreaks. By varying self-
quarantine factor ¢, contact tracing probability ¢ and looseness of
social distancing v under the distinct relaxation policies in our
model parameterized to data from China, we observe potential
consequences of different measures.

Simulating the instantaneous return of 80% of self-quarantined
individuals (IRSS strategy), with no change in parameters (and cru-
cially the same “reactive lockdown” factor ) we observe that the
cumulative number of infected cases for the 2nd wave (outbreak
size) and peak infected was 75% and 58%, respectively, of the 1st

gxtet . ; . 107
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wave. Furthermore, a similar number of individuals as during the
first wave lockdown re-enter self-quarantine about 6 weeks after
relaxation (see Fig. 6(a)). When the contact tracing efforts are
enhanced after lockdown (to ¢ = .65), outbreak size and peak
infected are 54% and 16%, respectively, of the 1st wave, and the
curve is flattened, i.e. the peak outbreak size shrunk and the time
to peak outbreak size increased. When contact tracing is doubled
to ¢ = 0.75, or if other sustained non-quarantine measures (e.g.
face mask usage) reduce R, to same level together with more
intermediate contact tracing of ¢ = 0.5, the 2nd wave outbreak
size and peak infected are 25% and 3%, respectively, of the 1st
wave. In addition, the number of individuals re-entering self-
quarantine was reduced, revealing that contact tracing, or sus-
tained interventions aimed at reducing Ry, can be an effective tool
for managing the epidemic without a large-scale lockdown or with
less stringent public quarantine measures.

In the case of GRSQ strategy, after containing initial outbreak
with lockdown, we increase the return to “normalcy” rate to
o = 0.01, where half the social-distanced return to normalcy in
the approximate half-life time given by t;,, =In2/a =72 days.
Assuming other parameters remain constant (including the reac-
tive SQ factor ¢) the second peak, emerging with a 100 day delay,
reduced to 42% of the first wave, however the number of infected
individuals settle into a rather large quasi-equilibrium resulting in
more cumulative cases (see Fig. 6(d)). Here there is a balance of
force of infection induced self-quarantine (g1) and reversion of
individuals to their normal contact behavior (), leading to an
insufficient amount of population social distancing for reducing
cases below a certain level. On the other hand, after loosening
the lockdown, when the contact tracing efforts are enhanced or
doubled, the peak size significantly diminished (27% or 0.3% of
1st wave), along with the number of self-quarantined. Importantly,
for about 6 months (or the whole year in the case of doubling ¢),
the number of infected cases stayed significantly low. Gradual
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opening policy, which can buy time for effective treatments or vaccines.
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release of self-quarantined individuals with increasing contact
tracing efforts can be used as a strategy to gain time until vaccina-
tion or keeping the virus at bay, while reinstating societal interac-
tions in a carefully measured stepwise fashion, as was the case in
China with no second wave appearing after the initial fast spread-
ing outbreak was put under control.

Responsive re-implementation of lockdown (or social distanc-
ing) measures can be crucial for reducing any second wave out-
break, in particular in scenarios where contact tracing and/or
face-mask usage did not become as efficient as was the case in
China. Reduction in SQ factor ¢ by 1/2 (or 1/4), as predicted simply
by the inverse proportionality in the derived final size formula (6),
results in twice (or four times) more cumulative cases for the 2nd
wave, and the simulations show the same relations between peak
size (see Fig. 6(b)). Although the number of self-quarantined indi-
viduals eventually become the same with the different SQ rates,
the delay in implementing large-scale self-quarantine (in response
to incidence) makes significant differences in the final (and peak)
outbreak size. For the simulations presented in Fig. 6(b), a delay
of just 9 days from the baseline parameter case results in twice
as many infections, and a delay of 18 days induces four times the
infected individuals. Compared to instantaneous release, the
increased quarantine exit rate (o) under gradual return resulted
in larger (but delayed) peak and total outbreak size inversely pro-
portional to declines in SQ factor ¢ (see Fig. 6(e)). Finally, varying
the looseness of the quarantine (measured by uniform susceptibil-
ity and infectivity values v, = /) from perfect quarantine to 25%
(or to 50%) looseness, leads to approximately 1.3 times (or to 2
times) more total and peak infections during the outbreak. Differ-
ent from the rate of SQ, the proportionality relations are nonlinear,
thus a slight looseness in social distancing can still offer an effec-
tive intervention, but the cases will increase at a growing rate as
the measures become less strict (see Fig. 6(c), 6(f)).

6. Discussion

In this study, we compare how two distinct types of contact-
based interventions, namely contact tracing and large-scale
lockdowns/self-quarantine measures, impact single or sequential
COVID-19 outbreaks. We find that contact tracing generally is less
effective in decreasing outbreak size for rapidly spreading patho-
gens (high baseline reproduction number Ry ), unless the tracing
is very efficient and large scale, or combined with other measures
to force Ry ~ 1. On the other hand, widespread lockdowns/social
distancing interventions can lower outbreak size inversely propor-
tional to an increase in the rate of self-quarantine. Our analysis
indicates that China benefited from the heavy influence of lock-
downs by rapidly containing the quickly growing COVID-19 cases,
and, despite massive efforts, contact tracing was less influential in
bringing down the epidemic.

Despite the difference in the targeted nature of contact tracing
versus the more indiscriminate lockdown measures, we contend
there is a similar reactive quality to both control strategies. Contact
tracing reacts to reported cases by tracking and (to varying
degrees) quarantining individuals whom have been contacted.
Mass self-quarantine reflects a natural response by both govern-
ments and individuals that intensifies as cases build, a phe-
nomenon that has been labeled as “exponential whiplash” (In
Europe, 2020). These features motivate us to construct a COVID-
19 model with both contact tracing (mechanistically) and self-
quarantine (phenomenologically) dependent on force of infection.
In contrast to another model that assumes a linear rate of self-
quarantine (Maier and Brockmann, 2020), the nonlinear social dis-
tancing rate captures a contagion-like behavioral response to

Journal of Theoretical Biology 532 (2022) 110919

infected cases, and allows us to derive novel formulae for final out-
break size.

An important distinction between contact tracing and lock-
downs is their mode of action, namely preventing onward sec-
ondary infections by early tracking of likely infected cases in the
former and large-scale depletion (or shielding) of susceptible indi-
viduals for the latter. This contrast determines how they affect the
major epidemiological quantities of reproduction number and out-
break size in our “transmission-reactive” formulation. In particu-
lar, contact tracing proportionally reduces R, akin to
vaccination, leading to a nonlinear relationship with final outbreak
size, which decreases substantially only as R, approaches one. The
responsive self-quarantine factor does not affect R, and we derive
a simple inverse proportionality with outbreak size. This can be
translated to a time of action for quarantine measures, analytically
demonstrating the escalating impacts of delaying implementation
of responsive lockdowns beyond a critical time period, which has
been observed in other studies via simulation (Dehning et al.,
2020; Pei et al, 2020). Even though similar levels of self-
quarantine would eventually be reached in our model as incidence
grows, the cost of delays can result in a large excess of cases.

We recapitulate the relative efficacies of contact tracing and
self-quarantine control measures in COVID-19 outbreak in China
using a systematic and robust data fitting procedure. Several ver-
sions of our model provide good simultaneous fits to both daily
reported case and quarantined contact data from China (by pro-
vince, region, or aggregated), along with an extension using daily
death data which estimates unreported cases, case fatality ratio
and the delay distribution between infection and death. Our for-
mulation of contact tracing and self-quarantine dependent on force
of infection enables us to identify the relative magnitudes of the
two control terms, and thereby to quantify the efficacy both of past
interventions and likely future ones. In particular, we find qualita-
tively distinct effects of contact-tracing and lock-down on contain-
ing, and more broadly shaping, an outbreak of a disease such as
COVID-19. All our analyses (including using mobility data and
other alternative model fitting scenarios in C) are consistent with
our theoretical results that large-scale population quarantines are
needed for effectively reducing final/peak size of pathogens with
high baseline reproduction number Ry,, wWhereas contact tracing
can flatten curve, but is relatively ineffective in affecting outbreak
size unless it decreases R, close to one. When accounting for the
estimated low reporting rate, parameter fits suggest even a larger
difference in the relative efficacies of self-quarantine and (reported
case) contact tracing in controlling the outbreak in China. We
assert that contact-tracing, dependent as it is on contact events,
can only “flatten the curve” while having minimal impact on the
final size of the epidemic with high R,. Lock-down and related
measures that lead to self-quarantine, by contrast, prevent con-
tacts from occurring in the first place and therefore have the poten-
tial to reduce the epidemic final size.

Our main result on differential impacts of lockdowns and con-
tact tracing also implicates distinct metrics for officials to monitor
when enacting each intervention. For reactive lockdowns, the key
measurement is rate of population-wide quarantine compared to
incidence or incoming reported cases. For contact tracing, R.
may be the important quantity because the final outbreak size is
only substantially altered as R. becomes closer to 1. Although
we find that the extensive lockdowns were a much larger factor
in controlling COVID-19 outbreak size in China, our sensitivity anal-
ysis shows that contact tracing did dampen and delay peak number
of infected despite its more limited impact on the cumulative count.
In this way, contact tracing flattened the incidence curve, easing
the strain on limited hospital resources. A combination of expedi-
tiously enacted contact-based interventions may be the best strat-
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egy, where effective contact tracing, along with sustained interven-
tions aimed at reducing R (public face mask wearing, social dis-
tancing, etc.), can synergistically suppress an outbreak, and
reduce the scale of lockdown measures necessary for altering
rapidly rising case numbers. However COVID-19 has proved to be
a particular challenge and large-scale lockdowns have been a
needed antidote for controlling outbreaks in several countries. In
this case, drastic self-quarantine orders can hopefully reduce case
numbers to manageable levels that allow for effective contact trac-
ing after easing restrictions.

The capacity to respond to the continuing threat of COVID-19
will be vital for minimization of sequential epidemic waves. We
investigated control measures under an instantaneous normaliza-
tion of contact for a large portion (or several sectors) of the popu-
lation versus a more gradual release of self-quarantined
individuals back into social interactions. Our results show that
increased contact tracing efforts can alter the second outbreak
shape, either reducing and spreading out the number of infected
or completely suppressing cases for highly efficient tracing. Social
distancing or lockdown measures responsive to incidence can
effectively compress the second peaks, with the timing being crit-
ical again and the scale dependent on the underlying R,. Either
measure will depend upon sufficient case detection and reporting,
highlighting the importance of testing. Furthermore, indefinite or
reoccurring strict lockdowns are likely to impart too high of an
economic cost, and our model shows that looser restrictions and
contact tracing can still control a second wave. Additionally, the
strategy of gradual release of quarantined sectors can substantially
delay the second wave, possibly buying time for effective treat-
ments or vaccines to be widely available.

A major part of this work was to incorporate data on the quar-
antined contacts compiled for all of China. Obtaining provincial
quarantine records or more detailed contact tracing data quantify-
ing the proportion of reported cases whom were traced can allow
for superior accuracy in estimating efficacy of contact tracing. A
recent study of detailed contact tracing records in Hunan province
of China (Sun et al., 2020) did come to a similar conclusion as our
work that lockdowns had larger impact, and contact tracing alone
is not likely to be sufficient for controlling COVID-19. The results
here explain the differential effects that contact tracing and reac-
tive population-wide self-quarantine have on reducing cumulative
cases in a rapid spreading outbreak. This knowledge and further
investigation may offer insights for the public health response to
COVID-19.
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Appendix A. Reproduction number, final and peak size

The time-dependent effective reproduction number R; can be
defined utilizing the next-generation approach (Van den
Driessche and Watmough, 2002). First define the feasible region
for the system (1) as

r= {z = (S,S¢,Sq.E,Ec,Eq, 11, 1) | N :=

where Nj is the initial total population size (of all compartments).
We note that the system (1) is quasi-positive, and thus its solutions
remain non-negative when their initial values are nonnegative.
Summing the right-hand sides of (1), we find that N'(t) = 0. Thus
the solutions the system (1) remain in I' when their initial values
are in I'. Notice that any susceptible population distributed among
the defined classes, S, S.,Sq, &0 == (S, S¢,S4,0,0,0,0, O)T is a disease-
free equilibrium of system (1).

We define a next-generation matrix by considering the lin-
earized system at the disease-free equilibrium, &£,. Write the lin-
earized “infection” sub-system as x’ = (F — V)x, where F contains
entries corresponding to new infections, —V contains all other
transition terms in the Jacobian matrix evaluated at &, and
X = (E,EC,EQ,I,IC,Iq)T. Define the current susceptibility and infec-
tion transition  probabilities of the population by
S=(1-¢—S+(1— ¢ — EVeSc+ (1 — by — &) VeSq, S = ¢S+
GeVeSe + PgveSq and 81 = &S+ EVeSe + £qVqSq. Thus, we consider
the following matrices:

0 0 0 SB/N SB/N SB,/N
00 0 SN SB/N SB /N
0 0 0 SB/N SB/N S',/N
F= 0000 0 0 7
0000 0 0
0000 0 0
1 0 0 0 0 0
o1 0 0 0 0
00 L 0 0 0
vV =
-1 0 0 1/TO O
0 -10 0 1T 0
0o 0 -1o o 1T,

The next-generation matrix describing expected number of new
infections (by the different types of infectious cases) is then
defined as FV . The effective reproduction number, R., is the spec-
tral radius o(FV~'):

Re=Q(FV™") = BTS + B TcS" + ByT¢S" (A1)

Proof (Proof of Theorem 1:). Non-negativity and boundedness of
solutions has already been demonstrated. Now, inspired by final
size derivation in Arino et al. (2007), we write the model as
follows:
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X' = nDypbx — Vx (A.2)

y = —-Dypbx +g(y)pbx + Ay, where
]_¢_é ]_(pc_éc ]_¢q_§q 8
¢ e ¢, 0
— é 5c éq T __
"o 0 0 =N
0 0 0 NG
0 0 0 %
1.0 0 0 (T-6c)o og
D =0 v 0 |, A=|0 —o 0 ,
0 0 vy 0 6.0, —0lg
— 1;F’¢ +0 0 5
p —
g(y) =S IS¢ ) +Vqu %(bq , Y= <5C>7
P BRE:) S
o p 74 q

and x = (E, E, Eq,I,IC,Iq)T, as before. First, we show that the number
of infected individuals eventually go to zero, i.e.

!Lg(E(t) +1(t) + Eq(t) + 14(t) + Ec(t) + 1c(t)) = 0.
In order to prove this first statement, notice

(x+ my)' = —Vx + mg(y(t)) pbx(t) + mAy

= X(to) — ( ) + (Y (to) — y(o0))
= Vft dtfftn ng(y(t))Bbx(t) dtffto TAy(t)dt (A3)
=V [, x(t)dt = X(to) — x(c0) + T(y(to) — ¥(0))
+‘/;0 T(Ay(t) + g(y(t))pbx(t))dt

Notice that the column sums of the integrand on the right-hand
side of Eq. (A.3), 1"m(Ay(t)dt + g(y(t))pbx(t)), is zero. Thus, sum-

ming columns on both sides of Eq. (A.3), we find:
I (lu )+ 1e(D) + g (t))dt:
[(E+Ec+Eq+1+1I+1g+S5+5+50)(t)]

t=to

Since solutions are bounded and non- negative forall t > to, the
above equation implies thatft (I(t) + I.(t) + Io(t)) dt is finite. Addi-
tionally, it is clear from system (1) that

(E(t) + Ec(t) + ())df:
NG I(0))dt + [(I+ I + 1) ()"

which implies that /: (E(t) + Ec(t) + Eq(t))dt is also finite. There-
fore, we conclude that llmrﬂo( (t) + I(t) + Eq(t) + Iq(£) + Ec(O)+

1
to T

() + 7L (t)

t=ty’

I.(t)) = 0, proving the first statement.
Next, by the assumption og = 0, (1 — 6c)ac = 0, we obtain:
S =-S(1+y)pbx
=1In (%) = (1+y)pb [ x(t)dt (A4)
= (32) = (1+)pbY " (x(to) + Ty (ko) — Y(c<))),

after multiplying Eq. (A.3) by V! to find ft t)dt, since assuming
¢ = ¢ = ¢, & = & = &, implies that w(Ay(t) +g(y( ) =0.

Using assumption v =v. =V, we can derive the following
relationship between S and Sy, := Sc + Sg:

Se+S; = —5lsS —15S - sw()fsm(t)
Sm :fcls +C%Sm, where ¢ =14, ¢ =14
= (Sn(H)S (1) = —a1S(H)S 2 (b) (A5)
= Sn(00)S ?(00) — Sm(to)S (o)

- —cz+l

(5 o) =577 (00))
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Define the final (cumulative) epidemic size C.,, and the final pro-
S(x0)
S(to)*

we derive the following

portion of susceptible (not monitored) individuals U, :=
When plugging in (A.5) into (A.4),

relationship:
In(Us) = (1+PRe(Un =18 (U1 4 1)
i (UL = UL) ) = (L +9)pbV ' x(to)
C. =N —5(50) — S(c0),

_ N v 1-v v/ (1+y)
Ceo = S(t0) sl — 1 (LU + UL
~Sm(to)U),

where N is total population size and pbV 'x(to) = BT(E(to)+
I(t0))/N + PqTq(Eq(to) + Ig(t0))/N + BcTc (Ec(to)+ Ic(to))/N.

If we start from the beginning of an outbreak, letting t, = 0,
then
In(U.) = +w)7ao(

Co 71\1(1

b (@ )
1-v v/(1+9)

(. +0200))

In the case that v = 0, the formula reduces to:

1
N1y
where Ry = (1 — ¢)T and I(0) ~ 0 in this case at the outset of the
outbreak.

Furthermore in the above special case, along with the restric-
tion that v =0, a formula measuring peak infected levels can be
derived along the lines of the method outlined in Feng (2007).
For simplicity, we consider the instance of perfect quarantine
(Bg = B = 0) in model (2). Define Zpeq(t) := E(t) +I(t). Then it is
not hard to see that Z,.,(t)=0 when R.(t)=1, where
Re(t) = Ro W“ Let t, the time of peak (non-quaratined) infected,
where Zpeak(tp) = Lpeak := MaX-0)(t). Then we obtain the follow-
ing: If we obtain the formula if Z . (0) = E(0) + I(0) ~ O:

1+|[/ v

In(Uy) =Ro(Ux — 1), Cu (1-Ux),

N ]
= I3 ATpea(t)) = 5 155 (1 5l )d(S(E) (A6)
= Tpeak = [Trpimog (ln -+ Ro — 1)

Appendix B. Data fitting to models

We utilize data on total reported cases and quarantined con-
tacts in mainland China published in publicly available daily
reports by NHC (National Health Commission of the People’s
Republic of China) (NHC, 2020). There are possible issues with
the case data as detailed by other researchers (Tsang et al,
2020); most notably a change in case counting procedures on
Feb. 12 in Hubei province causing an abrupt decrease then sharp
increase in reported cases. Although utilizing all cumulative cases
reported in China was desirable for model fitting, the data discrep-
ancies, along with potential statistical issues, motivate us to com-
prehensively test different assumptions in our fitting process. First,
because fitting of the model to cumulative incidence data leads to
inconsistent assumptions on independence of errors and may
cause possible bias (King et al., 2015), we fit the model to the
actual daily incidence (inferred from cumulative case data) and
to the quarantined contact data as before. Second, the outbreak
was not localized to a single population during the timeframe con-
sidered, therefore we test the effects of spatial aggregation on
parameter estimates.
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Due the case counting issues in Hubei around Feb. 12, we
excluded the daily incidence numbers for this province (also when
fitting incidence for all China) on Feb. 11-13 from our data fitting.
We conducted various other explorations of different modeling
assumptions including (i) investigation of susceptible self-
quarantine rates dependent on mobility data or proportional to
rate of reported cases (instead of force of infection), (ii) allowing
more general residence time distributions for quarantine periods,
and incubation and infectious periods, (iii) including unreported
cases in the model (see (C.1)) and fitting the additional dataset of
daily deaths. Furthermore, in order to include all cumulative
reported cases (and deaths for (C.1)) despite data irregularities,
we consider a re-distribution of excess cases according to daily
proportion of cumulative totals (Section C.3), and fitting full and
simplified model ((2) and (1)) to raw cumulative reported cases
(Section B.3). All of these additional modeling exercises are sum-
marized below in the following subsections.

B.1. Provincial daily reported case & quarantined contact (DRCQC) fits

For each province we simultaneously fit simplified model (2) to
daily case incidence and an inferred number of quarantined indi-
viduals for that province. Note that we do not include the pro-
vinces of Tibet, which had only one confirmed case, and Hong
Kong, where the peak daily case total occurred well after the time
frame considered. Furthermore because quarantined contact data
was only available aggregated for all of China (from NHC (NHC,
2020)), we estimated the number of quarantined individuals for
each province, labeled i = 1, ... :, 30, as follows:

0(0) = (R0
Q7 (0) = (W)Q(O)
t43 i J
) e s,’14(R(1)(s+1)—R<1)(5))d3
Q(l)(t): fs 3 4 . =0
37 eame-re)ds

where Q7(t), (RV(t + 1) —RY(t)) are the inferred provincial daily
quarantine and reported cases, respectively and Q(t),R(t) are the
national quarantine and daily case totals on day t post Jan. 21. Here
RY(t) = RY(t) + RV (t) is provincial reported cases in the model (2)
for each province i=1,...,30, and R(t) =Y RY(t),Q(t)
¥ (S(c”(t) +EV@6) +19(0) + Rﬁ”(t)) represent national counts with
respective variables in model (2). Here, the assumption is that
quarantined contacts are proportional to reported case load, and
as specified in our model, quarantine duration is exponentially
distributed with mean 14 days and we assume a fixed delay of
3 days from contact to tracing. We utilized a nonlinear weighted
least squares algorithm, minimizing the objective function
JOt) = RY(t + 1) — RO(t) + wQ¥(¢) for each province i=1,...,30,
where w = 0.05 is a chosen positive weight. The fitting optimization
algorithm is implemented in MatLab via the Isqcurvefit function,

China Less Hubei
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which utilizes the interior-reflective Newton method. Plots for
these fits can be found in Figs. S1 and S2 as Supplementary Materi-
als. Fit parameter values are presented in Table D.5.

B.2. Hubei, China less Hubei, all China DRCQC fits

Because of the outbreak originating in Hubei, we consider fit-
ting the model separately for Hubei and China less Hubei. We uti-
lize the same fitting method as B.1 with the advantage of not
having to infer provincial quarantine data. In particular, we mini-
mize the objective function J(t) = 33, R¥(t + 1) — R¥ (t) + wQ(t),
where k = 1,2 represent Hubei and China Less than Hubei, respec-
tively. For all of these fits the data used were daily case totals,

inferred from cumulative case totals R¥(t), and nationally aggre-

gated quarantined counts Q(t), with both R¥(t) directly available
in the raw data. To obtain the fit for China less Hubei and Hubei
in this circumstance we simultaneously fit their respective case
data and the sum of their respective quarantine model compart-
ments with initial conditions chosen where appropriate based
upon initial relative reported cases and under the assumption that
the probability of transmission given contact, p = .06, in line with
other studies (Bi et al., 2020; Sun et al., 2020). The results of these
fittings are summarized in Table D.6 and Fig. B.1.

B.3. All China total daily case & death, reported cumulative case (and
DQC) fits

We also utilize raw and re-distributed case and death data in
order to use all daily reports including February 11-13 and April
17, 2020, where there were large jumps in case and death counts
for Hubei province, respectively. With the raw data, fitting
reported cumulative case (CC) data for all China allows us to avoid
error that would come with fitting daily case counts for Feb. 11-13,
along with avoiding concentrating the excess cases in Hubei pro-
vince. On the other hand, redistributing the excess reported cases
and deaths during these dates when large numbers were added
to Hubei totals, allows us to confidently fit both daily cases and
deaths for all China, along with quarantined contacts, in Section C.3.
We implement an analogous weighted least squares algorithm as
in Section B.1 and B.2. First, we use objective function
J(t) = R(t) + wQ(t) for fitting both simplified model (2) and full
model (1) to raw CC data, R(t), and daily quarantined contacts,
Q(t). Estimated parameters are in Table D.3 and D.1, along with
corresponding Figs. S6 and S7. Next, we use objective function
J(t) = (R(t +1) — R(t)) + w1 (D(t + 1) — D(t)) + w,Q(t) to fit model
(C.1) to re-scaled daily case and death data, along with daily quar-
antined contacts. See Section C.3 for the model (C.1) with unre-
ported cases and further details on the fitting process, along with
Table D.4 and corresponding Figs. 4(a), 4(b),4(c), and 4(d).

All China

1.2

Quarintined Individuals

40 50 60 0 10 20 30 40 50 60
Days Since First Reported Case

2000 oo,
o /o
° 1000 . . 0.2
) o ®S M
0 10 20 30 40 50 60 0 10 20 30
Days Since First Reported Case Days Since First Reported Case
Fig. B.1. Spatially segregated fits corresponding to values in Table D.6.
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B.4. Weekly R.

In addition to computing R, by parameter estimation of differ-
ential equation models, we utilize an alternative purely statistical
approach incorporating both the case and quarantined contact data
to infer R, and efficacy of contact tracing developed in a prior
study of the 2014-2015 Ebola outbreak (Browne et al., 2015).
The method, based on Wallinga and Teunis (2004), measures R,
directly from reported case data and estimates of the serial interval
(generation time) distribution. We utilize serial interval distribu-
tions from a large study of cases and their contacts in Shenzhen,
China (Bi et al., 2020). The serial interval for (untraced) reported
cases is taken to be Gamma(2.29,0.36) resulting in mean
6.29 days. The serial interval for infections caused by contact-
traced cases is taken to be Gamma(1.8,0.5) resulting in mean
3.6 days. Let RY be the daily reproduction number, RY), be the
daily reproduction number if there was no contact tracing, U; be
the untraced reported cases on day j, T; be the traced reported
cases on day j, 7, w; be the c.d.f. of serial interval distributions,
and k = ./ be the proportion of transmissions caused by traced
cases (relative to untraced). Then see Table D.2.

[E(Rg)) = ﬁZ(nntﬂz + KwnTj+n)
n

[E(Rg)n) = UJerllch Z(nnuj+n + wnTj+11)
n

Note that xk = 0 for the simplified (perfect tracing) model. Since
the amount of infected quarantined contacts is not available in the
data, we utilize the predicted relative transmission and incidence
of contact-traced individuals from our model fit to assess R, with
and without contact tracing. The results (Figs. 2(a), 2(b) in main
text) estimate the proportion of reported cases which are traced
contacts and reduction of R, due to contact tracing.

B.5. Uncertainty quantification

We used the following method to generate 95% confidence
intervals for the selected quantities appearing in Tables D.1, D.6.

1. Simultaneously fit the simplest model to daily case totals for
China less Hubei Province, Hubei Province, and national quaran-
tined data as described in the proceeding section.

2. Based on the two fit daily case total curves, and under the
assumption that the reporting error is normally distributed
and relative in magnitude to the reported total at each data
point:

Vi =8X(t;),&) + €& € ~n(0,y;-s%),

where g is the true number of daily cases and & the set of true
parameter values. We generated 10,000 datasets and refit the
model to each of them and the original quarantine data simulta-
neously. For the results in Tables D.1, D.6 a value of s = .5 was
used because this value causes the synthetic data-sets to cover
the original data except for the outliers around February 12,
when there was a change in the method of reporting cases in
Hubei province (see Fig. S3 in Supplementary Materials).

3. If fitting aggregate case totals sum the results from step 4 to
obtain cumulative case numbers

4. Produce scatter plots and correlation values for each of the fit
parameters based on these generated data for the cumulative
data fitting (see Figs. S4 and S5 in Supplementary Materials,
respectively).

5. Arrange the generated values in increasing order and remove
the top and bottom 2.5% in order to obtain the desired approx-
imate 95% Confidence Intervals.
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Appendix C. Model variations
C.1. Model with unreported cases

In addition, we consider a version of the model which includes
unreported cases. Let p be the probability a non-(contact-) traced
infected individual becomes a reported case (we assume that all
contact-traced cases are reported). Then in the simplified model
(2), the equations become:

S =—(1+y)pSI/N, E =(1-¢p)pSI/N —1E, c1

I =1E-3 R =814, €1
r _(-p I

(Se)' =P ¢ppSI/N —ocSe, (Ec)' = ¢pppSI/N — {E,

(L) = %Ec - Tlclu (R) = Tlclc — R, (C.2)

@ LewCIa) g5t q)](t — a)/Nda,

< rt
D(t) =< fo =ty

where ¢ is case fatality ratio and decoupled death compartment D(t)
is fit to daily death data in order to estimate true number of infec-
tions and proportion of reported cases, p. For this fitting, we re-
scaled the death and case data in the following manners, so that
the ultimate cumulative total would be reached while retaining
the same shape to the data:

d

d= d(o)

d(T)

where d is the cumulative death data and d(t), d(T) are the cumula-
tive deaths at the end of the time interval considered for fitting and
the cumulative deaths as of mid-April, 2020 when there was a large
jump in Cumulative deaths. Because of the delay between infection
and death, along with deaths showing up in data starting Jan. 18,
the model fit is initiated at Jan. 11 instead of Jan. 21. Early in the
data there is a gap in reported death data, these missing values were
estimated via simple linear interpolation prior to applying the
above scaling. A similar approach was taken for dealing with the
irregularities in reported cases.

C.2. Exploration of different self-quarantine rates

The models considered so far incorporate mass self-quarantine
proportional to force of infection, e.g. g A(t) in (2), as a simple proxy
for reactionary lockdowns, individual behavior change, etc., occur-
ring population-wide during the outbreak. In reality, this propor-
tionality relationship has several limitations. In particular, there
is a delay between new incidence and case reporting which may
delay the action of self-quarantine with respect to force of infec-
tion. Additionally, while public health proclamations are generally
reactionary, other factors may come into play. In order to test the
robustness of our simplification we explore different (susceptible)
self-quarantine rates here. First, if we simply take self-quarantine
rate dependent on the (instantaneous) rate of change in (cumula-
tive) reported case prevalence, R'(t)/N, then we obtain the modi-

fied factor o:
_/1
a(T)I(t)S(t)

_R(t)
O'TS(t)

Thus, the form of self-quarantine rate is preserved (proportional
to I(t)S(t)), but the proportionality constant is modified in such a
way that the factor must be Ry, xlarger when relative to rate of
reporting to reach compared to the equivalent quarantine levels
when proportional to force of infection. If we consider underre-
porting as in system (C.1), then the factor is Rop/p.

Next, we consider the following delay equation with self-
quarantine dependent on daily reported cases, which modifies
the susceptible compartment in (2) as

= 0=0Rop.

(C3)
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Fig. B.2. Fitted daily case incidence trajectory in original ODE model (dashed black) alongside simulations with modified self-quarantine proportionality constant ¢ relative

to daily reported case variable (R(t) — R(t — 1)) in DDE model (C.4).

7§ (1 +¥¢)I(t)5(t) -

Here, the factor proportional to (prevalence of) new reported
cases within the past 24 h, ¢(R(t) — R(t — 1))/N, replaces the force
of infection relationship (o A(t)). In Fig. B.2, we show simulations of
the delay system plotted with the original model output (corre-
sponding to all China daily incidence fit) for different values of ¢
(relative to ¢) in (C.4). Notice that the incidence trajectory of orig-
inal model fit is bounded between outbreak simulations of the
delay model corresponding to ¢ = Rg,0 (lower bound) and
0 = (Rop/2)0. This is consistent with the predicted magnification
of o derived above in (C.3), and possibly not exactly matching
due to the fact that (R(t) — R(t — 1)) > R'(t) at the beginning of
the outbreak.

Finally, we utilize Baidu mobility data for within-cities, namely
City Movement Intensity (WCMI) (C.D. Lab, 2020), as a proxy for
the rate of self-quarantine in China during the timeframe. We con-
sider the following modification to the susceptible compartment in

_(R(t) — R(t —

S(t) = G 5 D). (ca

(2)

S(t) = —% (1 + Op%’”qﬁ)](t)S(t) — a(t)S(¢). (C.5)
We consider the form

_ [om 0<E<E

o(t) = {0 tg <t

where o, is the rate and t; is the duration in exponential decay of
mobility fit to the WCMI data separately for Hubei and China less
Hubei via non-linear least squares method applied to function

China Less Hubei

5.5 —

Mobility Data
Quarintine

*
e

20 30 40
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50 60

WCMI(t) = (WCMI(0) — b)e=?»* + b (with b as a lower bound for
movement intensity). Utilizing this fitted self-quarantine rate o,
in (C.5), we fit the remaining model parameters to the model, this
time fitting p, instead of fixing p = .06, with the susceptible com-
partment as described above. The results are consistent with our
original model where ¢ is fitted proportionality constant relative
to force of infection (see Table D.6 along with Figs. C.3 and C.4).

C.3. Time variable serial interval

The final alternative modeling assumption we consider is the
possibility of time variable serial interval, as suggested by Ali
et al. (2020). We do so by modifying (2) to add additional loss
terms due to the lockdown (self-quarantine rate proportional to
force of infection) in the Infected and Exposed compartments:

I/
EI

11— apP’/N

1y
— ¢)BSI/N — LE — g BEI/N (€6

We assume the same (initial) infectious period value T = 4.64.
Under this alternative assumption we fit (C.6) for China less Hubei
Province and Hubei Province (see Fig. C.5). The residual for this fit-
ting was similar to the fitting of the base simplified model. Com-
paring the fit parameter values to the base assumption (see
Table D.6) this results in decreases in both ¢ and ¢. It is expected
with the decreasing serial interval of infected cases that less (self)-
quarantine will be needed to control the disease, but simulations
show that the trajectory of total (self)-quarantined is very close
to the original (constant exposed and infectious period) model fit
(see Fig. C.5). Furthermore, the main result of minimal impact from
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Fig. C.3. Total self-quarantined trajectory in model fit, alongside Baidu (WCMI) mobility data, see also Table D.6 and (C.5).
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All China

New Daily Cases
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Quarintined Individuals

20
Days Since First Reported Case

20
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30

30 40
Days Since First Reported Case
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Fig. C.4. Model fit using mobility data to approximate g, see also Table D.6 and (C.5).

contact tracing compared to self-quarantine is preserved, along
with the observation that ¢ and ¢ are relatively larger for China
less Hubei than they are for Hubei.

C.4. Residence times of quarantine, exposed and infectious periods

We considered two possible alternatives for the distribution of
quarantine residence times besides the base assumption of an
exponential distribution with mean time of 14 days: a gamma dis-
tribution with shape parameter oo and scale parameter f con-
strained by g = 140! so that a mean residency time of 14 days
was retained; and a Weibull distribution with shape parameter 4
and scale parameter x  similarly  constrained by

A=14[C(1+x")]"!, with the unconstrained parameters being
determined by nonlinear least squares fit to the data together with
Iy, B (and so Roy), P, 0, and ¢. As can be seen in Fig. S9 both of these
resulted in distributions with similar shape, and resulted in a slight
reduction in residual, with the fit Weibull distribution having the
lowest residual value. These fit distributions indicate that more
individuals spend close to no time in quarantine, presumably as
testing results are returned (Luo et al., 2020), and fewer individuals
spend significantly more than 14 days in quarantine as would be
indicated by the baseline assumption that quarantine residency
time is exponentially distributed. However the fit parameter values
themselves are comparable (see Table D.6).

Hubel

We additionally considered the possibility of the infectious and
exposed residency times following an Erlang distribution via the
linear chain trick using the following system of ODEs:

S = —(1+y)BSI/N, E, =(1—¢)BSI/N —"E,,

E =%(Eq-F) 2<j<n

,1 :%Ene—%lh I;(:%(qu —Ik) 2<k<n

R =%y + (), (S) =52 GBSI/N — acSe,
(E)y = @pSIN —"(Eo)y,  (Eo)j="((Ee)y, — (Eo)). (©7)
(), = % (Ec)p, *%IC» (o) = %((lf)kfl =) 2< k< m,
(Re) =%l —oR., I= 215 2<j<n.

s=1

In order to obtain an upper bound for the number of stages in
Eq. (C.7) we took the variance and standard deviation for the distri-
butions of T and T, given in Bi et al. (2020) (where they are
assumed to be log normal), fixed the mean to be the values given
in table S1, and set the variances equal, solved for n; and rounded
up. This process resulted in an upper bound of at most two stages.

With this in mind we considered three cases, n; =2 and
n.=1,n=1 and n, =2, and finally n; =2 and n, = 2. The fit
parameter values corresponding to these fittings are given in
Table D.6, and associated fitting plots are Fig. S10. We additionally
plotted the log normal distributions given in Bi et al. (2020)
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Fig. C.5. Model fit with time variable serial interval and comparison of total self-quarantined trajectory with original fitted model with constant serial interval, see also

Table D.6.
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Table D.1
Bootstrapped Confidence Intervals for Selected Quantities using the simplified model and aggregate case totals.
95% Cl MLE Mean Std. Dev. ARE
Iy (748.2, 927.4) 778.1 818.6 48.97 5.99
B (1.22, 1.36) 1.29 1.28 3.36 2.14
g (1137, 1362) 1240 1244 56.5 3.56
¢ (0.345, 0.456) 0.377 0.385 0.028 5.24
p (0.075, 0.096) 0.082 0.083 0.0048 4.16
Ro (3.37,3.80) 3.74 3.65 0.119 2.71
Rob (5.67, 6.29) 6.0 5.95 0.156 2.14
Table D.2
Model variables and parameters.
Variable/ Description Estimation
Parameter
Variables
S(t), E(t),I(t) (Non-quarantined) susceptible, exposed and infectious individuals
Sq. Eq(0),I4(t) Self-quarantined (social-distanced) susceptible, exposed and infectious individuals
Sc(t),Ec(t),Ic(t) Contact-traced susceptible, exposed and infectious individuals
R(t) Isolated reported cases
Rc(t) Currently quarantined contact-traced cases
Parameters
B, Bq: Be Transmission rate (for unmonitored infectious) 12,
&, Pqdc Proportion of (non-quarantined,self-quarantined, already initially traced) contacts traced (or remaining traced) 3 bg =0, =1
4 self-quarantine (social distancing or lockdown) factor 3
p probability of transmission upon contact 3
Vg, Ve Reduction in susceptibility for self-quarantined, contact-traced susceptible individuals 20
g, Oe Rate of exit from self-, contact-traced quarantine 214 (days)
0c Fraction of susceptible individuals who return to “social-distanced” (self-quarantined) after completing contact- 1
traced protocol
T Average time to infectiousness (includes pre-symptomatic) 3 (He et al.,, 2020)
T, Tq, Tc Average infectious period (time to isolation) of non-quarantined, self-quarantined, contact-traced 4.64,2.71,2.71 (Bi et al,,
2020)
S(0)=N Total initial susceptible population *

1. p fitted under various assumptions (see Tables D.1, D.5 & D.6).
2. Fixed at 0 in simplified model, fit in full model (see Table D.3).
3. Fit in full & simplified model (see Tables D.1 & D.3).

4. Population or aggregated populations of provinces in China (N.B. of Statistics of China, 2019).

together with exponential distributions and Erlang distributions
with the same mean (Fig. S9 in Supplementary Materials). In
Fig. S9 the considered Erlang and Exponential distributions for t
are shown. The primary difference in these distributions is that
under the exponential assumption a greater proportion of individ-
uals become rapidly infectious and have a shorter infectious period
respectively. The primary effects of the Erlang assumption for
infectious dwell time are to increase Iy, as well as overall case
totals, and decrease o, as indicated by the fit values in Table S5
and the plots in Fig. S10. In turn an Erlang assumption for time
until infectiousness lowers the fit value for I, and increases o
and ¢. Simultaneously assuming both dwell times follow an Erlang
distribution results in more moderate increases in Iy and ¢, as well
as a slight decrease in ¢ (See Table D.6). The assumption that infec-
tious period (T) is exponential results in better fits than the case of
Erlang distribution, whereas either distribution for time until
infectiousness (t) provides good fits to the data.

Furthermore, we tested how varying the means for the quaran-
tine, exposed and infectious periods affects the fitting results (see
Fig. S9 in Supplementary Materials). For the quarantine duration,
we vary the (exponential distribution) parameter from 1/20 to
1/4, with 1/14 as our baseline assumption (mean duration of 14
days). The parameter fits and results do not change significantly
with the varied mean quarantine duration. For exposed (t) and
infectious periods (T and T.) under the assumption of exponential
durations, we vary 7 from 2 to 4, along with varying T and T in the
reported 95% confidence intervals of (4.13,5.1) and (2.08,3.31),

16

Table D.3
Fit Quantities for full Model using aggregate case totals (Rq, = 6 considering results
in Table D.1 and improved identifiability)

Quantity Point Estimate
Iy 793.584
¢ 0.4345
Be/B 2.33172e-14
1235.8
v 1.13e-12
B./B 0.1654
p 0.0946
o 4.135e-14
Ro 3.6447
Table D.4
Fit quantities for model incorporating death data, see C.3 and equation (C.1).
Quantity Point Estimate Notes
Iy 77.0 on Jan. 11,2020
Rob 4.808
Ro 2.782
a 3364.8
¢ 42147
P 12853 probability of case being detected
¢ .010875 Infection Fatality Ratio (IFR)
ag 2.0254 Gamma Shape parameter
bg 7.2301 Gamma Location parameter
u 14.6439 mean time until death, p = ag - bg
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Fit Parameter Values for Provinces of China using Daily Case totals and approximate Quarantined Individuals for each Province except Hong Kong, due to its peak daily case total
occurring significantly after the end of available quarantine data; and Tibet, which had one confirmed case during the outbreak.

province Io Rop a ¢ Ro
Anhui 24.2010 6.0000 64210.0 0.41338 3.519720
Beijing 22.2280 49219 59285.0 0.60144 1.961672
Chongging 33.1070 5.3588 61349.0 0.62185 2.026430
Fujian 22.5090 5.2140 147520.0 0.67986 1.669210
Gansu 6.1867 5.2320 318820.0 0.58251 2.184308
Guangdong 55.2860 6.0000 90103.0 0.51555 2.906700
Guangxi 18.5600 4.2585 203190.0 0.64409 1.515643
Guizhou 2.0885 6.0000 231250.0 0.31685 4.098900
Hainan 4.2958 6.0000 60484.0 0.49998 3.000120
Hebei 3.0933 6.0000 219520.0 0.32616 4.043040
Heilongjiang 5.4071 6.0000 65261.0 0.26693 4.398420
Henan 12.3730 6.0000 55652.0 0.30274 4183560
Hubei 324.8000 6.0000 1178.3 0.32015 4.079100
Hunan 32.8380 6.0000 61102.0 0.45320 3.280800
Inner Mongolia 1.8439 6.0000 379400.0 0.45947 3.243180
Jiangsu 15.1090 6.0000 123090.0 0.41810 3.491400
Jiangxi 22.8750 6.0000 44021.0 0.40488 3.570720
Jilin 1.7670 6.0000 258030.0 0.36291 3.822540
Liaoning 3.9735 6.0000 302290.0 0.40183 3.589020
Macau 1.0651 6.0000 54198.0 0.67337 1.959780
Ningxia 1.7890 6.0000 94699.0 0.41355 3.518700
Qinghai 1.4552 6.0000 275660.0 0.64266 2.144040
Shaanxi 8.6792 6.0000 148260.0 0.48639 3.081660
Shandong 16.4910 6.0000 173500.0 0.47499 3.150060
Shanghai 12.5000 6.0000 66041.0 0.47770 3.133800
Shanxi 43513 6.0000 244730.0 0.44902 3.305880
Sichuan 16.7490 6.0000 163170.0 0.48628 3.082320
Tianjin 3.0767 6.0000 123960.0 0.44167 3.349980
Xinjiang 1.4438 5.5720 343980.0 0.37189 3.499829
Yunnan 9.0932 6.0000 252570.0 0.54209 2.747460
Zhejiang 51.7310 6.0000 40251.0 0.48586 3.084840
Table D.6
Bootstraped Confidence Intervals for Selected Quantities using Daily Case Totals. g,, is the exponential rate of mobility decay.
Param 95% ClI Pt. Est. Mean Std. Dev. ARE

China Io (304.06, 568.13) 393.08 396.12 63.401 11.407
Less Rob (4.3009, 6.0) 6.0 5.7742 0.47993 3.763
Hubei! o (100100.0, 127610.0) 114070.0 113240.0 7011.4 4.9488

¢ (0.35645, 0.63956) 0.58842 0.53327 0.073158 11.423

Ro (2.1537, 3.3206) 2.4695 2.6702 0.30214 11.396
o, from Iy - 457.61 - - -
mobility Rob - 5.8033 - - -
data ¢ - 0.59027 - - -

p - 0.050985 - - -

Om - 0.1051 - - -

Ro - 2.3778 - -
time Iy - 443 - - -
variable Rob - 6.0 - - -
serial o - 77068 - - -
interval ! ¢ - 0.37 - - -

Ro - 3.78 - - -

Ip (410.92, 648.33) 487.2 516.21 60.431 10.547
Hubei' Rob (5.7131, 6.0) 6.0 5.9804 0.082126 0.32743

a (1112.9, 1406.2) 1260.1 1249.0 74.413 4.7559
¢ (0.27846, 0.40932) 0.32135 0.33809 0.034025 9.2804

Ro (3.4661, 4.3292) 4.0719 3.9591 0.22086 4.6969
o, from Iy - 487.2 - - -
mobility Rob - 6.0 - - -
data 13 - 0.32135 - - -

p - .06 - - -

Om - 0.1859 - - -

Ro - 3.7622 - - -
time Iy - 644.44 - - -
variable Rob - 6.0 - - -
serial T - 699.03 - - -
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Param 95% CI Pt. Est. Mean Std. Dev. ARE

interval ! ® - 0.21 - - -

Ro - 474 - - -

Io (745.83, 809.05) 787.55 773.52 17.143 2.2695
China’ Rob (5.9288, 6.0) 6.0 5.9955 0.023302 0.075615

o (20906.0, 25382.0) 23495.0 23186.0 11474 3.9386

¢ (0.32521, 0.4018) 0.36897 0.3637 0.019656 4.3037

Ro (3.588, 4.0367) 3.786 3.8168 0.11491 2.4572
Gamma Iy - 810.733 - - -
Quarantine Rop - 6.0 - - -
Assumption ! o - 23463.0 - - -

P - 0.37296 - - -

Ro - 3.7622 - - -
Weibull Iy - 812.079 - - -
Quarantine Rop - 6.0 - - -
Assumption ! o - 23486.1 - - -

) - 0.37309 - - -

Ro - 3.7615 - - -
Infectious Io - 1259.6 - - -
Erlang Rob - 6.0 - - -
Assumption a - 18118.0 - - -
only ! ¢ - 0.33983 - - -

Ro - 3.9610 - - -
Exposed Io - 732.18 - - -
Erlang Rop - 6.0 - - -
Assumption T - 30887.0 - - -
only ! ¢ - 0.50246 - - -

Ro - 2.9852 - - -
Simultaneous Iy - 1053.1 - - -
Erlang Rop - 6.0 - - -
Assumption ' 4 - 20864.0 - - -

P - 0.42596 - - -

Ro - 3.4442 - - -

1. p fixed at 0.06.

respectively, given in Bi et al. (2020). The parameter fits and results
are robust to varying means 7, T and T..

Appendix D. Tables

See Tables D.1-D.6.

Appendix E. Materials

Source code data have been deposited in GitHub ( https://
github.com/jcmacdonald-codesData?tab=projects).

Appendix F. Supplementary data

Supplementary data associated with this article can be found, in
the online version, athttps://doi.org/10.1016/j.jtbi.2021.110919.
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