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1  | INTRODUC TION

Diabetes mellitus (DM) is a chronic metabolic disorder, characterized 
by hyperglycemia and glucose, protein, and fat metabolism distur-
bances which causes failure in insulin production, insulin action, or 
both (Farzaei et al., 2017). Type 2 diabetes is caused by β cell dysfunc-
tion and insulin resistance and is mostly associated with obesity. Thus, 

the treatments aiming to control obesity are considered in the ther-
apy of type 2 diabetes (Q. Wang et al., 2019). Diabetic patients suffer 
from various disorders. Hence, their blood glucose level should be 
reduced and maintained in the normal range by different approaches, 
such as diet, medications, and exercise (Zaharudin et al., 2019).

In recent years, marine algae in particular brown seaweeds 
have been documented to possess health beneficial effect because 
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Abstract
This work aimed to study the antidiabetic effect of encapsulated fucoxanthin with 
porous starch (PS) in streptozotocin and nicotinamide- induced type 2 diabetic mice. 
Fucoxanthin was extracted and purified from Sargassum angustifolium and encapsu-
lated in porous starch (PS). Diabetic mice groups were gavaged daily with fucoxan-
thin (400 mg/kg), either free or encapsulated into PS, and metformin (50 mg/kg) for 
three weeks. The results exhibited that the fucoxanthin and fucoxanthin- loaded PS 
markedly prevented the weight gain in treated groups (p < .05). Moreover, both free 
and encapsulated fucoxanthin could decrease the fasting blood glucose and increase 
the plasma insulin level similar to metformin (p < .05). In addition, total cholesterol, 
triglyceride, and low- density lipoprotein were lower in the treated groups. These re-
sults confirm antiobesity effect of fucoxanthin by regulating lipid profile parameters. 
Moreover, the histopathology evaluation of pancreatic tissue in diabetic mice ex-
hibited that oral administration of metformin and fucoxanthin caused regeneration 
of pancreatic beta cells. This study revealed the healthy effect of seaweed pigment 
as a suitable bioactive compound which can be used in functional foods for natural 
diabetes therapy.
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of wide range of bioactive components such as catechins, phloro-
tannins, flavonoids, flavonols, and flavonol glycosides (Savaghebi 
et al., 2020) with antioxidant, anti- inflammatory, antiobesity, and 
anticarcinogenic activities (S.- y. Kang et al., 2018; Liu et al., 2020). 
Therefore, the seaweed industry has attracted much attention in 
development of functional materials for food, cosmeceutical, nu-
traceutical, and pharmaceutical industries (Liu et al., 2020). Several 
investigations reported that the supplementation of seaweeds 
or seaweeds extracts such as Laminaria japonica and Hizikia fusi-
forme (S.- y. Kang et al., 2018), Sargassum oligocystum (Akbarzadeh 
et al., 2018), Sargassum wightii and Ulva fasciata (Mohapatra 
et al., 2016), Gelidium amansii (Yang et al., 2015) and Ascophyllum 
nodosum (Lordan et al., 2013) Sargassum polycystum (Motshakeri 
et al., 2013) exhibited antidiabetic activity by various pathways.

Among seaweed constituents, fucoxanthin is the most abundant 
carotenoid in brown macroalgae and has been considered because 
of its unique structure. Fucoxanthin metabolized to amarouciaxan-
thin A in adipose tissue and fucoxanthinol in other tissues (Miyashita 
et al., 2010). Moreover, fucoxanthin is safe under experimental con-
dition in mice, and oral administration of fucoxanthin revealed no 
toxicity and mutagenicity (Martin, 2015).

In current years, several research has been claimed a possible 
biomedical potential and variety of different biological properties of 
fucoxanthin including antioxidative, anti- inflammatory, anticancer, 
antiobesity, antidiabetic, antiangiogenic, and antimalarial attributes. 
Thus, this carotenoid exerts protective effect on different organs 
(Peng et al., 2011).

Among the extensive studies about its therapeutic activities, 
fucoxanthin has shown promising antidiabetic effect. A number of 
studies indicated that fucoxanthin exhibited the strong antiobesity 
and antidiabetic effects on diet- induced obesity KK- Ay, C57BL/6N, 
C57BL/6J mice (Maeda et al., 2007, 2009; Woo et al., 2010). It has 
been suggested that the antidiabetic activity of fucoxanthin is asso-
ciated with regulation of adipocytokine secretion, such as tumor ne-
crosis factor- α (TNF- α) and interleukin 6 (IL- 6) and also modulation of 
monocyte chemoattractant protein- 1 (MCP- 1) mRNA expression in 
white adipose tissue (WAT), leading to prevention of hyperglycemia 
in a type 2 diabetes (Hosokawa et al., 2010; Maeda et al., 2009). In 
addition, fucoxanthin could decrease insulin resistance by increasing 
the hepatic glucokinase/glucose- 6- phospahtase ratio and glycogen 
content (Park et al., 2011) and also regulating glucose transported 
4 (GLUT4) mRNA expression in skeletal muscle tissues (Maeda 
et al., 2009).

Fucoxanthin is susceptible to light, oxygen, pH, and thermal deg-
radation because of its multiple conjugated double bonds that could 
be problematic for long- term storage (Quan et al., 2013). The evi-
dence collected from other studies has confirmed the necessity of 
fucoxanthin encapsulation (Huang et al., 2017; Ravi et al., 2015; X. 
Wang et al., 2017). Encapsulation approaches protect the bioactive 
compounds from decomposition and interactions with other food 
components and improve their bioavailability and accurate release 
in food systems (Savaghebi et al., 2020). Porous starch (PS) is sug-
gested as a new type of carrier for encapsulation of sensitive and 

poorly water- soluble drugs (Wu et al., 2011). Our previous studies 
showed that the PS (Najme Oliyaei et al., 2020a) or modified PS with 
maltodextrin and gum Arabic (Oliyaei et al., 2020b) had appropriate 
encapsulation efficiency and in vitro release. Thus, in the present 
study, we aimed to assess the in vivo antidiabetic activity of fucox-
anthin isolated from Sargassum angustifolium. Fucoxanthin was orally 
administered either as free or PS encapsulated powder to type 2 di-
abetic mice induced by streptozotocin (STZ) and nicotinamide (NA). 
Then, biochemical, histological, and morphometric alterations of 
pancreatic islets were evaluated. Besides, we conducted initial ex-
periments to determine the effect of PS encapsulated fucoxanthin 
on reduction of the blood glucose in type 2 diabetic mice model.

2  | MATERIAL S AND METHODS

2.1 | Materials

S. angustifolium was supplied by Algae Resource Development 
Technology Company (Shiraz, Iran). Standard fucoxanthin (>98%) 
and silica gel were purchased from J&K Scientific Ltd (China) and 
Nanochemia Company (Tehran. Iran), respectively. Ethanol (96% v/v), 
acetone, and n- hexane were obtained from Dr. Mojallali Chemical 
Laboratories (Tehran, Iran). Streptozotocin (STZ) was purchased 
from Sigma- Aldrich. Nicotinamide (NA), HPLC grade methanol, and 
acetonitrile were supplied from Merck Co.

2.2 | Extraction and purification of fucoxanthin

Extraction of fucoxanthin was carried out according to S. M. Kim 
et al., (2012) with a slight modification. The powdered S. angustifolium 
was extracted three times (1:20 w/v) with 90% ethanol and filtered. 
Then, the concentrated extract was purified by column chromatog-
raphy with silica gel (particle size 100– 200 mesh) as normal station-
ary phase and n- hexane- acetone (6:4; v/v) as mobile phase. Finally, 
residual fucoxanthin was eluted by acetone. Purification analysis of 
fucoxanthin was performed with analytical HPLC system (KNAUER, 
Germany) equipped with UV/Vis detector 2,600 and C18 column 
(sphere- image, ODS- 2, 300 x4 mm; 5 μm) and methanol/acetonitrile 
(50:50 v/v) as the mobile phase which was eluted at a 0.6 ml/min 
flow rate. Fucoxanthin was detected at 450 nm. and the results were 
compared with standard fucoxanthin (Norra et al., 2017). The recov-
ered fucoxanthin exhibited the purity about 54% based on HPLC 
analysis of the area under the fucoxanthin curve.

2.3 | Preparation of PS

PS was prepared according to the previous study (N Oliyaei 
et al., 2019); the mixture of corn starch and water (5% w/v) was 
heated at 90°C for 0.5 hr and then chilled at 5°C for 48 hr. The cyl-
inder cut gels (about 1 × 1 cm) were frozen and finally subjected to 



     |  3523OLIYAEI Et AL.

solvent exchange by ethanol (100%). Immersion of gels in ethanol 
was carried out three times, for about 1h each time. The products 
were freeze- dried.

2.4 | Encapsulation of fucoxanthin

Fucoxanthin encapsulation was carried out according to Wu 
et al., (2011) with slight modification. The dried PS was mixed with 
fucoxanthin solution and then stirred overnight in the dark condition 
which allowed to reach equilibrium. Finally, samples were dried at a 
vacuum dryer.

2.5 | Induction of diabetes

Six-  to eight- week- old BALB/C mice (male, n = 30, w = 21.50 ± 3 g) 
were housed in a facility on a 12 hr light- dark cycle with free access 
to food and water and controlled room temperature. Then, type 2 
diabetes was induced by intraperitoneal injection of STZ (65 mg/kg 
body weight) freshly dissolved in a citrate buffer (0.1 M, pH 4.5) on 
three consecutive days, 15 min after a single dose of NA 110 mg/kg 
body weight in 0.1 ml normal saline on the first day. Diabetes was 
assured after a week by the daily measurement of blood glucose lev-
els by glucose meter (Infopia EasyGluco AutoCoding Blood Glucose 
Meter, Korea), and mice with a blood glucose concentration above 
180 mg/ml were considered to be type 2 diabetic (Lee et al., 2010).

2.6 | Experimental design

To assess the antidiabetic activity of fucoxanthin, the mice were 
randomly allocated into five groups of six animals: Group 1: Normal 
control, Group 2: diabetic mice as negative control, Group 3: diabetic 
mice treated with metformin as positive control (received 50 mg/kg 
in 0.3 ml normal saline), Group 4: diabetic mice treated with fucoxan-
thin at dose of 400 mg/kg BW, Group 5: diabetic mice treated with 
PS encapsulated fucoxanthin at dose of 400 mg/kg BW, received 
daily gavage for 3 weeks after induction of type 2 diabetes.

2.7 | Biochemical assessment

The body weight of animals was monitored on the final day of the 
experimental period. Also, after 24 hr of the last dose administered, 
blood samples of fasted mice were collected by heart puncture 
under acepromazine (80 mg/kg) and ketamine (100 mg/kg). Blood 
samples were centrifuged at 1512 g for 10 min for separation of 
sera. Each serum sample was stored at −80°C until further analysis. 
Serum was used to perform biochemical analysis, fasting blood glu-
cose (FBG), fasting insulin, triglycerides (TG), total cholesterol (TC), 
high- density lipid (HDL), and low- density lipid (LDL) using commer-
cially available kits.

2.8 | Histopathology of pancreatic tissue

The pancreas tissue of each mouse was removed and fixed in buffer 
solution of 10% formalin. Fixed tissues were processed using paraf-
fin embedding and sectioned at 4 μm. Sections of pancreas were 
stained with hematoxylin and eosin (H&E). Stained areas were ob-
served using an optical microscope with a magnifying power of ×20.

2.9 | Statistical analysis

The values were evaluated by one- way ANOVA analysis followed 
by Duncan's multiple range tests. All the results were expressed as 
mean ± SD and analyzed using SAS software (SAS Institute). p values 
<.05 were considered statistically significant.

3  | RESULTS AND DISCUSSION

3.1 | Effect of fucoxanthin on body weight

The effect of fucoxanthin on the body weight of normal and dia-
betic mice is presented in Figure 1. Diabetic mice had greater body 
weight gain than normal group after 3 weeks (Figure 1, p < .05). 
Interestingly, no significant differences were observed between 
normal control and treatment groups. Among the treatments, fucox-
anthin depicted a bit lower level of weight gain. A similar effect of 
fucoxanthin on body weight was reported by Iwasaki et al., (2012) in 
obese/diabetes KK- Ay mice model. Indeed, fucoxanthin could alter 
the leptin level and control body weight through the regulation of 
energy expenditure (Park et al., 2011).

3.2 | Effect of fucoxanthin on FBS and plasma 
insulin levels

Effect of fucoxanthin on FBS and plasma insulin is shown in 
Figure 2. Fasting blood glucose level was increased significantly 
in diabetic group compared with normal group after three weeks 
(p < .05). All treated groups showed statistically significant reduc-
tion in FBS compared with the diabetic group (p < .05); however, 
there was no significant difference between metformin and fu-
coxanthin treated groups. Furthermore, the plasma insulin level of 
treated mice was higher than diabetic control mice. Fucoxanthin 
administration, either free or PS encapsulated, increased the 
plasma insulin level similar to metformin (p > .05). Similar results 
have been attained by dietary fucoxanthin in KK- Ay mice (Maeda 
et al., 2007). Several mechanisms of action explaining the fucoxan-
thin antidiabetic effects have been suggested. There are two main 
mechanisms of antidiabetic effect of fucoxanthin: downregulation 
of adipokines RNA expression such as TNF- α and MCP- 1 and over-
expression of GLUT- 4 (Maeda et al., 2009). Hosokawa et al., (2010) 
reported that the weight gain and blood glucose level decreased 
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after administration of 0.2% fucoxanthin in diabetic/obese KK- Ay 
mice. Moreover, dietary fucoxanthin caused reduction of MCP- 1, 
TNF- α, IL- 6, and plasminogen activator inhibitor- 1 (PAI- 1) expres-
sion in perigonadal WAT. In addition, MCP- 1 is known to medi-
ate macrophage migration which attributed to insulin resistance 
and type 2 diabetes. Moreover, fucoxanthin conversion to fucox-
anthinol by lipase and esterase secreted from pancreas or intes-
tine (H. Zhang et al., 2015) can suppress the MCP- 1 production 
(Hosokawa et al., 2010). Also, fucoxanthinol can directly stop 
macrophage infiltration in WAT by reducing the mRNA expression 
level of the pro- inflammatory adipocytokines. Besides, fucoxan-
thinol indirectly inhibits the macrophages infiltration by reducing 
the adipocytes production, because adipocytes release saturated 
fatty acids, such as palmitic acid which activate macrophages in-
filtration into WAT (Hosokawa et al., 2010). Other factors such as 
the presence of fish oil can influence on the fucoxanthin function 
as reported by Maeda et al., (2007). They gained a better profile 
of blood glucose and plasma insulin in KK- Ay mice fed with 0.1% 
fucoxanthin in fish oil. Also, the upregulation of insulin receptor 
substarte- 1 (IRS- 1) was reported in db/db mice treated with fu-
coxanthin which is related to the reduction of blood glucose and 
insulin resistance (Lin et al., 2017).

Another possible mechanism of fucoxanthin in antidiabetic effect 
may be due to inhibition or decreased activity of α- glycosidase ac-
tivity that converts carbohydrates into glucose. Therefore, increased 
blood glucose level is prevented by slowing down the carbohydrate 

absorption in the small intestine (Zaharudin et al., 2019). Zaharudin 
et al., (2019) reported a strong α- glucosidase inhibitory activity of 
fucoxanthin with a lower IC50 value than the specific inhibitor acar-
bose. They also reported that administration of acetone extract of 
brown seaweeds such as Undaria pinnatifida and Laminaria digitate 
effectively inhibited α- glucosidase. However, U. pinnatifida extract 
had significantly inhibitory activity (>70%). Moreover, they sug-
gested that the brown algae extract had better inhibitory effects 
compared with red algae (Zaharudin et al., 2019).

Moreover, α- amylase inhibitors are considered for hyperglyce-
mia treatment because help to slow carbohydrate digestion and 
prevent the entry of glucose into the circulation (Gong et al., 2020). 
In the present study, our fucoxanthin enriched extract contained 
polyphenolic compounds, such as phlorotannins which can act 
as inhibitors of α- amylase and α- glucosidase (Parada et al., 2019). 
However, seaweed extracts have different inhibitory effect on va-
riety of enzymes, which is depending on the seaweed's polyphenol 
profile (Lordan et al., 2013). Furthermore, phenolic compounds play 
an important role on several sodium- dependent glucose transport-
ers (GLUT) that may limit glucose absorption in the intestine (Gauer 
et al., 2018). Stimulation of insulin secretion, hepatic glucose out-
put reduction, enhanced insulin- dependent glucose uptake, acti-
vation of 5′ adenosine monophosphate- activated protein kinase 
(AMPK) are also reported which can be due to their antioxidant and 
anti- inflammatory activity (Y. Kim et al., 2016). Similarly, the effect 
of other seaweeds extracts such as U. prolifera (Song et al., 2018), 

F I G U R E  1   Body weight of different treatment groups; PS: porous starch. Data are expressed as mean ± SD (n = 3). Different capital 
letters in each groups and small letters between different groups indicate significant differences (p < .05)
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Capsosiphone fulvescens, Hizikia fusiforme, and U. pinnatifida (Tong 
et al., 2015) on improving the glucose level and insulin sensitivity 
were reported.

3.3 | Lipid profile

The lipid profile investigation (Figure 3) revealed that the diabetic 
group in all parameters of the serum lipid profile, except for HDL, 
were significantly higher (p < .05) than other groups. Compared 
to positive control (metformin), the treated group with fucoxan-
thin showed the significantly reduced levels of TG, LDL, and HDL 
(Figure 3). Fucoxanthin- loaded PS, and metformin- treated groups 
had the same effect on all parameters of lipid profile and signifi-
cantly reduced the levels of TG, TC, and LDL (p < .05). The main 
antiobesity mechanism of fucoxanthin is inhibiting intercellu-
lar lipid accumulation through UCP- 1 expression in WAT (Maeda 
et al., 2009). Moreover, the interaction between macrophages and 
adipocytes causes overexpression of pro- inflammatory products in 
obese WAT, inhibiting the macrophage infiltration and consequently 
suppressing TNF- α overexpression (Hosokawa et al., 2010). There 
was also a significant decrease in TG and TC after administration of 
0.4% w/w fucoxanthin for 6 weeks in C57BL/Ksj- db/db. Expression 

of several genes, including peroxisome proliferation- activated 
receptor alpha, p- acetyl CoA carboxylase, carnitine palmitoyl 
transferase 1, has been reported following the fucoxanthin admin-
istration. These are key proteins in regulating fatty acids synthesis 
and oxidation (Y. Zhang et al., 2018). Several studies have confirmed 
management of the lipid profile by fucoxanthin administration. For 
instance, Park et al., (2011) showed that 0.02% fucoxanthin in diet 
decreased the hepatic lipid droplet accumulation through stimula-
tion of the β- oxidation activity and inhibition of the phosphatidate 
phosphohydrolase activity. Phosphatidate phosphohydrolase is the 
main enzyme responsible for conversion of phosphatidate to diglyc-
eride, precursor of the triglyceride, phosphatidylcholine, and phos-
phatidylethanolamine (Park et al., 2011). S.- I. Kang et al., (2012) also 
reported a reduced triglyceride level in mice fed with petalonia bing-
hamiae extract (150 mg kg- 1 day- 1) for 70 days. They suggested that 
fucoxanthin administration by increasing LKB1 phosphorylation in 
mature 3T3L1 adipocytes causes improved AMP- activated protein 
kinase (AMPK) activity which influences on β- oxidation of fatty acids 
(S.- I. Kang et al., 2012).

Besides, oxidizing agents such as reactive oxygen species 
(ROS) play an important role in lipid and protein oxidation, which 
can be regarded as a predisposing factor toward diabetes (Sharma 
et al., 2010). Thus, bioactive compounds with antioxidant and 

F I G U R E  2   Fasting blood glucose (FBS) 
and insulin level of different treatment 
groups; PS: porous starch. Data are 
expressed as mean ± SD (n = 3). Different 
letters indicate significant differences 
(p < .05)
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F I G U R E  3   Lipid profile of different treatment groups; PS: porous starch, TG: triglycerides, TC: total cholesterol, HDL: high- density lipid, 
LDL: low- density lipid. Data are expressed as mean ± SD (n = 3). Different letters indicate significant differences (p < .05)

F I G U R E  4   The histopathology of pancreatic tissue in (a) normal control, (b) diabetic control, (c) metformin, (d) fucoxanthin, and (e) 
fucoxanthin- encapsulated PS- treated mice groups
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anti- inflammatory activity can reduce the TG level by scavenging 
the free radicals (Akbarzadeh et al., 2018). In this regard, fucoxan-
thinol causes downregulation of iNOS and COX- 2 mRNA expres-
sion in RAW264.7 macrophage- like cells, consequently inhibits the 
overexpression of iNOS in the WAT of obese mice and adipocytes 
(Hosokawa et al., 2010). Also, the brown algae extracts have the po-
tential to inhibit oxidative stress and the lipid accumulation in liver 
(Song et al., 2018).

3.4 | Histological and morphometric analysis of 
pancreatic tissue

The histopathological evaluation of pancreatic tissues is shown in 
Figure 4. Pancreatic tissue section of nondiabetic mice showed the 
normal appearance of islets of Langerhans (Figure 4a). According to 
Figure 4b, the STZ caused marked degenerative changes of islet cells 
of diabetic mice with a reduction in size and number, while pancre-
atic beta cells in diabetic groups were recovered and proliferated 
after treatment with metformin or fucoxanthin.

Indeed, STZ has a selective cytotoxic action on the beta cells 
and can generate free radicals which destruct beta cells DNA 
chains and consequently result in dysregulation of the pancreatic 
beta cells functions, such as impaired glucose oxidation, reduc-
tion of insulin synthesis and secretion and disruption of glucose 
transport and glucokinase activity (Ghasemi et al., 2014; Koneri 
et al., 2018).

Sections prepared from the pancreas of the treatment groups 
showed tissue regeneration, specially mice group fed with met-
formin at 50 mg/kg (Figure 4c). Indeed, the diabetic group treated 
with metformin exhibited the area of pancreatic islets similar to the 
nondiabetic control mice. Metformin exhibited antidiabetic activity 
by reducing insulin resistance through reduced hepatic glucose pro-
duction, increased glucose consumption by muscles, or decreased 
intestinal glucose absorption (Erejuwa, 2014).

Like metformin- fed mice, the Sargassum extract- rich of fucoxan-
thin showed the regenerative effect (Figure 4d). Also, the protecting 
effect of fucoxanthin on shrinkage of cells was similar to metformin. 
On the other hand, the roundness of the pancreatic islets did not 
show any significant differences between the free fucoxanthin and 
the metformin- treated groups. It seems that fucoxanthin may dimin-
ish the oxidative stress caused by hyperglycemia in pancreatic beta 
cells. However, fucoxanthin- encapsulated PS had lower influence on 
the pancreas tissue possibly because of the slow release of encapsu-
lated fucoxanthin as reported in our previous study (Najme Oliyaei 
et al., 2020).

Generally, hyperglycemia, inflammatory cytokines, hyperlipid-
emia, or oxidative stress can result in dysfunction of pancreatic beta 
cell. The low levels of antioxidant enzyme expressions in the beta 
cells make them liable to oxidative stress by reactive oxygen and ni-
trogen species (Batumalaie et al., 2014). Thus, any component with 
antioxidant activity such as Sargassum extract- rich fucoxanthin may 
have the regenerative effect.

Similar observation was reported by Akbarzadeh et al., (2018) 
who evaluated the antidiabetic effect of Sargassum oligocystum on 
the STZ- induced rat. The hydroalcoholic extract at 300 mg/kg dose 
after 30- day treatment regenerated the beta cells, which was at-
tributed to the high polyphenols’ contents and antioxidant activity 
of the extract. Moreover, Koneri et al., (2018) revealed the prolif-
erating activity of algae extract on islet cells of type I diabetic rats. 
The histological evaluations of STZ- induced pancreatic damage in 
rats exhibited significant reduction in beta cell density, whereas the 
methanolic extracts of Sargassum polycystum and Gracilaria edulis 
caused increased beta cell density in the treated diabetic rats, in-
dicating insulin secretagogue activity. Murugesan et al., (2016) also 
reported that oral administration of the methanolic extracts of S. fu-
siformis and P. hornemannii (10 mg/kg) caused regenerative changes 
in tissue architecture of Islet cells of pancreas and revealed higher 
persistence against necrotic changes rather than alloxan- induced 
diabetic rat.

4  | CONCLUSIONS

The present study confirmed the appreciable antidiabetic effect 
of fucoxanthin in the STZ- induced diabetic mice model. Decreased 
blood glucose was obtained by administration of fucoxanthin. 
Although blood glucose- lowering effect of the encapsulated fucox-
anthin in PS was less than free fucoxanthin, the dose of 400 mg/
kg exhibited therapeutic efficacy in type 2 diabetic mice model. 
Fucoxanthin can reduce also the lipid profile parameters such as TG, 
TC, LDL, and HDL. Moreover, in the diabetic mice, treatment with 
fucoxanthin or fucoxanthin- encapsulated PS as well as metformin 
led to regeneration of pancreatic beta cells. This study confirms the 
antidiabetic effect of fucoxanthin after oral administration in the 
STZ- induced diabetic mice. In addition, the results clearly indicate 
that the effect of fucoxanthin on the glucose metabolism can last for 
a prolonged period in our experimental animals.
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