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Abstract

Demographic history plays a major role in shaping the distribution of genomic variation. Yet the interaction between
different demographic forces and their effects in the genomes is not fully resolved in human populations. Here, we focus
on the Roma population, the largest transnational ethnic minority in Europe. They have a South Asian origin and their
demographic history is characterized by recent dispersals, multiple founder events, and extensive gene flow from non-
Roma groups. Through the analyses of new high-coverage whole exome sequences and genome-wide array data for 89
Iberian Roma individuals together with forward simulations, we show that founder effects have reduced their genetic
diversity and proportion of rare variants, gene flow has counteracted the increase in mutational load, runs of homo-
zygosity show ancestry-specific patterns of accumulation of deleterious homozygotes, and selection signals primarily
derive from preadmixture adaptation in the Roma population sources. The present study shows how two demographic
forces, bottlenecks and admixture, act in opposite directions and have long-term balancing effects on the Roma genomes.
Understanding how demography and gene flow shape the genome of an admixed population provides an opportunity to
elucidate how genomic variation is modeled in human populations.
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Introduction
The distribution of human genomic variation is affected by
population demographic history, especially regarding low-
frequency protein-coding variants. Previous studies show an
excess of rare population-specific functional variants, as a re-
sult of a recent and explosive human population growth
(Coventry et al. 2010; Gravel et al. 2011; Keinan and Clark
2011; Marth et al. 2011; Nelson et al. 2012; Tennessen et al.
2012). Population bottlenecks and founder effects have also
had a great impact on modeling the spectrum of functional
variation: for example, the French-Canadian founder popula-
tion contains a large proportion of rare and putatively dam-
aging functional variants (Casals et al. 2013) and the severe
bottleneck in the Greenlandic Inuit increased the frequency
of the extant deleterious variants (Pedersen et al. 2017),
among other examples

As in other human populations, the complex demographic
history in the Roma population (also known by the misnomer
of Gypsies) has influenced their patterns of genetic diversity.
The Roma population is a highly heterogeneous and socially
persecuted ethnic minority, whose diaspora has been histor-
ically poorly documented (Fraser 1992), although several
studies have aimed to characterize their demographic history.
Previous linguistic, anthropological, and genetic data have
shown evidence for a South Asian origin of the Roma
1,500 years ago and a posterior diaspora toward the
European continent. Once in Europe, they experienced ex-
tensive gene flow with non-Roma populations and suffered
multiple founder events (Turner 1927; Boerger 1984;
Gresham et al. 2001; Sun et al. 2006; Bouwer et al. 2007;
Gusm~ao et al. 2008; Azmanov et al. 2011; Mendizabal et al.
2011; Mendizabal et al. 2012; Moorjani et al. 2013; Mart�ınez-
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Cruz et al. 2016; Melegh et al. 2017; Font-Porterias et al. 2019;
Bianco et al. 2020; Dobon et al. 2020; Garc�ıa-Fern�andez et al.
2020). Thus, the genetic study of the European Roma pro-
vides a unique opportunity to evaluate the extent to which
recent demographic events impact the patterns of diversity of
the human genome.

Previous genetic studies suggest that population history
also shapes differences across populations in mutational load
(i.e., reduction in population fitness due to the accumulation
of deleterious mutations compared with a theoretical optimal
fitness), with implications in the genetic architecture of dis-
eases. In small populations, the accumulation of deleterious
variants might be the result of random fluctuations in allele
frequency (i.e., genetic drift) due to a reduced efficacy of pu-
rifying selection (Gravel 2016). Most analyses have focused on
differences between African and non-African populations
leading to controversial results (Lohmueller et al. 2008;
Lohmueller 2014; Simons et al. 2014; Do et al. 2015; Henn
et al. 2016; Simons and Sella 2016), but with a general agree-
ment that the demographic history mostly impacts the re-
cessive mutational load, rather than the additive load (Simons
et al. 2014). In addition, by studying the temporal trajectories
of mutational load, a transient increase in recessive load is
observed in a small African hunter-gatherer population,
which is balanced by gene flow from an expanding farmer
population (Lopez et al. 2018). However, the interaction be-
tween increased genetic drift and admixture on mutational
load remains poorly resolved in non-African populations.

The effects of recent demographic and social processes
have a higher impact on some genomic features, such as
runs of homozygosity (ROHs). ROHs are enriched for delete-
rious homozygous variants, when compared with regions of
the genome where ROHs are absent(Szpiech et al. 2013;
Kaiser et al. 2015; Ceballos et al. 2018). In populations with
reduced genetic diversity, the accumulation of more delete-
rious than synonymous variants in long ROHs is the result of
recent founder events and parental relatedness (Szpiech et al.
2013). Moreover, in admixed populations, this enrichment in
deleterious homozygotes inside ROHs depends on the spe-
cific ancestry of the segment and the characteristics of the
source populations (Szpiech et al. 2019). In the case of the
Roma, the extensive admixture between their South Asian
and West Eurasian sources, together with multiple bottleneck
events (Mendizabal et al. 2012; Moorjani et al. 2013; Font-
Porterias et al. 2019), might have left ancestry-specific pat-
terns in these regions.

Likewise, population demography also impacts genetic ad-
aptation through the action of positive selection. In admixed
populations, positive selection can be studied in terms of
postadmixture and preadmixture selection. In
“postadmixture selection,” an admixed population receives
adaptive alleles through gene flow; subsequently, both the
adaptive alleles and the variation linked to them rise in fre-
quency in the admixed population, resulting in a local ances-
try deviation (Seldin et al. 2011; Bhatia et al. 2014). However,
when local ancestry deviation is weak or absent and the se-
lection signal is present in both the admixed and source
populations, the process can be defined as “preadmixture

adaptation,” since after admixture, genetic drift or weak pos-
itive selection maintained the initial signal (Bhatia et al. 2014).
A clear example of postadmixture selection is found in the
population of Madagascar, where African ancestry is in-
creased around the Duffy blood group gene that confers re-
sistance to malaria (Pierron et al. 2018). In contrast, African
Americans carry signals of preadmixture selection, occurring
in Africa prior to the slave trade to America, around the HBB
gene. Although signals of adaptive admixture can be identi-
fied with local ancestry deviations, weaker or polygenic selec-
tion is more difficult to detect through these approaches
(Bhatia et al. 2014).

In the present study, we provide new insights into how
demography affects the distribution of functional variation,
focusing on the Roma population as a model. Throughout all
analyses, the admixture experienced by Roma is assessed since
it has been shown that ancestry background highly impacts
the genetic variation in human populations (Seldin et al. 2011;
Kidd et al. 2012; Pierron et al. 2018; Szpiech et al. 2019). We
first evaluate the degree of genetic diversity and frequency
distribution of deleterious variants comparing Roma and
non-Roma populations. In addition, we estimate both current
mutational and its trajectory during the Roma history. We
also examine whether ROHs are enriched for deleterious
homozygotes in the Roma population and whether this en-
richment is ancestry dependent. We finally focus on detecting
genomic regions under pre- or postadmixture positive
selection.

Results

Reduced Genetic Diversity with an Excess of Common
Deleterious Variants
We sequenced 89 new high-coverage whole exome sequen-
ces (WES) from Iberian Roma and merged them with previ-
ously published European and South Asian WES (Auton et al.
2015; Tomb�acz et al. 2017) that were used as ancestry sources
of the Roma. We also genotyped a single-nucleotide polymor-
phism (SNP) array in a subset of 62 Iberian Roma. After qual-
ity control filters, the WES data set contains 410,225 variants
in 527 samples, and the array data set 474,632 variants in 487
samples (see supplementary note 1, Supplementary Material
online, supplementary figs. 1–6, Supplementary Material on-
line, and supplementary table 1, Supplementary Material on-
line for further details). We also merged both data sets to
increase the number of covered genome-wide variants
(878,162 SNPs).

We first assessed the population structure in our data set
of Roma samples together with non-Roma (European and
South Asian groups, supplementary table 1, Supplementary
Material online). Principal component analysis (PCA) results
are compatible with Roma being admixed between European
and South Asian samples (fig. 1A) and ADMIXTURE analysis
(supplementary fig. 7, Supplementary Material online) at
k¼ 2 shows the Roma as a mixture of two cluster compo-
nents found in European and South Asian samples. At k¼ 3
(lowest cross-validation error value), the Roma individuals
display membership in a specific component (colored in
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orange) and a blue component found in Europe, which repro-
duces previous results (Mendizabal et al. 2012; Moorjani et al.
2013).

A set of metrics were calculated to describe the genetic
diversity in Roma compared with non-Roma. First, the num-
ber of segregating sites and private variants in Roma is lower
than in non-Roma (supplementary table 2, Supplementary
Material online). A depletion of rare variants is further
pointed in the unfolded site-frequency spectrum (SFS) and
neutrality statistics from synonymous variants (fig. 1B and C):
hw is significantly lower in Roma and pvar is significantly
higher. In addition, hp is similar across populations since it
assigns more weight to variants at intermediate frequencies,
but the Tajima’s D value of Roma is less negative than that of
non-Roma (supplementary Fig. 8, Supplementary Material
online).

We further examined the frequency distribution of differ-
ent functional categories of coding variants. The number of
missense derived alleles is similar across Roma and non-Roma
populations: 41.14% of the total number of derived alleles are
missense in Roma (41.17% in Iberian Population in Spain
[IBS], 41.18% in Toscani in Italia [TSI], 41.13% in Punjabi
from Lahore, Pakistan [PJL], 41.05% in Gujarati Indian from
Houston, Texas [GIH], and 41.02% in Indian Telegu from the
UK [ITU]). Missense variants were then grouped in two fre-
quency bins: low-frequency (singletons and doubletons) and
common (tripletons or more), stratified in different categories
of Genomic Evolutionary Rate Profiling (GERP) (fig. 2),
PolyPhen (supplementary fig. 9A, Supplementary Material
online), and CADD scores (supplementary fig. 9B,
Supplementary Material online). Roma have significantly
more common deleterious variants than non-Roma popula-
tions in all functional classifications, especially for the slightly

and moderately deleterious categories (P value <0.001).
Common variants in Roma account for 50% of all deleterious
variants, whereas for non-Roma populations these account
for 35% or even less. Therefore, the SFS of these variants
shows that Roma have significantly fewer singletons and
more intermediate and fixed derived variants than non-
Roma groups (supplementary fig. 10, Supplementary
Material online). In all groups, as expected, the more delete-
rious the variants, the rarer they are (supplementary fig. 10,
Supplementary Material online): the SFS of the most

FIG. 2. Proportion of missense variants from each GERP category in
each frequency bin (low-frequency, common) for each population.
Low-frequency: singletons and doubletons; common: tripletons and
above.

FIG. 1. Population structure and distribution of synonymous variants. (A) PCA with the merged data set of genome-wide array and WES variants.
(B) Unfolded site-frequency spectrum for synonymous WES variants. (C) Genetic diversity measures (pvar and hw) from synonymous WES variants.
Other diversity metrics (Tajima’s D and hp) are shown in supplementary figure 8, Supplementary Material online. Significant differences were
tested between Roma and non-Roma populations (*** refers to P value <0.001 in all comparisons).
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deleterious variants (i.e., GERP >6, probably damaging
PolyPhen category, CADD >30) exhibits significantly higher
proportions of low-frequency variants (e.g., singletons) than
the neutral categories (i.e.,�2<GERP< 2, Benign Polyphen
group, 10<CADD) (supplementary fig. 10, Supplementary
Material online) within populations, consistent with purifying
selection acting on deleterious mutations. This process hap-
pens, however, at the same rate for Roma and non-Roma,
since the difference between neutral and deleterious catego-
ries is not significant among populations, suggesting that
Roma experienced higher genetic drift rather than reduced
purifying selection. Regarding loss-of-function (LOF) variants,
the same trend is observed, although it is not statistically
supported due to the low number of high-confidence LOF
called in our set of variants and large variation in their dis-
tributions (supplementary fig. 11, Supplementary Material
online).

Mutational Load Changes through Time with Minor
Present-Day Differences
We next explored the present-day mutational load in the
Roma compared with non-Roma populations. To approxi-
mate the additive and recessive mutational loads, the number
of derived alleles per individual (Nalleles) and the number of
derived homozygotes per individual (Nhom) were used as
proxies, respectively (Lohmueller 2014) (fig. 3A and supple-
mentary figs. 12–14, Supplementary Material online). Roma
show the same Nalleles compared with non-Roma for all cat-
egories (GERP, PolyPhen, and CADD); however, they show a
discrete but significant increase in Nhom in the slightly dele-
terious categories (2<GERP < 4; 20<CADD < 30) (fig. 3A
and supplementary figs. 13A and 14A, Supplementary
Material online). We applied the same analysis to non-CpG
sites to avoid the bias produced by their hypermutability, and
we found no differences in mutational load between Roma

and non-Roma populations (supplementary figs. 12, 13B, and
14B, Supplementary Material online). In addition, the RX/Y

statistics do not show statistical differences between Roma
and non-Roma (table 1). We also tested the relationship be-
tween mutational load and gene flow, and we found no cor-
relation between the proportion of South Asian ancestry and
Nalleles and Nhom in the Roma samples (supplementary table 3,
Supplementary Material online).

To study the temporal trajectory of mutational load
through forward simulations, we first estimated the distribu-
tion of fitness effects (DFE) of new deleterious mutations,
which was then used on the simulations. Based on the esti-
mated demographic parameters (supplementary table 4,
Supplementary Material online), the DFE of new mutations
was inferred following a gamma distribution with shape and
scale estimates (supplementary table 5, Supplementary
Material online). The observed and expected SFS from the
neutral and selection models (from synonymous and mis-
sense variants, respectively) were not significantly different
(supplementary fig. 15, Supplementary Material online),
showing a good fit of the inferred parameters. The DFE
does not differ between Roma and non-Roma groups: all
populations show �25–30% neutral, �15% weakly deleteri-
ous, �20% moderately deleterious, and �35–40% strongly
deleterious mutations (supplementary fig. 16, Supplementary
Material online).

We next performed forward simulations under the pre-
viously described Roma demographic model (Mendizabal
et al. 2012). This model includes two bottlenecks (“Out-
of-India” with 47% of population reduction at 63 genera-
tions ago; “Out-of-Balkans” with 70% of reduction at 38
generations ago), with 2.2% gene flow from the Middle
East during 13 generations and 5% gene flow from non-
Roma Europeans during 38 generations (Mendizabal et al.
2012). The effects of the bottlenecks and of non-Roma to

FIG. 3. Deleterious load comparisons and trajectory estimations. (A) Mutational load proxy (Nalleles and Nhom) ratios between Roma and non-Roma
for missense variants in each deleterious GERP category. Point estimates and 95% CIs are shown. *P value<0.05; **P value<0.01; ***P value<0.001.
Only P values<0.001 are considered significant to account for multiple testing errors. (B) Relative mutational load (Lg/LANC) in the Roma in each
sampled generation for each simulated model. LANC: load in the ancestral population (proto-Roma 20 generations before the “Out-of-India”
event). “Out-of-India” and “Out-of-Balkans” represent the two simulated bottlenecks at 63 and 38 generations ago, respectively.
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Roma gene flow were investigated with four different sets of
forward simulations: full model with only additive mutations
(additive model); full model with only recessive mutations
(recessive model); model without non-Roma to Roma gene
flow and only additive mutations (additive model without
gene flow); and model without non-Roma to Roma gene
flow and only recessive mutations (recessive model without
gene flow).

We show that the mutational load of additive mutations
is insensitive to the reduction of effective population size
(Ne), with or without gene flow, since both additive models
have relative mutational load values (Lg/Lanc) �1 through-
out all sampled generations (from 60 generations ago to
present) (fig. 3B). Conversely, the mutational load of reces-
sive mutations appears to be more sensitive to demographic
events since both recessive models have relative mutational
load values (Lg/Lanc) departing from 1. When recessive
mutations are simulated under a model with gene flow
from non-Roma to Roma, mutational load increases slightly
(Lg/Lanc ¼ 1.018) after the first bottleneck (“Out-of-India”),
but it decreases as soon as gene flow starts acting. When
recessive mutations are simulated under a model without
gene flow, mutational load starts to increase (Lg/Lanc ¼
1.019) after the first bottleneck (“Out-of-India”), rising at a
slightly higher rate after the second bottleneck (“Out-of-
Balkans”). Interestingly, this accumulation of mutational
load in the latter model continues to increase without
returning to equilibrium: the simulated population has suf-
fered two recent bottlenecks without recovery. At the pre-
sent day (0 generations ago), the relative mutational load
values for additive models without and with gene flow are
stabilized at Lg/Lanc ¼ 0.983 and Lg/Lanc ¼ 0.999, respec-
tively; and for recessive models without and with gene flow,
they reach Lg/Lanc ¼ 1.134 and Lg/Lanc ¼ 1.031, respectively.
These simulated values with gene flow are in agreement
with the observed load estimations: additive proxy (Nalleles)
is centered �1 and recessive proxy (Nhom) is found within 1
and 1.05 (fig. 3A).

Accumulation of Deleterious Mutations in Ancestry-
Specific ROHs
As previously suggested, ROHs are highly sensitive to demo-
graphic events (Szpiech et al. 2013). Thus, we tested whether
ROHs are enriched for deleterious variants in the Roma pop-
ulation. The ratio of deleterious/synonymous Nhom is higher
inside than outside ROHs, especially in ROHs >2.5 Mb (sup-
plementary fig. 17, Supplementary Material online). In Roma,
as in other populations (Szpiech et al. 2013; Pemberton and
Szpiech 2018), the rate at which deleterious homozygotes
increase inside ROHs is higher than the decrease outside
ROHs. The increase in homozygotes in ROHs is higher for
deleterious than for synonymous, especially in long ROHs
(>2.5 Mb). And, in fact, these long ROHs (>2.5 Mb) are
highly and significantly correlated with the Roma inbreeding
coefficient (see supplementary note 2, Supplementary
Material online, supplementary figs. 18–20, Supplementary
Material online, and supplementary table 6, Supplementary
Material online for more details).

To test whether this enrichment of deleterious variants in
ROHs is ancestry specific, we first examined the relationship
between ROHs and ancestry proportions. The proportion of
South Asian ancestry per individual is positively and signifi-
cantly correlated both with the number and length of ROHs
(>2.5 Mb) (table 2). Furthermore, the number of SNPs inside
ROHs (normalized by base pairs of each ancestry) in South
Asian regions is higher than in European regions (25.6% vs.
13.72%) (supplementary fig. 21, Supplementary Material on-
line). Thus, South Asian ancestry in Roma is related with more
ROHs. We then focused on the relationship between delete-
rious alleles and ancestry-specific ROHs (>2.5 Mb). In both
European and South Asian regions, the ratio of deleterious/
synonymous variation is higher inside than outside ROHs,
although the statistical significance is higher in PolyPhen
and CADD than in GERP comparisons (supplementary fig.
22, Supplementary Material online). In both South Asian and
European segments, the fraction of deleterious and synony-
mous Nhom in ROHs increases linearly with the total ROH

Table 2. Correlations (Spearman’s q) between the global proportion of South Asian ancestry in the Roma population inferred with RFMix and the
number/length of ROHs per-individual.

All ROHs 0.5 < ROHs £ 2.5 (Mb) 2.5 < ROHs (Mb)

Number of ROHs 0.1051 20.0148 0.3587**
Total ROH length 0.3766** 0.2518* 0.3563**

*P value <0.05;
**P value <0.01.

Table 1. RX/Y ratios between Roma and non-Roma populations for missense variants in each deleterious GERP category normalized by synon-
ymous variants.

RX/Y 2 < GERP < 4 4 < GERP < 6 6 < GERP

Roma-IBS 0.986 (0.954–1.0172) 1.032 (0.965–1.107) 1.152 (24.333 to 3.917)
Roma-TSI 0.989 (0.957–1.018) 1.053 (0.983–1.132) 1.225 (25.176 to 4.417)
Roma-Hungarian 0.993 (0.954–1.030) 1.033 (0.951–1.114) 0.946 (23.918 to 4.207)
Roma-PJL 0.987 (0.945–1.028) 1.013 (0.922–1.112) 1.058 (22.953 to 4.287)
Roma-GIH 0.973 (0.930–1.014) 1.034 (0.938–1.154) 1.048 (22.842 to 4.934)
Roma-ITU 0.984 (0.938–1.028) 0.970 (0.861–1.074) 0.833 (22.496 to 3.553)

NOTE.—Point estimates and 95% CIs are shown.
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length per individual. However, an ancestry-specific pattern is
observed: only in European segments (though not in South
Asian), the rate at which deleterious Nhom in ROHs increase is
higher than the rate of synonymous increase (test applied
following eq. 10 in Szpiech et al. 2013) for CADD and
PolyPhen comparisons (supplementary figs. 23 and 24,
Supplementary Material online). Moreover, when comparing
directly European and South Asian ROHs, two additional
patterns appear. First, the overall proportion of deleterious
Nhom in South Asian ROHs is higher than in European ROHs
(significantly different intercept b2) (fig. 4 and supplementary
fig. 25, Supplementary Material online). Second, the rate at
which deleterious and synonymous Nhom in South Asian
ROHs increase is higher than in European ROHs (significantly
different slope b3), except for the most deleterious categories
(fig. 4 and supplementary fig. 25, Supplementary Material
online).

These results point to an ancestry-specific pattern of ac-
cumulation of deleterious homozygotes in ROHs. Particularly,
they suggest that South Asian ancestry regions in the Roma
genomes contain more ROHs and, in turn, these ROHs accu-
mulate more deleterious and synonymous homozygotes than
European ROHs.

Selection Signals in Roma Mainly Derive from
Preadmixture Adaptation
To explore the consequences of the Roma demographic his-
tory on their events of positive selection, we specifically fo-
cused on detecting post- and preadmixture adaptation
events, using the population branch statistic (PBS), integrated
Haplotype Score (iHS), and Cross Population Extended
Haplotype Homozygosity (XP-EHH) tests. We first observe
that candidates for positive selection in Roma are found in
genes with functions primarily related to metabolic and car-
diovascular traits, as well as immunity and xenobiotic re-
sponse (supplementary fig. 26, Supplementary Material
online and supplementary table 7, Supplementary Material
online). An overrepresentation analysis of each selection test
of the top 1% genes reports significant enrichment in xeno-
biotic detoxification processes (e.g., cellular detoxification of
nitrogen compound, glutathione transferase activity, drug
metabolism) when comparing Roma against South Asians
(Bonferroni-corrected P values below 0.05, supplementary ta-
ble 8, Supplementary Material online). However, no candidate

region observed in Roma shows a local ancestry deviation
higher than 4.42 standard deviations (SD) (P value <10�5)
(supplementary fig. 27, Supplementary Material online), sug-
gesting that these signals derive from either weak adaptive
introgression or preadmixture adaptation in the population
sources (Bhatia et al. 2014).

Candidates of positive selection with potential metabolic
and cardiovascular implications are commonly detected
when comparing Roma against Europeans. Among these sig-
nals, DOK5 (chr20: 52,813,832–53,454,024), a gene involved in
lipid and insulin metabolism (Cai et al. 2003), shows extreme
values in PBS and XP-EHH tests (supplementary table 7,
Supplementary Material online, fig. 5A, and supplementary
fig. 28A, Supplementary Material online). Several genome-
wide associations with metabolic phenotypes are found
within this region such as body mass index or childhood
obesity, among others. In addition, several expression quan-
titative trait loci (eQTLs) are described within this region that
change the expression of DOK5 (or other metabolism-related
genes, such as CYP24A1) in specific tissues (adipose tissue,
adrenal gland, thyroid, among others). The same selection
signal is detected when comparing South Asian against
European populations (fig. 5A), with this gene having been
previously identified to be under positive selection in India
(Metspalu et al. 2011). These results suggest preadmixture
selection in the South Asian source that Roma maintained
due to drift or weaker positive selection after admixture.
Other signals of positive selection include PCK1 (gluconeo-
genesis regulation) (She et al. 2000) and DAGLB (linked to
cardiovascular traits) (Han et al. 2017) genes (supplementary
table 7, Supplementary Material online and supplementary
fig. 28B and C, Supplementary Material online).

Signals related to immunity and xenobiotic response are
among the selection candidates identified when comparing
Roma against South Asians. The LAMA3 gene (chr 18:
21,276,048–21,740,878) shows the highest values in PBS and
XP-EHH tests and genome-wide associations with immuno-
globulins and white blood cell traits (supplementary table 7,
Supplementary Material online, fig. 5B, and supplementary fig.
28D, Supplementary Material online). With respect to gene
regulation, the change in the expression of LAMA3 (and
immunity-related genes, such as HRH4, CABLES1, and
OSBPL1A) in tissues, such as pancreas, thyroid, and esophagus
mucosa, might be the result of multiple eQTLs found within

FIG. 4. Fraction of Nhom in ancestry-specific ROHs versus the total length of ancestry-specific ROHs per individual. South Asian ROHs in red, and
European ROHs in blue. The first three panels show a deleterious GERP category each and the last panel shows synonymous variants. b2 and b3

show intercept and slope differences between regressions. *P value <0.05; **P value <0.01; ***P value <0.001.
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this region. The European population shows the same signal
when tested against South Asia (fig. 5B), pointing to a pre-
admixture selection event in the European source, rather
than to postadmixture adaptation in the Roma.
Alternatively, the signal in this region could also point to an
original selection in South Asia that, in the Roma, has been
further selected or drifted to high frequencies compared with
present-day South Asians, although selection in Europeans is
the most plausible hypothesis. Additional selection candi-
dates show genome-wide associations related to immune
system functions, drug response, and toxic substance binding
(e.g., DOCK8 and SLC6A5 genes) (supplementary table 7,
Supplementary Material online and supplementary fig. 28E
and F, Supplementary Material online).

Other candidate regions identified to be under selection
are detected in the Roma genomes. Particularly, MYO5A,
SLC45A2, and APBA2 genes show selection signals specially
when comparing Roma against South Asians (supplementary
fig. 28G–I, Supplementary Material online). All three genes are
involved in skin pigmentation and have been targeted to be
under selection in European populations (Lamason et al.

2005; McEvoy et al. 2006; Voight et al. 2006; Deng and Xu
2018).

Discussion
In the present study, we have shown that the complex de-
mographic history of the Roma has had a multifaceted im-
pact on their genomes. Particularly in this population, two
balancing demographic forces are playing a major role.
Multiple founder effects driven by political and social perse-
cution against Roma (Fraser 1992) have led to a reduced
effective population size and increased genetic drift, whereas
extensive admixture throughout their diaspora has resulted in
ancestry-specific genetic patterns and decreased their delete-
rious load.

A clear evidence of this impact is the reduced genetic
diversity compared with non-Roma populations (both
European and South Asian groups). The depletion of rare
alleles and increased high-frequency deleterious variants can
be explained by the population decline during the “Out-of-
India” bottleneck and subsequent founder events in Europe.
This observation is also consistent with what has been

FIG. 5. Selection tests results (XP-EHH) and mean local ancestry in two candidate regions. (A) Results for chromosome 20: 50,000,000–56,000,000.
Top panel shows South Asian (dark red) ancestry (mean and 4.42 standard deviations in solid and dotted lines, respectively). Genomic location of
DOK5 gene is shown. Middle and bottom panels show XP-EHH analysis comparing Roma against Europe and South Asia against Europe (top 1%
and 5% are shown with dashed lines). The region within chr20: 52,813,832–53,454,024 is highlighted in red. (B) Results for chromosome 18:
20,000,000–23,000,000. Top panel shows European (blue) ancestry (mean and 4.42 standard deviations in solid and dotted lines, respectively). The
genomic location of LAMA3 gene is shown. Middle and bottom panels show XP-EHH analysis comparing Roma against South Asia and Europe
against South Asia (top 1% and 5% are shown with dashed lines). The region within chr18: 21,276,048–21,740,878 is highlighted in blue.
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previously reported in other populations with reductions in
the effective population size due to recent bottlenecks (20
generations ago in French-Canadians; Casals et al. 2013), or
long lasting bottlenecks (20,000 years in the Greenlandic Inuit;
Pedersen et al. 2017).

Regarding present-day mutational load, we observe a dis-
crete but significant increase in recessive load (Nhom).
However, this proxy assumes that all mutations in the genome
are recessive, whereas Nalleles assumes semidominance
(Lohmueller et al. 2008). Some studies suggest that most dele-
terious variants in the human genome have an additive dom-
inance coefficient, pointing to Nalleles as a more reliable proxy to
estimate mutational load values in present-day populations
(Simons and Sella 2016). RX/Y statistics do not show statistical
differences between Roma and non-Roma, in agreement with
Nalleles, further pointing to a similar selection effectiveness be-
tween these populations. In addition, we show that the tem-
poral trajectories of mutational load for additive variants are
insensitive to population decline and gene flow. This observa-
tion is consistent with previous studies showing that mutational
load for additive variants does not increase even with changes in
Ne, since mutation-selection balance holds and selection
remains strong (Simons et al. 2014). Recessive mutations, on
the contrary, are more sensitive to changes in Ne and to be
drifted to high frequencies: when Nes� 1, random genetic drift
has more strength than purifying selection (Lohmueller et al.
2008; Simons et al. 2014). However, in some populations, when
there is a reduction in Ne followed by gene flow from a larger
population, the increase in the recessive load is partially bal-
anced (Lopez et al. 2018), since admixture increases Ne and Nes
� 1 no longer holds. This trend is also observed in our results:
the simulated model without non-Roma to Roma gene flow
shows that the recessive load trajectory increases through time
after the “Out-of-India” bottleneck, whereas the presence of
gene flow attenuates this effect. At the present day, this increase
in recessive load, however, only reaches 1.134 relative to the
ancestral load in the absence of gene flow and 1.031 with gene
flow (the latter corresponding to both the value found in sim-
ulations at 0 generations ago and Nhom proxy). The small impact
on load in this population could be explained by three different
factors: extensive gene flow (65% of the Roma genomes have
West Eurasian ancestry acquired during the last 700 years)
(Font-Porterias et al. 2019), which balances the accumulation
of deleterious alleles; a moderate size of the bottleneck (Ne

reduction is estimated to be �47%) (Mendizabal et al. 2012),
where genetic drift was increased but not being strong enough;
and a short and rapid “Out-of-India” event, where most dele-
terious mutations did not have enough time to reach fixation.

As we have shown, the study of ROHs can offer new insights
into the impact of the demographic history. Particularly, recent
inbreeding leading to long ROHs in Roma is responsible for the
increase in homozygous deleterious variants, as previously sug-
gested for other populations (Szpiech et al. 2013). In addition,
our results point to an ancestry-specific pattern in South Asian
ROHs: both deleterious and synonymous homozygous variants
accumulate at the same rate in ROHs, as opposite to a higher
accumulation of deleterious variants as would be expected
(Szpiech et al. 2013; Pemberton and Szpiech 2018). This

observation can be explained by an extremely low genetic di-
versity in the South Asian ancestral source together with the
subsequent effects of the “Out-of-India” bottleneck, or due to
postadmixture parental relatedness of these ancestry-specific
tracks, due to the absence of new gene flow from South
Asian sources after the Out-of-India. However, we note that
these results could also be driven by a technical artifact since
South Asian regions are less abundant than European regions in
the Roma population (35% vs. 65% of admixture).

Several cases of positive selection after introgression with
archaic hominins have been identified (Kuhlwilm et al. 2016;
Enard et al. 2018), whereas for modern humans, postadmix-
ture selection is more difficult to infer (Bhatia et al. 2014; Patin
et al. 2017; Secolin et al. 2019). If selection occurred after
admixture, one would expect a significant deviation in local
ancestry proportions, where a minimum of 4.42 SD should be
applied, which corresponds to a P value of <10�5 (Bhatia
et al. 2014). None of the candidate regions under selection in
Roma show a local ancestry deviation higher than 2.5 SD of
the mean. The absence of strong local ancestry deviations
suggests that postadmixture selection has not had enough
time to leave noticeable signals or that selection acting in
Roma is weak. Therefore, the observed selection signals
most likely represent preadmixture events in Roma source
populations. Particularly, the prevalence of metabolic and
cardiovascular diseases in the Roma (Vozarova De Courten
et al. 2003; �Zivkovi�c et al. 2010) can be the result of an evo-
lutionary mismatch: past positive adaptation in South Asian
populations that has become maladaptive in present-day
environments and lifestyles (Neel 1962). Selection signals in-
volved in immunity and xenobiotic response, on the other
hand, appear to derive from preadmixture adaptation in the
European ancestral sources, which Roma could have main-
tained through drift or even weaker selection due to new
pathogen exposure during the changing environment of their
diaspora. However, we caution that the approaches based on
local ancestry deviation, besides leading to false positives,
could lead to false negatives (e.g., due to systematic biases
in the local ancestry inference [LAI], genetic drift or small
number of generations since admixture) and, as a result it
might challenge the detection of regions under weaker or
polygenic selection (Seldin et al. 2011; Bhatia et al. 2014;
Zhang et al. 2020).

The Roma have been traditionally thought as an isolated
and small group. Indeed, they have experienced multiple
founder effects that have reduced their genetic diversity, al-
though extensive gene flow has counteracted the increase in
mutational load with traceable ancestry-specific patterns in
ROHs and with limited evidence of postadmixture selection.
Here, we have focused on the Iberian Roma, and due to the
heterogeneity found among European Roma (Mendizabal
et al. 2012; Font-Porterias et al. 2019), the study of other
Roma groups might lead to slightly different results.

The present study is an example of the relevance of ac-
counting for the ancestry components in admixed popula-
tions since ancestry-specific patterns can reveal different
demographic processes that would otherwise remain hidden.
However, we caution that, when working with specific ethnic
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groups, we should be aware that ethnicity is not only defined
by genetic ancestry since cultural identity is also a major fac-
tor. As a concluding remark, we would like to note the po-
tential biomedical implications of the present study. An
increased genetic disease prevalence has always been sug-
gested in the Roma, which might be the case for specific
disorders where the causal mutation has drifted to high fre-
quencies: for example, galactokinase deficiency (Kalaydjieva
et al. 1999), primary congenital glaucoma (Pl�asilov�a et al.
1999), and congenital myasthenia (Abicht et al. 1999).
However, considering the complexity of our results, a different
spectrum of genetic disorders is an interesting hypothesis that
needs to be explored, which could point to a different distri-
bution of genetic disease risks: some disease-associated muta-
tions might have accumulated in Roma, whereas some others
might be absent in this population.

Materials and Methods

Samples and Sequencing
We sequenced new WES of 89 Iberian Roma samples at 50�
from saliva samples, using Agilent SureSelect Human All Exon
V6 capture kit. DNA donors and their four grandparents self-
identify as Roma from the Iberian Peninsula. Written in-
formed consent was obtained for the participants under
the corresponding IRB approvals (CEIC-Parc de Salut Mar
2016/6723/I and 2019/8900/I). Some of the Roma volunteers
were collected within the project “El Cam�ı” in collaboration
with the Federaci�o d’Associacions Gitanes de Catalunya. In
addition, as non-Roma reference populations, we included
1,000 G Exomes (Auton et al. 2015) from IBS, TSI, PJL, ITU,
and GIH; and 20 Hungarian WES (Tomb�acz et al. 2017) (see
supplementary note 1, Supplementary Material online for
more details). The set of non-Roma populations was chosen
based on the population sources of the Roma admixture
(Font-Porterias et al. 2019) with available high-coverage
exomes. We also genotyped the Iberian Roma samples with
Affymetrix Axiom Genome-Wide Human Origins 1 array.
Genotype calling was performed with Axiom Analysis Suite
4.0 software with default threshold settings. Genotyping
errors were filtered out with PLINK/1.9b (Purcell et al. 2007)
using the following quality control filters: SNP missingness of
5%, individual missingness of 10%, SNPs failing Hardy–
Weinberg exact test with a P value of 10�5, and minor allele
frequency (MAF) threshold of 0.01. After filtering, the
genome-wide array data set contains 486,009 SNPs in a subset
of 62 of the WES Iberian Roma samples. The Iberian Roma
samples were merged with IBS, TSI, PJL, GIH, and ITU from
1,000 G (1000 Genomes Project Consortium 2012), keeping
474,632 genome-wide SNPs and 487 samples (supplementary
table 1, Supplementary Material online).

Sequence Preprocessing
The WES preprocessing was performed following the GATK
Best Practices recommendations (Van der Auwera et al. 2013).
Reads were mapped to the human reference GRCh37 with
bwa 0.7.15 (Li and Durbin 2009). Then, duplicates were marked
with Picard 2.8.3 (http://broadinstitute.github.io/picard, last

accessed March 24, 2021) and indel realignment and base
quality score recalibration were performed with GATK 3.7
(McKenna et al. 2010). Variant calling steps were performed
with HaplotypeCaller, GenotypeGVCFs, and
VariantRecalibrator from GATK 3.7 (McKenna et al. 2010)
(see supplementary note 1, Supplementary Material online
for more details). We removed indels, nonautosomal chromo-
somes, and nonbiallelic and fixed sites. Sequencing errors were
filtered out with VCFtools 0.1.14 (Danecek et al. 2011) using
the following filters: depth of coverage (DP) <5�, genotype
quality <20, missingness >5%, and deviations from Hardy–
Weinberg equilibrium with P value <10�3. Only high-quality
individuals were included in the analysis: DP>40�, 85% of the
BAM positions covered at 5� minimum, missingness <5%,
heterozygosity<meanþ 4 SD, and relatedness between pairs
of samples lower than second degree (KING; Manichaikul et al.
2010). After sample and variant filtering, our final data set
contains 410,225 variants and 527 individuals (supplementary
table 1, Supplementary Material online). In those analyses in-
volving per-individual genotypes and allele count analyses, no
missing data were allowed (257,452 sites) (see supplementary
note 1, Supplementary Material online for more details). The
mean genotype concordance between genome-wide array
and WES is 99.81 6 0.35% for the 6,828 common SNPs in
both data sets. We assigned the ancestral state of each variant
based on the six primate EPO (Enredo, Pecan, and Ortheus)
multialignment Ensembl Compara v59. The genome-wide ar-
ray data set (474,632 variants) and the WES data set (410,225
variants) were merged, resulting in a data set of 878,162 var-
iants and 487 samples. In supplementary note 3,
Supplementary Material online, we assess the quality and po-
tential sequencing biases in the new Roma WES (supplemen-
tary figs. 2, 3, and 29, Supplementary Material online and
supplementary table 9, Supplementary Material online).

Variant Annotation
The Variant Effect Predictor (VEP) tool from Ensembl was
used to functionally annotate the derived variants in WES
data set (McLaren et al. 2016). To avoid exploiting a single
type of information, different deleterious prediction scores
were taken into account: PolyPhen-2 (Adzhubei et al. 2010),
GERP (Davydov et al. 2010), and CADD (Rentzsch et al. 2019).
Some variants are annotated as both synonymous and mis-
sense since they are in a region with two overlapping genes; in
these cases, both annotations were kept. Pooling all damaging
variants together can mask the results (e.g., impossibility to
find specific patterns concerning specific variant groups).
Thus, we classified missense variants into four GERP RS
groups: neutral (�2<GERP < 2), slightly deleterious (2 <
GERP< 4), moderate (4 < GERP< 6), and extremely delete-
rious (GERP> 6) (Henn et al. 2016). For PolyPhen-2, three
categories were used: benign (<0.446), possibly damaging
(0.446–0.908), and probably damaging (>0.908) (McLaren
et al. 2016). For CADD, since values are Phred scaled, variants
were split in score changes of 10 into four categories: <10,
10–20, 20–30, and >30. Finally, we also annotated high-
confidence LOF variants using the LOF Transcript Effect
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Estimator (LOFTEE) VEP plugin (available at https://github.
com/konradjk/loftee, last accessed March 24, 2021).

Population Structure Analysis
PCA and ADMIXTURE were performed using the merged data
set of genome-wide array and WES variants. Linkage disequilib-
rium pruning was applied with PLINK/1.9b (Purcell et al. 2007)
(window size of 200 SNPs, 25 SNPs shift at each step, and r2

threshold of 0.5) and MAF>1%, keeping 405,814 variants. PCA
was performed with the SmartPCA program implemented in
the EIGENSOFT 4.2 package (Patterson et al. 2006), and
ADMIXTURE (Alexander et al. 2009) was run 10 independent
times with different random seeds for ancestral components
k¼ 2–5. Pong (Behr et al. 2016) was used to identify modal
ADMIXTURE results. In addition, ADMIXTURE was run, inde-
pendently, for k¼ 2 for the genome-wide data set (202,724
variants) and the WES with MAF> 1% data set (42,381 var-
iants). As shown in supplementary figure 30, Supplementary
Material online, ADMIXTURE analysis with genome-wide array
data, when compared with WES data, estimates a higher pro-
portion of the minor component in all populations (Mar�oti
et al. 2018), although it is specially detected in Roma samples
(26.15 6 6.57% and 21.48 6 6.39%: mean dark-red component
with genome-wide array and WES data, respectively).

Genetic Diversity Metrics
To assess the neutral genetic diversity, we used synonymous
sites in the WES to estimate pairwise nucleotide diversity (hp),
Watterson’s h (hw), and Tajima’s D from the SFS applying the
previously defined formulas (Kousathanas et al. 2011). We also
computed the pairwise nucleotide diversity only for variant
sites (pvar), as previously described (Pedersen et al. 2017). We
performed 1,000 bootstrap resamples with replacement of the
variants divided into 1,000 blocks (Simons and Sella 2016) to
obtain 95% confidence intervals (CIs) and P values to compare
these diversity metrics among populations. All genetic diver-
sity metrics were calculated using R base software (R Core
Team 2019).

Frequency Distribution of Coding Variants
We calculated the SFS for each population stratifying the WES
variants in different categories: synonymous, missense, GERP
groups in missense variants, PolyPhen groups in missense
variants and CADD groups in missense variants. We also
grouped the variants into low-frequency (singletons and dou-
bletons) and common (tripletons or more) classes. The same
number of individuals was considered for this analysis (70
individuals per population). To obtain 95% CI and P values
for Roma and non-Roma comparisons, we performed 1,000
bootstrap resamples with replacement of the variants divided
into 1,000 blocks (Simons and Sella 2016). We tested for sta-
tistically significant differences between Roma and non-Roma
in the proportion of deleterious variants for common and
low-frequency categories and for each “number of derived
alleles” group in the SFS. We also tested whether the differ-
ence between Roma and non-Roma is higher as the variants
are more deleterious (for GERP, PolyPhen, and CADD cate-
gories). For GERP, we thus tested if, for 1� i� 2n:

½2; 4�iðnon�RomaÞ � ½�2; 2�iðnon�RomaÞ 6¼ ½2; 4�iðRomaÞ � ½�2; 2�iðRomaÞ

½4; 6�iðnon�RomaÞ � ½2; 4�iðnon�RomaÞ 6¼ ½4; 6�iðRomaÞ � ½2; 4�iðRomaÞ

½> 6�iðnon�RomaÞ � ½4; 6�iðnon�RomaÞ 6¼ ½> 6�iðRomaÞ � ½4; 6�iðRomaÞ

Mutational Load Proxies
Two summary statistics were used as proxies for mutational
load: number of derived alleles per individual (Nalleles) and
number of derived homozygotes per individual (Nhom).
Nalleles and Nhom were calculated by stratifying variants in
different categories: synonymous, missense, and missense var-
iants grouped in GERP, PolyPhen, and CADD scores. In addi-
tion, we calculated the RX/Y ratio (Do et al. 2015) between
each Roma and non-Roma population in each GERP score
category normalized by the synonymous sites. We performed
1,000 bootstrap resamples with replacement of the variants
divided into 1,000 blocks (Simons and Sella 2016) to obtain
95% CI and P values to compare these proxies (Nalleles, Nhom,
and RX/Y) among populations. We also tested whether the
present-day Roma mutational load is correlated with the
South Asian ancestry, estimated with RFMIX v1.5.4 (Maples
et al. 2013) (see below).

DFE of New Deleterious Mutations
The DFEs of Roma and non-Roma populations were inferred
using @a@i/Fit@a@i (Gutenkunst et al. 2009; Kim et al. 2017).
We first fitted a three-epoch demographic model using the
unfolded SFS for synonymous mutations (as proxies for neu-
tral variation), accounting for ancestral misidentification.
Then, conditional on the demographic parameter estimates,
the DFE of missense mutations was inferred, assuming a
gamma distribution. For both the demographic and DFE
parameters, 95% CIs were estimated with 100 bootstraps by
site. @a@i/Fit@a@i infers the mean E(Nes); thus, we estimated
E sð Þ ¼ E Nesð Þ=Nw, where Nw is the weighted effective pop-
ulation size along time (Lopez et al. 2018) from the NANC

calculated from hS ¼ 4NANClLS (Kim et al. 2017), where hS

is the population-scaled synonymous mutation rate and l¼
1.5� 10�8 (S�egurel et al. 2014). LS derives from
L ¼ LNS þ LS, where L is the number of bases from which
variants were called and assuming a ratio of synonymous to
nonsynonymous sites LS= LNS ¼ 2:31 (Huber et al. 2017)
(supplementary table 10, Supplementary Material online).

Temporal Trajectories of Mutational Load
We performed a set of forward simulations using SLiM 3
(Haller and Messer 2019) using a previously published demo-
graphic model that includes Iberian Roma (Mendizabal et al.
2012). The mutation rate was set to 1.36� 10�8 per base
position per generation, recombination rate to 10�8 per
base per generation, and a burn-in phase of 8N generations
was applied. The simulated genome structure includes: 20
unlinked chromosomes with 1,000 genes separated by neutral
noncoding regions (50,000 base long); genes divided into
8 exon–intron pairs (100- and 5,000-base long, respectively);
introns are assumed to be neutral; and exons are based in
three-base pair codons, with only the first two positions
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under selection (accepting deleterious mutations) (Lopez
et al. 2018). Deleterious mutations are subject to a DFE
with a gamma distribution with mean E(s)�0.025 and shape
0.18, corresponding to the fitted Roma DFE as Roma and
non-Roma DFEs were not statistically different. To reduce
the computational time of the simulations, we performed a
rescaling of the following parameters: population size and
generation time were decreased by ten, whereas mutation
and recombination rate, selection coefficient, and migration
rate were multiplied by ten to keep population-genetic
parameters constant. We periodically sampled nonfixed
mutations in proto-Roma or Roma populations and calcu-
lated, at each sampled generation, the mutational load as
L ¼ 1� expð

P
i liÞ, where i represents each mutation,

l ¼ s� ð2hqþ 1� 2hð Þ�q2Þ, s the selection coefficient, h
the dominance coefficient, and q the frequency of the
mutation.

Local Ancestry Inference
The merged data set of genome-wide array and WES variants
with MAF> 1% (405,814 variants) was phased with SHAPEIT
(O’Connell et al. 2014), using the population-averaged genetic
map from the HapMap phase II (International HapMap
Consortium 2003) and the 1,000 G data set as a reference
panel (1000 Genomes Project Consortium 2012). Local ances-
try was inferred with RFMix v1.5.4 (Maples et al. 2013), using
two reference sources: European (IBS and TSI populations)
and South Asian (PJL, GIH, and ITU populations) and one
expectation–maximization iteration. The unassigned local
ancestry regions comprised around 3.66% of the data. The
global South Asian proportion inferred with RFMix is highly
correlated (q ¼ 0.9573, P value <2.2� 10�16) with the pro-
portion of the cluster component assigned as dark red
(mostly prevalent in South Asia) in ADMIXTURE k¼ 2 (sup-
plementary fig. 31, Supplementary Material online). The
mean global proportions of LAI were 68.42% European and
31.58% South Asian (67.01% SD), whereas for ADMIXTURE
k¼ 2; they are 75.14% and 24.86%, respectively (66.55% SD).
The higher proportion of European ancestry inferred with
ADMIXTURE compared with RFMix is due to the fact that,
in the Roma population, allele-frequency methods overesti-
mate the European component (Font-Porterias et al. 2019).

Identification of ROH Segments
ROHs were identified from the merged data set of genome-
wide array and WES variants using PLINK/1.9b (Purcell et al.
2007). ROHs with minimum 50 SNPs, 500 kb, and a maximum
gap of 100 kb (between a pair of SNPs) were considered (Kirin
et al. 2010). ROHs were partitioned in two length categories
(0.5–2.5 and >2.5 Mb), representing “short–medium” and
“long” ROHs. Short and medium ROHs are pooled together,
whereas long ROHs are classified into its own category be-
cause the distribution of lengths is shifted to longer ROHs in
the Roma: they show a larger number of longer ROHs than
non-Roma, as previously shown (Font-Porterias et al. 2019).
Derived missense variants within ROHs were stratified in
GERP, PolyPhen, and CADD deleterious categories. ROHs
and ancestry-specific segments inferred from merged data

set with genome-wide and WES variants were matched to
the derived variants from the WES data.

Identification of Genomic Regions under Selection
Candidates for positive selection in Roma were identified
from three different selection methods: PBS, iHS, and XP-
EHH. FST values per variant were calculated for Roma,
European, South Asian, and YRI (outgroup) populations using
VCFtools 0.1.14 (Danecek et al. 2011). PBS was then obtained
as previously described (Yi et al. 2010):
PBS ¼ ðTWX þ TWY � TXYÞ=2; TWY ¼ � logð1� FstWYÞ,
where Y represents YRI, X either European or South Asian
group populations, and W the target population (Roma,
Europe, or South Asia). We performed four different PBS tests
per variant: 1) Roma against European; 2) Roma against South
Asian; 3) European against South Asian; and 4) South Asian
against European, using in all tests YRI as an outgroup. iHS
(Voight et al. 2006) was calculated for Roma, European, and
South Asian populations with selscan v1.2.0.a (Szpiech and
Hernandez 2014). Unstandardized iHS and normalization
across frequency bins were computed with default parame-
ters. XP-EHH (Sabeti et al. 2007) was calculated for Roma
against Europeans, Roma against South Asians, and
European against South Asians with selscan v1.2.0.a
(Szpiech and Hernandez 2014). Unstandardized XP-EHH
and genome-wide normalization were computed with de-
fault parameters. For each statistic (PBS, iHS, and XP-EHH),
variants with scores above the top 1% were filtered out when
there were less than two other variants in the top 1% within
200 kb (Mathieson et al. 2015; Ilardo et al. 2018). We then
selected the top ten signals in each analysis and annotated
the variants inside the signal (within the selection score de-
cay) using VEP from Ensembl (McLaren et al. 2016). Genome-
wide associations from the GWAS catalog and eQTLs within
the top regions were identified (GTEx Consortium 2017;
Buniello et al. 2019). For PBS and XP-EHH statistics, we per-
formed a gene annotation enrichment analysis with genes
within the top 1% selection signals using DAVID 6.8
(Huang et al. 2009). Gene Ontology (Ashburner et al. 2000)
and KEGG (Kanehisa and Goto 2000) pathways were used as
functional databases, and the genes present in our data set
were used as the background gene list.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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