
Detecting Rewiring Events in
Protein-Protein Interaction Networks
Based on Transcriptomic Data
Markus Hollander, Trang Do, Thorsten Will and Volkhard Helms*

Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany

Proteins rarely carry out their cellular functions in isolation. Instead, eukaryotic proteins
engage in about six interactions with other proteins on average. The aggregated protein
interactome of an organism forms a “hairy ball”-type protein-protein interaction (PPI)
network. Yet, in a typical human cell, only about half of all proteins are expressed at a
particular time. Hence, it has become common practice to prune the full PPI network to the
subset of expressed proteins. If RNAseq data is available, one can further resolve the
specific protein isoforms present in a cell or tissue. Here, we review various approaches,
software tools and webservices that enable users to construct context-specific or tissue-
specific PPI networks and how these are rewired between two cellular conditions. We
illustrate their different functionalities on the example of the interactions involving the human
TNR6 protein. In an outlook, we describe how PPI networks may be integrated with
epigenetic data or with data on the activity of splicing factors.

Keywords: transcriptomics, domain-domain interaction (DDI), protein-protein interaction (PPI), isoform, alternative
splicing (AS) events

INTRODUCTION

Protein-protein interaction (PPI) networks are a popular cornerstone of integrative or computational
cell biology and are frequently used to interpret the findings from high-throughput studies (Koh
et al., 2012; Sevimoglu and Arga, 2014; Szklarczyk et al., 2019). Typically, PPI networks provide a
genome-scale picture of all physical interactions detected between pairs of proteins. In the past, such
networks have been compiled by integrating the results frommany small-scale experiments and from
several high-throughput experimental methods such as Yeast Two-Hybrid or Tandem Affinity
Purification coupled to mass spectrometry (TAP-MS) (Bajpai et al., 2020). Full PPI networks provide
a comprehensive picture of the interactome of the full proteome of an organism. However, in each
cell at a particular moment in time, any physical protein-protein-contact can only be realized if both
proteins are expressed at the same time. To address this, it has become common practice to trim
general PPI networks to the set of proteins encoded by the genes that are expressed in the same
condition. In this manner, researchers have compared the protein interaction landscape across
tissues (Bossi and Lehner, 2009; Lopes et al., 2011) as well as the origin of tissue-specific diseases
(Barshir et al., 2014).

PPI networks have an interesting scale-free topology, whereby highly connected “hub” proteins
occur at a higher frequency than expected in, for example, a random graph. Furthermore, there exist
densely connected communities (Girvan and Newman, 2002) of proteins participating in particular
cellular functions or certain biological pathways. This ordering according to cellular function gives
rise to a modular architecture of PPI networks. On a smaller scale, densely connected clusters are
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candidates for protein complexes and several algorithms exist to
identify such complexes in PPI networks (Bader and Hogue,
2003; Nepusz et al., 2012; Will and Helms, 2014). Interacting
partners and members of the same protein complex tend to be co-
expressed (Jansen et al., 2002). The stable association of two
proteins often involves one or more distinct structural contacts
between specific domains of the proteins (Aloy and Russell,
2006). Knowledge about protein domain annotations and
domain-domain interactions (DDIs) thus provides a good
basis to describe protein associations (Aloy and Russell, 2006).
DDIs were used, for example, to predict protein complexes and to
analyze protein-protein interaction networks (Ozawa et al., 2010;
Ma et al., 2012; Will and Helms, 2014).

About 95% of all human multi-exon genes are subject to
alternative splicing (AS) (Pan et al., 2008) which clearly affects the
ability of the encoded isoforms of the proteins to interact with
other proteins (Buljan et al., 2012; Ellis et al., 2012). Hence, it
appears worthwhile to exploit the base-resolution of modern
RNA sequencing technology to resolve context-specific PPI
networks at isoform-resolution. In 2015, the Vidal group
published the first large-scale experimental study on isoform-
specific protein interactions (Yang et al., 2016). They profiled the
interactomes of 366 protein isoforms encoded by 161 genes and
assayed them against a library of 13,000 genes. They found that
accounting for isoforms gave a remarkable 3.2-fold increase of the
number of PPIs. Strikingly, different isoforms of the same protein
can interact with completely different proteins.

In the next section, we first give an overview of the numerous
protein-level PPI databases that underpin the research effort in
this field. These databases were recently reviewed in a
comprehensive manner (Bajpai et al., 2020) and we will thus
focus on a few popular meta webservices that offer integrated
analyses and the ability to tailor full PPI networks to a particular
cellular context. Afterwards, we present those tools and
webservices in detail that support isoform-level analysis of
protein interactions. Jalili and co-workers previously reviewed
studies that integrated gene expression data with protein
interaction networks (Jalili et al., 2018). Yet, their review
focused on discovery of biomarkers and did not discuss the
existing software tools, nor underlying domain models or
protein isoform effects. Next, we review webservices and
software tools that conduct differential comparisons of
interactions between cellular contexts and thus facilitate the
detection and study of PPI rewiring events. Finally, we will
illustrate the usage and capabilities of some of them on the
example of the interactions formed by the human TNR6
protein encoded by the FAS gene.

WEBSERVICES PROVIDING
PROTEIN-LEVEL DATA ON
PROTEIN-PROTEIN INTERACTION
NETWORKS

Manual and automated analyses of PPI networks require reliable
and preferably large collections of PPIs. Consequently, many

databases have been established over the years that collect, curate,
and annotate protein interactions and make them available to the
research community. These resources differ in their sources,
curation and annotation policies, as well as their focus on, for
example, particular species or interaction types, and the features
of their interfaces.

Many of the available resources represent PPI networks at the
level of integral genes, so that alternative splicing and protein
isoforms are not considered. Already, the protein level enables
powerful analyses of PPI rewiring between different conditions.
Specifically, the human genome contains around 20,000 protein-
coding genes (Pertea et al., 2018; Piovesan et al., 2019), while the
human body consists of more than 200 different cell types
(Bianconi et al., 2013). Each one of them will only express a
cell-type specific subset of the full proteome, e.g. about
8,000–12,000 proteins (Dyring-Andersen et al., 2020). Hence,
Bossi and Lehner argued that if two genes are co-expressed in a
cell in a particular condition, their products may physically
interact in that cell (Bossi and Lehner, 2009). However, if the
two proteins are not simultaneously expressed in a tissue, then the
interaction obviously cannot occur in that tissue. An examination
of the relationship between tissue-specificity and connectivity
found that proteins with more pronounced tissue-specificity are
involved in fewer protein interactions than more universally
expressed proteins (Bossi and Lehner, 2009). Furthermore,
tissue-specific proteins are more likely to be recent
evolutionary innovations than universally expressed proteins
(Lehner and Fraser, 2004). Turned around, the more
conserved a protein is, and the larger the number of tissues
where it is expressed, the more protein interactions it is likely to
have (Yeger-Lotem and Sharan, 2015). Filtering global PPI
networks to the subset of expressed genes or proteins thus
became the workhorse for generating tissue- and other
context-specific PPI networks.

Table 1 presents an overview of major primary and meta PPI
databases and their features. Most of the resources discussed here
provide a web-interface that enables users to query and download
the underlying interaction data. In many cases this includes
integrated visualization of the queried interactions. The
subsequent sections discuss a few meta databases in more
detail whose webservices additionally offer PPI (sub-)network
analyses or processing of user provided data in a context-specific
manner.

Protein-Protein Interaction Databases
Interaction resources can be broadly categorized as primary
databases, which collect and curate data independently, or
meta databases, which compile their data from primary
databases. All resources discussed here focus on
experimentally verified interactions, typically gathered from
publications and submissions, though a few also incorporate
predicted interactions.

Some of the earliest established primary PPI resources that
cover a wide range of species are the Biomolecular Interaction
Network Database (BIND) (Bader et al., 2003), the Database of
Interacting Proteins (DIP) (Salwinski et al., 2004), the
Molecular Interaction Database (MINT) (Licata et al., 2012),
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and IntAct (Orchard et al., 2014). Other primary databases
concentrate their curation efforts on a particular species or a
subset of species. For instance, the MIPS Mammalian Protein-
Protein Interaction Database (MPPI) (Pagel et al., 2005) collects
mammalian PPIs, while MPact (Güldener et al., 2006) focuses
on yeast and the Microbial Protein Interaction Database
(MPIDB) (Goll et al., 2008) on microbial PPIs. The Human
Protein Reference Database (HPRD) (Prasad et al., 2009) and
the Human Reference Protein Interactome Mapping Project
(HuRI) (Luck et al., 2020) are prominent databases centered
around human interactions.

Furthermore, there are resources that specialize in types or
subsets of interactions. The B Cell Interactome (BCI) (Lefebvre
et al., 2007) concerns itself with physical molecular interactions in
human B cells. Similarly, InnateDB (Breuer et al., 2013) compiles
and predicts interactions involved in the innate immune response
to microbial infections in humans, mice, and bovines. MatrixDB
(Huang et al., 2018) concentrates on interactions of proteins,
proteoglycans, and polysaccharides of the extracellular matrix.
While most resources deal with intra-species interactions, the
Host-Pathogen Interaction Database (HPIDB) (Ammari et al.,

2016) gathers and predicts inter-species molecular interactions
between pathogens and their hosts.

To establish common standards among the major interaction
resources, the International Molecular Exchange (IMEx)
Consortium was founded in 2005 (Orchard et al., 2012; Porras
et al., 2020). Of the primary databases discussed here, current
members include BIND, DIP, HPIDB, InnateDB, IntAct,
MatrixDB, and MINT, whereas MPact, and MPIDB
contributed in the past but are no longer active members. The
IMEx Consortium developed a set of curation rules for physical
molecular interactions extracted from publications and maintains
a set of uniquely defined molecular identifiers for these
interactions for consistency. The non-redundant interactions
compiled by this joined curation effort are available through
the IMEx Consortium and IntAct, and members can include all
interactions or a suitable subset in their own databases.

A major primary interaction database that is not part of the
IMEx Consortium is the Biological General Repository for
Interaction Datasets (BioGRID) (Oughtred et al., 2021).
BioGRID focuses on genetic, chemical and protein interactions
as well as post translational modifications curated from individual

TABLE 1 | Overview of PPI databases and PPI network (PPIN) features of their webservice.

Data
collection

Source type Species Webservice Context filter Visual-
ization

PPIN analyses

APID Meta Evidence Multiple apid.dep.usal.es No Yes No
BIND Primary Evidence Multiple — — — —

BioGRID Primary Evidence Multiple thebiogrid.org No Yes No
DIP Primary Evidence Multiple dip.doe-mbi.ucla.edu No Yes No
HIPPIE Meta Evidence Human cbdm.uni-mainz.de/hippie Tissues, diseases, functional Yes Enrichment
HPIDB Both Evidence,

predicted
Multiple hpidb.igbb.msstate.edu No Yes No

HPRD Primary Evidence Human hprd.org No No No
HuRI Primary Evidence Human interactome-atlas.org Tissued Yes No
I2D Meta Evidence,

predicted
Multiple ophid.utoronto.ca No No No

IID Meta Evidence,
predicted

Multiple iid.ophid.utoronto.ca Tissues, druggability, localization,
diseases

Yes Enrichment,
topology

InnateDB Both Evidence,
predicted

Multiple innatedb.com Tissues, cell types, diseases Yes Topology

IntAct Both Evidence Multiple ebi.ac.uk/intact No Yes No
iRefWeb Meta Evidence,

predicted
Multiple wodaklab.org/iRefWeb No No No

MatrixDB Both Evidence,
predicted

Multiple matrixdb.univ-lyon1.fr Tissues Yes No

mentha Meta Evidence Multiple mentha.uniroma2.it No No Paths
MINT Primary Evidence Multiple mint.bio.uniroma2.it No Yes No
MPact Primary Evidence Yeast — — — —

MPIDB Both Evidence Microbes — — — —

MPPI Primary Evidence Mammals mips.gsf.de/proj/ppi No No No
MyProteinNet Meta Evidence Multiple netbio.bgu.ac.il/

myproteinnet2
Tissue, expression, single cell Yes No

PIP Meta Evidence,
predicted

Human compbio.dundee.ac.uk/
www-pips

No No No

PrePPI Meta Evidence,
predicted

— bhapp.c2b2.columbia.edu/
PrePPI

No Yes No

SPECTRA Meta Evidence Human alpha.dmi.unict.it/spectra Tissue, tumors, expression Yes Network
alignments

STRING Meta Evidence,
predicted

Multiple string-db.org No Yes Enrichment,
clustering

TissueNet Meta Evidence Human netbio.bgu.ac.il/tissuenet Tissue, expression Yes No

Frontiers in Bioinformatics | www.frontiersin.org September 2021 | Volume 1 | Article 7242973

Hollander et al. Detecting Rewiring Events in Protein Networks

http://apid.dep.usal.es
http://thebiogrid.org
http://dip.doe-mbi.ucla.edu
http://cbdm.uni-mainz.de/hippie
http://hpidb.igbb.msstate.edu
http://hprd.org
http://interactome-atlas.org
http://ophid.utoronto.ca
http://iid.ophid.utoronto.ca
http://innatedb.com
http://ebi.ac.uk/intact
http://wodaklab.org/iRefWeb
http://matrixdb.univ-lyon1.fr
http://mentha.uniroma2.it
http://mint.bio.uniroma2.it
http://mips.gsf.de/proj/ppi
http://netbio.bgu.ac.il/myproteinnet2
http://netbio.bgu.ac.il/myproteinnet2
http://compbio.dundee.ac.uk/www-pips
http://compbio.dundee.ac.uk/www-pips
http://bhapp.c2b2.columbia.edu/PrePPI
http://bhapp.c2b2.columbia.edu/PrePPI
http://alpha.dmi.unict.it/spectra
http://string-db.org
http://netbio.bgu.ac.il/tissuenet
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


studies and high-throughput datasets for many species. It has
substantial overlap with the data from the IMEx Consortium
(Porras et al., 2020) and high coverage of PPIs from primary
sources in general (Bajpai et al., 2020).

In addition to primary databases, there exists an increasing
number of meta resources that compile and provide access to PPI
data frommultiple primary sources. The Interologous Interaction
Database (I2D) (Brown and Jurisica, 2007) conducts some
manual curation of interactions for model organisms from the
literature but mainly combines data from primary databases such
as BCI, BIND, BioGRID, DIP, HPRD, InnateDB, IntAct, and
MINT with predicted interactions. Similarly, the Protein-Protein
Interaction Prediction (PIP) database (McDowall et al., 2009)
supplements human PPI data from BIND, DIP, I2D, and HPRD
with predicted PPIs, while the PrePPI database (Zhang et al.,
2013) adds predicted interactions to experimental data from
BioGRID, DIP, HPRD, IntAct, MINT, and MPPI. A meta
database for evidence based interactions in model organisms is
mentha (Calderone et al., 2013) that uses BioGRID, DIP, IntAct,
MatrixDB, and MINT as sources. The Agile Protein Interactomes
DataServer (Alonso-López et al., 2019) unifies interactions from
BioGRID, DIP, HPRD, IntAct, and MIND, while iRefWeb
(Turinsky et al., 2021) consolidates PPI data from BIND,
BioGRID, DIP, HPRD, I2D, IntAct, MINT, MPact, and MPPI.

However, some primary databases may also incorporate data
from one or more of the other primary databases in addition to
their own collected data. For example, MPIDB includes
interactions from BIND, DIP, IntAct, and MINT, while
HPIDB integrates data from BIND, BioGRID, DIP, I2D,
InnateDB, IntAct, MatrixDB, and MINT. Typically, this
involves extracting a subset of interactions relevant to the
more specialized focus from the other databases. Notably,
IntAct provides the infrastructure for other curators and
resources to enter and annotate data into their database, and
hosts and provides access to the complete data curated by the
IMEx Consortium (Orchard et al., 2014). A recent systematic
review of PPI databases provides a visual overview of the
intertwined dataflow between the various primary and meta
databases (Bajpai et al., 2020).

Search Tool for Retrieval of Interacting
Genes/Proteins (STRING)
The Search Tool for Retrieval of Interacting Genes/Proteins
(STRING) (Szklarczyk et al., 2019) is a widely used meta
database and webtool for the retrieval and analysis of evidence
based and predicted PPIs. STRING merges all curated
interactions from the IMEx Consortium (Porras et al., 2020)
and BioGRID (Oughtred et al., 2021), and combines them with
manually curated interactions from pathway records collected by
the KEGG (Kanehisa et al., 2021), Reactome (Jassal et al., 2020),
BioCyc (Karp et al., 2019), and Gene Ontology (Carbon et al.,
2021) databases. These PPIs are supplemented with text-mining
and predictions based on genomic context, gene co-expression
and protein co-expression. Interactions between two proteins are
scored in the interval [0,1] according to the estimated confidence
of the interaction. In total, STRING (v11.5) contains almost 300

million interactions of the highest confidence (STRING
confidence score ≥0.9) for 67 million proteins of over 14,000
organisms, which makes it the most comprehensive tool in terms
of coverage of proteins and organisms (Szklarczyk et al., 2019;
Bajpai et al., 2020).

Users can get access to evidence-based and predicted PPIs
through a user-friendly web-interface, where an expansive list of
associated studies and detailed annotations from other databases
is available, together with sub-network visualization, enrichment
and clustering analyses that are ready for ad-hoc uses. STRING
can be queried for single or multiple proteins, protein families, or
organisms. Alongside the query proteins, users can optionally
provide additional information such as abundance, fold change,
or p-values to be considered by the functional enrichment
analysis. However, thus far STRING does not provide an
option to filter for different tissues or to a user-provided
expression data set.

As part of the ELIXIR core data resources (Crosswell and
Thornton, 2012), STRING provides known and predicted PPIs of
high confidence for incorporation with other well-maintained
biological databases that serve as a foundation for analysis
services in the ELIXIR ecosystem. Moreover, STRING can be
found in the underlying architecture of various databases and
analysis methods, such as HAPPI (Chen et al., 2009), a
compilation of human protein interactions, or RegNetwork
(Liu et al., 2015), a database for transcriptional and post-
transcriptional networks in human and mouse, or GSA-SNP2
(Yoon et al., 2018), a tool for pathway enrichment and network
analysis, or in some PPI-analyzing tools like PPIXpress (Will and
Helms, 2016). Furthermore, the use of STRING as a reference
database for large-scale analysis and profiling of proteomes is
extremely common as well. One example for such a use-case is the
characterization of protein subnetworks of biomarkers specific
for human diseases using STRING PPI scores for the accurate
prediction of pathway-affected gene drivers (Liang et al., 2016).

Human Integrated Protein-Protein
Interaction Reference (HIPPIE)
The Human Integrated Protein-Protein Interaction Reference
(HIPPIE) (Alanis-Lobato et al., 2017) is a meta database and
webservice that facilitates access to and context-specific analysis
of experimentally detected human PPIs. These interactions are
consolidated from BIND (Bader et al., 2003), BioGRID (Oughtred
et al., 2021), DIP (Salwinski et al., 2004), HPRD (Prasad et al.,
2009), IntAct (Orchard et al., 2014), MINT (Licata et al., 2012),
and MPPI (Pagel et al., 2005). HIPPIE assigns confidence scores
to the PPIs based on the quality and reliability of the experiments
supporting them. The tissue specificity of the PPIs is derived from
tissue RNAseq data from the GTEx Consortium (Lonsdale et al.,
2013), and they are further annotated with functional
information from the Gene Ontology (Carbon et al., 2021).

The web-interface enables users to query the database with
individual proteins or PPI networks in a tissue- and function-
specificmanner, with the option to define a custom context and to
specify the desired interaction types and level of confidence.
HIPPIE subsequently generates and visualizes a query-specific
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FIGURE 1 | PPI results for the human TNR6 protein encoded by the FAS gene (UniProt accession: P25445) from HIPPIE, DIIP, DIGGER, PPIXpress and
PPICompare. (A)HIPPIE presents general interacting partners as a PPI network view and a table with evidence scores. (B)DIGGER presents an interactive PPI-DDI view
that combines different aspects of a PPI for a single isoform. The domain and exon architecture view and more detailed results for individual interactions, domains and
isoforms are not shown here. (C) DIIP compiles tables with the domains and predicted interaction retention for alternative isoforms. (D) PPIXpress was applied to
RPKM expression data of neuronal stem cells and H1 stem cells from the Roadmap Epigenomics project (Kundaje et al., 2015). Shown here are the interaction partners
of TNR6 in the resulting neuronal stem cell specific PPI network. (E) PPICompare was subsequently applied to cell-specific PPIs generated by PPIXpress to produce the
differential PPI network between the two cell types. Illustrated here are two interaction gains in the transition from H1 stem cells to neuronal stem cells with the respective
adjusted p-value. The graphics for the subnetworks from PPIXpress and PPICompare were generated with Cytoscape.
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PPI network (Figure 1A) and can optionally perform edge
direction inference, prediction of inhibitory or activating
effects, and enrichment analysis of disease, process, function
and cellular compartment annotations. In addition to the web-
interface, HIPPIE offers an application programming interface
(API) that facilitates automated queries and thus integration into
analysis pipelines.

The integration of experimentally confirmed PPIs from expert-
curated sources makes HIPPIE a reliable and resourceful reference
database to be employed in various scenarios. Many studies availed
the tool to collect high confidence PPIs to support their study
hypothesis, verify experimental results or control the quality of
analytic methods. Some of such use-cases include the work by
Sundell et al., who assessed the performance of phosphomimetic
proteomic peptide-phage display in detecting ligands of short
linear motifs by comparing the identified ligands to those
reported by HIPPIE (Sundell et al., 2018), and the work by
Kruse et al., who screened for candidate protein constituents of
N-cadherin complexes based on HIPPIE PPI confidence scores
(Kruse et al., 2019). Furthermore, the tool is widely employed to
analyze pathogenesis or developmental processes where tissue-
specificity has a substantial weight on defining the PPI networks.
This is well illustrated by a comparative study by Verma et al.
where the subtle differences in LRRK2 interactomes across
different brain subregions, kidney and lung could be spotted
using HIPPIE’s tissue filter (Verma et al., 2021). On the other
hand, this webservice is often used as a meta-database and
integrated in other more context-specific analysis methods such
as GSA-SNP2 (Yoon et al., 2018), PSSMsearch (Krystkowiak et al.,
2018), or LncDEEP (Yang et al., 2018).

Integrated Interactions Database (IID)
The Integrated Interactions Database (IID) from the Jurisica lab
(Kotlyar et al., 2019) is a database and webtool that offers full PPI
networks of several species, context-specific sub-networks, as well
as topology and enrichment analyses. IID integrates
experimentally detected protein interactions from the
following 9 curated databases: BCI (Lefebvre
et al., 2007), BIND (Bader et al., 2003), BioGRID (Oughtred
et al., 2021), DIP (Salwinski et al., 2004), HPRD
(Prasad et al., 2009), InnateDB (Breuer et al., 2013), IntAct
(Orchard et al., 2014), I2D (Brown and Jurisica, 2007), and
MINT (Licata et al., 2012). Additionally, it includes
orthologous PPIs and computationally predicted interactions.
Overall, it provides interactions for human (H. sapiens), the 5
model organisms fly (D. melanogaster), mouse (M. musculus), rat
(R. norvegicus), worm (C. elegans), and yeast (S. cerevisiae), and
for 12 domesticated species.

Given a set of query proteins, IID generates a sub-network of
either all interactions involving the query proteins or only
interactions between the query proteins. Users can specify the
desired level and type of evidence supporting the PPIs. The
resulting sub-network can be further pruned in a context-
specific manner to selected tissues, sub-cellular localizations,
diseases, druggability status, or any combination thereof.
Moreover, IID can analyze the network topology in terms of
node degree, clustering coefficient and betweenness, as well as the

enrichment of diseases, tissues, sub-cellular localizations and
druggability in the network PPIs. All results are displayed as
tables and can be downloaded as such with customizable
annotations. While the web-interface does not include network
visualization, the result files are compatible with Cytoscape
(Shannon et al., 2003).

As a consequence of the ease of use combined with the number
of context-specificity options, IID is a flexible resource that can be
of use in a wide range of applications. For example, in a recent
study, protein interactions from IID combined with a
transcription regulatory network suggested the Hippo-
signaling pathway mediator TAZ as a regulator of numerous
metabolic genes and thus as a link between tension sensing and
dendritic metabolic programming, which could then be
corroborated by TAZ knock-down in mice (Chakraborty et al.,
2021). Investigating the effect of mutations in key autophagy
proteins in cancer, IID was employed to construct the
interactomes of the autophagy kinase ULK1 (Kumar and
Papaleo, 2020) and the autophagosome protein LC3B (Fas
et al., 2020). Furthermore, PPI data provided by IID is used
by resources such as pathDIP (Rahmati et al., 2020), which
predicts physical pathway associations for proteins based on
physical species-specific protein interactions, or the interactive
online platform CoVex (Sadegh et al., 2020), which facilitates
exploration of the SARS-CoV-2 host interactome.

MyProteinNet and TissueNet
MyProteinNet (Basha et al., 2015) and TissueNet (Basha et al.,
2017) are two webservices for context-specific PPI networks
developed by the Yeger-Lotem lab. With TissueNet, users can
retrieve tissue-specific PPIs for a single human query protein or
protein interaction. The underlying human PPI data is compiled
from experimentally validated physical protein interactions
retrieved from BioGRID (Oughtred et al., 2021), DIP
(Salwinski et al., 2004), IntAct (Orchard et al., 2014), and
MINT (Licata et al., 2012). The tissue-specificity is computed
based on tissue expression profiles obtained from GTEx
(Lonsdale et al., 2013) and the Human Protein Atlas (Uhlén
et al., 2015). TissueNet displays the expression of the query
protein and its interactors for all available tissues as well as
associated Gene Ontology annotations, and the integrated
network viewer allows users to switch between tissues on the
fly. The underlying tissue-specific PPI networks can be
downloaded and have proven useful in the study of, for
example, schizophrenia risk genes (He et al., 2021), the
neurological effects of COVID-19 (Prasad et al., 2021), and
susceptibility pathways among various cancers (Qian et al., 2015).

In contrast, MyProteinNet focuses on building customizable
interaction networks for humans and other model species. Based
on a user-selected organism and combination of PPI databases to
be used, MyProteinNet assembles a general network of
experimentally validated physical protein interactions. In
addition to BioGRID, DIP, IntAct and MINT, users can
choose to include PPIs from InnateDB (Breuer et al., 2013),
MatrixDB (Huang et al., 2018), and STRING (Szklarczyk et al.,
2019), among others. This step offers users the option to add their
own interaction data, and even to only use user-provided
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interactions for network construction. Furthermore,
MyProteinNet accepts single-cell, tissue, and other expression
data to prune the general PPI network in a context-specific
manner. For humans, the tissue-specific expression data used

by TissueNet can be applied for filtering without requiring
additional uploads by the user. The results consist of a file
with the global, unfiltered interactome, a file with the context-
specific interactome, and a file with the PPIs removed during the

TABLE 2 | Features of software tools and webservices enabling the generation and analysis of domain- or isoform-level protein-protein interaction data (DIIP, DIGGER,
PPIXpress), as well as the comparison of interaction rewiring (SPECTRA, DifferentialNet, PPICompare).

DIIP DIGGER PPIXpress SPECTRA DifferentialNet PPICompare

Type Webservice Webservice Stand-alone tool Webservice Webservice Stand-alone tool

Species Human Human Multiple Human Human Multiple

Resources
PPI HI-II-14, IntAct BioGRID IntAct, mentha BioGRID, HPRD,

MIPS, IntAct
BioGRID, DIP, IntAct,
MINT

PPIXpress

DDI 3did, DOMINE 3did, DOMINE DOMINE, IDDI, 3did,
iPfam

Not available Not available PPIXpress

Other Pfam (domain
annotations)

PDB (exon-
specific residues)

UniProt + Ensembl
(protein details), Pfam-A

Protein Atlas,
ArrayExpress, GEO,
TCGA (tissues,
tumors)

GTEx, Human Protein
Atlas (tissues)

Ensembl (protein
details)

Query type
Protein query Single gene or

protein (UniProt,
HGNC)

Single gene,
transcript, protein
(Ensembl, HGNC)

Not available All genes in SPECTRA Up to 5 genes or proteins
(Entrez, Ensembl)

Not available

Single exon
(Ensembl, HGNC,
coordinates)

List of genes (Entrez,
Ensembl, UniProt)
Gene expression

Network query Single protein and
list of interacting
partners

List of isoforms,
transcripts, genes

Gene or transcript
expression data
(UniProt, HGNC,
Ensembl IDs)

SPECTRA Not available Two sets of condition-
specific PPI and DDI
networks (PPIXpress)

Transcript
expression counts

Reference PPI network
(optional)

PPI network(s) for
comparison

Integrating output
from other tools
or databases

Not available Expression data:
Cufflinks, Kallisto,
count matrix

PPI networks: mentha,
IntAct, BioGRID, HPRD,
custom PPI list

Expression matrix Not available PPI and DDI networks:
PPIXpress

Expression data:
Cufflinks, Kallisto,
(TCGA) RSEM,
GENCODE GTF, count
matrix

Output Isoform domains Isoform and exon
domains

Context-specific PPI
and DDI network(s)

Context-specific PPI
network

Tissue-specific
differential PPIs

Context-specific
differential PPIN
network

PPI prediction for
isoforms

PPIs and DDIs for
isoforms and
exons

Differential PPI
subnetworks

Minimal set of rewiring
causes

Features
Visualization Not available Integrated (protein,

domain, and
interaction view)

Network output
available for Cytoscape

Integrated Integrated Network output
available for Cytoscape

Context-specific Not available User-defined User-defined Tissues, tumors, user-
defined

Tissues User-defined

Interaction
scoring

DDI-based loss/
retention
prediction for
isoforms

DDI-based missing
interactions for
isoforms

DDI-based presence for
main isoform

PPIs: coverage,
average weight

Difference between
tissue-specific and
median expression score

Significance of PPI
rewiring event

Differential
subnetworks:
expression log fold
change

Batch analysis Not available Not available Yes Not available Not available Yes
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pruning step. These network files can be visualized with
Cytoscape (Shannon et al., 2003).

The customizable nature of the context-specific PPI networks
generated by MyProteinNet makes it flexible in its application. For
instance, it has been used by the Yeger-Lotem lab to analyze and
highlight human tissue-selective processes and genetic disorder
genes (Basha et al., 2020). In other studies, it served, for example, as
the basis for identifying tissue-specific driver proteins in human
interactomes (Zhang et al., 2016), or for examining the functional
centrality of cancer genes in comparison with genes involved in
other diseases (Ostrow and Hershberg, 2016).

RESOURCES AND SOFTWARE TOOLS ON
DOMAIN-LEVEL AND ISOFORM-LEVEL
PROTEIN-PROTEIN INTERACTION DATA
A few approaches that model context-specific PPI networks
utilize an underlying domain model in which each protein is
represented by one or more structural domains. Using such a
domain model incorporates elements of three-dimensional
protein structures. As domain-domain interactions (DDIs)
tend to be evolutionary conserved (Itzhaki et al., 2006),
experimental evidence on domain interactions can be
transferred between related organisms. Isoform-specific
expression data enables detecting effects of alternative splicing
at the level of full protein domains. Hence, DDI-based tools allow
predicting the interactomes of specific protein isoforms in a
particular condition or tissue. Table 2 presents a feature
overview of such webservices and software tools.

Domain-Domain Interaction Databases
Domain- and isoform-level methods tend to use Pfam domains
(Mistry et al., 2021), which are typically identified in
experimentally determined three-dimensional structures of
protein complexes by assessing whether neighboring domains
are in close contact. This information is compiled by web services
such as iPfam (Finn et al., 2014) and 3did (Mosca et al., 2014).
The database 3did is regularly updated and currently contains
14,972 DDIs for 9,580 domain families in its current release
(Pfam version 32.0, PDB version 2020_05). Furthermore, the
structurally derived domain-level interactome can be enriched by
computational predictions of DDIs between domain families
(Riley et al., 2005; Guimarães et al., 2006). The meta database
DOMINE (Yellaboina et al., 2011) integrated two databases of
PDB-derived DDIs and 7 predicted data sources. Moreover, IDDI
(Kim et al., 2012) combined data from three structure-based DDI
sources and 20 computational datasets.

DomainGraph
A tool enabling users to inspect the effect of AS on interaction
networks is the Cytoscape 2.x (Shannon et al., 2003) plugin
DomainGraph (Emig et al., 2010). When combined with the
AS analysis tool AltAnalyze (Emig et al., 2010), DomainGraph
visualizes those protein domains in DDI networks that are
affected by differential exon usage. Alternatively, users can
submit a gene or PPI network to DomainGraph to visually

inspect the interactions between the genes, their associated
protein isoforms and underlying DDIs, with the option to
highlight putatively AS-affected network components if exon
expression data is available. This tool is made for interactive
use whereby a user can manually investigate the implications of
associated changes in the PPI and DDI networks. However, the
tool is not able to automatically process proteome-scale PPI
networks.

Thus far, DomainGraph has been used primarily to visualize
differential components identified by AltAnalyze, such as
alternative exons between normal and cancerous colorectal
tissues (Aziz et al., 2014), alternatively spliced transcripts
between normal and degenerated macula (Whitmore et al.,
2013), or alternative protein domains and miRNA binding
sites between herpes-infected and noninfected lymphatic
epithelial cells (Chang et al., 2011).

Domain-Based Isoform Interactome
Prediction (DIIP)
Domain-based Isoform Interactome Prediction (DIIP) (Ghadie
et al., 2017) is a method that uses reference PPIs and DDIs to
predict isoform interactions, which can be queried with the
accompanying webservice (https://predict-isoform-interactome.
herokuapp.com). Given a human query protein, the DIIP
webservice lists the domains in alternative isoforms,
experimentally observed PPIs involving the reference isoform,
as well as interaction predictions for alternative isoforms
(Figure 1B).

To construct the underlying human isoform interactome,
DIIP first builds a PPI network with experimentally
determined PPIs from the HI-II-14 dataset (Rolland et al.,
2014) and the IntAct database (Orchard et al., 2014). The
network proteins are annotated with Pfam domains (Mistry
et al., 2021), which then guide the mapping of DDIs from
3did (Mosca et al., 2014) and DOMINE (Yellaboina et al.,
2011) onto the PPIs. Finally, DIIP predicts isoform
interactions based on the presence of interacting domains in
alternative isoforms retrieved from UniProt (Bateman et al.,
2021). A PPI between two isoforms is considered lost if none
of the supporting DDIs can be realized due to the required
domains missing from the isoforms. Otherwise, the PPI is
predicted to be retained.

In the accompanying study, the authors showed that
alternative splicing is responsible for extensive network
remodeling of protein interactions (Ghadie et al., 2017). For
about 22% of the genes with two or more isoforms in the
predicted isoform interactome, at least one isoform lost an
interaction. Furthermore, different interaction profiles were
found for roughly 18% of the isoform pairs encoded by the
same gene in the isoform interactome.

PPIXpress
PPIXpress (Will andHelms, 2016) is a stand-alone tool developed
in the Helms group that constructs condition- or sample-specific
protein-protein interaction networks from transcriptomic data. It
considers underlying domain-domain interactions and can be
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applied on the gene-level as well as the transcript-level, thereby
capturing the effects of alternative splicing in addition to those of
differential expression. As outlined in Figure 2, the approach
consists of a mapping step that relates protein-protein
interactions to domain-domain interactions and a
contextualization step that removes domain-domain
interactions not supported by the given expression data,
yielding a condition-specific PPI network (Figure 1D).

Condition-Specific Domain-Domain Interaction and
Protein-Protein Interaction Network Construction
Besides one or more gene- or transcript-level expression data
samples provided by the user, PPIXpress requires a reference PPI
network with condition-unspecific interactions from the
corresponding species. This reference network can be a
custom one supplied by the user or can be automatically
retrieved from the current versions of the databases mentha
(Calderone et al., 2013) or IntAct (Orchard et al., 2014). The
STRING database (Szklarczyk et al., 2019) can be queried to add
functional association scores. The most recent Ensembl (Howe
et al., 2021) and UniProt (Bateman et al., 2021) databases are
queried for gene and transcript annotations, which are
subsequently associated with Pfam-A domains (Mistry et al.,
2021) by InterProScan (Jones et al., 2014). For physical
domain-domain interaction data, a pre-compiled database of
high-confidence data from DOMINE (Yellaboina et al., 2011)
and IDDI (Kim et al., 2012) is used, which is supplemented by

automatically retrieved data from the iPfam (Finn et al., 2014)
and 3did (Mosca et al., 2014) databases.

The initial mapping stage (Figure 2, step 1) starts from the
complete, condition-unspecific PPI network. Each interaction
therein is then annotated with known interactions between
domains in the longest isoform of the participating proteins.
To ensure complete correspondence of the resulting domain-
domain interaction network and the PPI network, artificial
domains are added to interacting proteins if their interaction
cannot be assigned to at least one domain-interaction. These
artificial domains counteract the sparsity of domain-level data,
where protein-protein interaction may not be accounted for by a
known domain-domain interaction. In a similar previous
approach, this improved the performance of protein complex
prediction without negatively affecting precision (Ma et al., 2012).

In the subsequent contextualization stage (Figure 2, step 2),
node pruning (Figure 2, step 3) is conducted by removing proteins
from the network that are not supported by sufficient gene or
transcript expression in the sampled condition, similar to
established gene-based approaches. When PPIXpress is used on
the gene-level, each protein is represented by its longest isoform
just like in the initial mapping. Due to the direct correspondence
between the two layers, pruning then stops here. When applied on
the transcript-level, however, there is an additional edge pruning
step (Figure 2, step 4), in which the protein-protein interactions
that are not backed by at least one domain-domain interaction in
the most abundant transcript are trimmed as well. In both cases,

FIGURE 2 | PPIXpress first takes a complete PPI network (dark blue nodes) and associates each interaction (solid edges) with known interactions between protein
domains (smaller, colorful nodes) or, if unknown, between artificial domains (grey nodes) (1). Then, based on provided expression data (2), proteins that are not
expressed and domains that do not occur in the most abundant transcript are removed (translucent) (3), as are the no longer supported edges (dotted lines) if transcript-
level data is available (4), resulting in a condition-specific DDI and corresponding PPI network.
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the result is a pruned, condition-specific PPI network annotated
with the participating domain-domain interactions.

Applications: Protein-Protein Interaction Rewiring in
Cancer
The accompanying case study (Will and Helms, 2016) applied
PPIXpress to 112 matched breast cancer and healthy tissue
samples obtained from The Cancer Genome Atlas (Weinstein
et al., 2013) and constructed a single differential PPI network of
significantly rewired interactions between the two conditions
from the combined individual condition-specific networks.
The rewired interactions were associated with hallmarks of
cancer if at least one of the proteins was annotated with a
corresponding Gene Ontology (GO) (Carbon et al., 2021) term
or KEGG (Kanehisa et al., 2021) pathway, and in addition GO
term enrichment analysis was performed. To compare the
performance, this approach was conducted with PPIXpress set
to the gene-level and then to transcript-level filtering.

Although the gene-based approach generated larger networks,
it detected fewer significant changes in interactions between the
tumor and healthy samples. In contrast, the transcript-based
network construction found significantly more rewiring events
associated with the hallmarks of cancer in the differential
network. Additionally, enriched KEGG and GO terms were
related to carcinogenic processes, and the transcript-level
differential network contained more enriched KEGG pathways
and GO biological processes. Overall, the inclusion of domain-
level and transcript-level information improved the performance
and statistical significance of the results.

Frishman and colleagues used PPIXpress to generate 642 patient-
specific pairs of interactomes corresponding to both the tumor and
healthy tissues across 13 cancer types based on RNA-Seq datasets
from The Cancer Genome Atlas (Kataka et al., 2020). The
underlying hypothesis for this study was that isoform switching
has been noted as a hallmark of cancer. Isoform switching often
results in the loss or gain of domains mediating protein interactions
and thus, the re-wiring of the interactome. Comparison of these
interactomes between tumor and normal samples gave a list of
patient-specific “edgetic” perturbations of the interactomes
associated with the cancerous state. Interestingly, the majority of
the rewiring events did not directly affect significantly mutated genes
but were nonetheless strongly correlated with patient survival. The
findings of this study are made available as EdgeExplorer: http://
webclu.bio.wzw.tum.de/EdgeExplorer. The involved proteins are
suggested both as a new source of potential biomarkers for
classifying cancer types and as putative anti-cancer therapy targets.

Domain Interaction Graph Guided Explorer
(DIGGER)
The Domain Interaction Graph Guided Explorer (DIGGER)
(Louadi et al., 2021) is a webservice (https://exbio.wzw.tum.de/
digger) that leverages domain- and residue-level information to
expedite studying the mechanistic effects of alternative splicing in
humans. For domain-level analysis, DIGGER constructs a joint
interaction network of human PPIs retrieved from BioGRID
(Oughtred et al., 2021) and accompanying DDIs selected from

3did (Mosca et al., 2014) and DOMINE (Yellaboina et al., 2011).
With this data structure, the mapping of PPIs and DDIs to exon-
and transcript-defined regions is facilitated for higher-leveled
analysis of the interactomes. First, residues from experimentally
resolved protein structures from the Protein Data Bank (PDB)
(Burley et al., 2021) are aligned with the amino acid residues from a
protein in the joint network. Then, the interactions between the
mapped resolved residues from different isoforms are used as
evidence for the interactions between the domains in the
isoforms. This allows DIGGER to locate the exons or
transcripts associated with these domains using the mapping
positions. Since a single amino acid residue or domain might be
involved in the interaction between a protein and multiple
partners, the authors defined an interaction scoring scheme
based on the fraction of annotated DDIs present between two
proteins. Finally, based on the score gradient one can assess to
which degree a PPI is affected and draw inference on underlying
mechanisms that impact those interactions, such as exon skipping.
Notably, DIGGER combines all structural information from
different isoforms of the same gene, whereas other tools such as
PPIXpress (Will and Helms, 2016) consider only a particular
transcript, typically the most strongly expressed one.

The webservice offers three different use modes that can be
used interchangeably. In the isoform-level analysis, the user can
comprehensively visualize the interacting domains of proteins
and compare the interactions of different isoforms (Figure 1C).
In addition to displaying the associated PPIs, this mode visualizes
the interactions annotated with a particular domain using the
underlying protein and domain interaction data. Furthermore,
each domain in the isoform can be selected to show a domain-
centered interaction view. Lastly, this mode offers an overview of
the domain and exon architecture of the selected isoform. The
exon-level mode is similar and focuses on a particular exon. In the
network-level analysis, the user can explore interactions between
multiple isoforms and generate a specific subnetwork from a list
of protein variants or transcripts. Here, the user can optionally
upload a particular expression data set with transcript counts,
thus accounting for user-defined contexts.

In their paper, Louadi et al. demonstrated how DIGGER can
be used to confirm the effects of alternative splicing on PPIs and
DDIs (Louadi et al., 2021). A case study where the PPI networks
for two ALK transcripts were visualized using DIGGER revealed
that 97% of the PPIs were lost in the truncated transcript. In
another example, the self-interacting property of the GRB2
protein was removed by the loss of domain SH2 during the
exclusion of a tissue-specific exon, while its interaction to gene
RAPGEF1 was retained thanks to the unscathed domain SH3.
This result could be confirmed by DIGGER using the exon-view
of DDI networks for GRB2 and its interacting partners.
Additionally, it is possible that the rewiring events for PPIs
and DDIs resulting from exon skipping will emerge from the
inspection of DIGGER-generated interaction networks for
different transcripts. While DIGGER currently does not offer a
downstream analysis after network construction, the authors
expect to expand this webservice with pathway annotation of
PPIs and DDIs and a focus on investigating the biological impacts
of exon skipping events.
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DETECTING PROTEIN-PROTEIN
INTERACTION REWIRING EVENTS

The tools presented in the previous section enable retrieving PPIs
for specific organisms, tissues, and other conditions. Yet, one is
often interested in detecting changes between two conditions. For
example, Basha and co-workers recently analyzed differential
protein interactomes for 51 tissues from the GTEx consortium
(Basha et al., 2020). In their study, they used single expression
data sets and focused on establishing relationships between genes
and hereditary disorders and Gene Ontology (Carbon et al., 2021)
terms. The main idea behind this was to identify gene candidates
to explain tissue-selectivity of these hereditary disorders.

As described in the previous sections, the aforementioned
protein- and domain-level tools can be used as basis to study PPI
rewiring events. However, doing so often requires custom scripts
to integrate, analyze, and compare the data sets. To facilitate such
differential analyses, various tools have been developed in recent
years that enable scientists to detect PPI rewiring events between
samples belonging to two conditions. The features of the
webservices and tools presented here are summarized in Table 2.

SPECTRA
The webtool SPECTRA (https://alpha.dmi.unict.it/spectra/)
(Micale et al., 2015) provides access to tissue- and tumor-
specific PPI networks and performs comparison between such
networks for detection of differential interaction patterns
between conditions. The tool relies on human-only protein
interaction data from BioGRID (Oughtred et al., 2021), DIP
(Salwinski et al., 2004), HPRD (Prasad et al., 2009), IntAct
(Orchard et al., 2014), and MINT (Licata et al., 2012) to
construct PPI networks. It allows users to prune the PPI
network based on tissue and tumor expression profiles curated
from ArrayExpress (Athar et al., 2019), the Gene Expression
Omnibus (GEO) (Barrett et al., 2013), the Human Protein Atlas
(Uhlén et al., 2015) and The Cancer Genome Atlas (TCGA)
(Tomczak et al., 2015). Additionally, users can provide their own
expression data to generate specific PPI networks for their custom
defined contexts.

To identify the difference in the proteomes between multiple
conditions, SPECTRA utilizes GASOLINE, a greedy and
stochastic algorithm that searches for subnetworks with
conserved topology between the queried PPI networks and in
which the difference of expression values of aligned genes is
maximized. Apart from maximizing the distance in expression
levels between aligned networks, the adapted version of
GASOLINE incorporates differential expression represented
by log fold change into the bootstrapping phase. The
differential alignments consist of sets of subnetworks sharing
the same sequences and interacting patterns but differing in
interaction strengths and gene expression levels. Users can
either directly compare context-specific PPI networks
generated by SPECTRA or upload their own sets of networks
for comparison.

To illustrate how SPECTRA could assist detection and
visualization of key proteins in the transition across multiple
states, the authors showcase the differential alignment graph for

PPI networks built using the expression data for normal, well
differentiated, moderately differentiated, and poorly
differentiated breast cancer tissues (Micale et al., 2015). The
PPIs were taken only from BioGRID and IntAct, and each of
the four PPI networks contained 7,472 nodes and 29,765 edges.
The adapted GASOLINE algorithm returned 20 subnetworks,
among which the largest one contained four chemokine proteins
(CXCL10, CXCL9, CXCL11, CCL5), two chemokine receptors
(CXCR3, CCR1) and a signal transductor DPP4. The elevated
expressions of all chemokines were exhibited by increasing node
sizes, which coincided with the increasing cancer grades. A
similar alteration was also found in the second largest aligned
hub comprised of proteins in the human leukocyte antigen (HLA)
system. As the chemokine system was associated to cancer
metastasis and the HLA system was reported to be responsible
for immune regulation, the authors suggested that SPECTRA is a
suitable tool for discovering the interactomes and differential
events predisposing to tissue-specific disease.

DifferentialNet
DifferentialNet (Basha et al., 2018) is another webservice (https://
netbio.bgu.ac.il/diffnet) developed by the Yeter-Lotem lab and
enables users to retrieve human tissue-specific differential protein
interactions. Similar to TissueNet (Basha et al., 2017), the
experimentally validated physical PPIs for DifferentialNet are
taken from BioGRID (Oughtred et al., 2021), DIP (Salwinski et al.,
2004), IntAct (Orchard et al., 2014), and MINT (Licata et al.,
2012), while tissue expression profiles were gathered from GTEx
(Lonsdale et al., 2013) and the Human Protein Atlas (Uhlén
et al., 2015). To construct the differential interactome for each
tissue, each protein interaction is first assigned a tissue-specific
score derived from multiplying the expression levels of the two
interacting proteins, thereby generating a high score for highly
expressed interactions. Afterwards, the median score across
tissues is computed for each interaction. The tissue-specific
differential score of an interaction is then the difference
between the median score and the tissue-specific score. As a
result, up-regulated interactions in a given tissue receive a
positive differential score, down-regulated interactions a
negative differential score, and relatively unchanged
interactions a differential score close to zero.

Users can select a human tissue and query DifferentialNet with
up to five proteins at once. Following the concept of TissueNet,
DifferentialNet then displays the tissue-specific differential
interactions with the query protein(s) as an interactive graph.
The interface enables users to switch between tissues or between
displaying all interactions or only differential interactions, and to
adjust the filtering threshold applied to the interactions on the fly.
In addition, various tabs offer information about the detection
method and differential scores of selected interactions or the
Gene Ontology (Carbon et al., 2021) annotations and OMIM
disease annotations (Amberger et al., 2019) of selected proteins.
Furthermore, the complete differential interactomes can be
downloaded for each tissue and have been employed for
transcriptomic and network analysis studies on, for example,
the association of diabetes and Alzheimer’s disease (Santiago
et al., 2019), the identification of immune targets for coronary
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artery disease (Bon-Baret et al., 2021), and the prediction of
reliable regulatory modules of colorectal cancer (Nikmanesh
et al., 2020). As such, NetworkAnalyst 3.0 now includes
human tissue-specific PPI data from DifferentialNet (Zhou
et al., 2019).

PPICompare
As a package to be used down-stream of PPIXpress, PPICompare
(Will and Helms, 2017) is another standalone tool developed in
the Helms group that identifies significantly rewired interactions
between two sets of condition-specific PPI networks. Based on
information contained in the input networks, it can determine the
reason for each rewiring event and assembles a small set of causes
that can explain all such events. Figure 3 presents an overview of
the method that is further explained below.

Differential Protein-Protein Interaction Network
Construction
First, the PPICompare tool performs independent pairwise
comparisons across the two sets of condition-specific PPI
networks provided as input by the user (Figure 3, step 1). In
each such inter-group comparison, it is noted which interaction is
added or removed in the second PPI network, and the rewiring
probability is calculated as the Jaccard distance between the
interaction sets of the two compared PPI networks.
Subsequently, the general rewiring probability is computed as

the mean of the comparison-specific rewiring probabilities, and
the number of additions (positive) and removals (negative) is
summed for each interaction (Figure 3, step 2). Interactions
without any changes or with a null-sum, indicating a balance of
additions and removals, are not included in the differential
network.

Given the overall rewiring probability, the statistical
significance of each potential rewiring event is determined
with a one-tailed binomial test followed by false discovery rate
(FDR) correction for multiple hypothesis testing with the
Benjamini-Hochberg method at a user-defined threshold
(Figure 3, step 3). A differential PPI network consisting of
significantly rewired interactions is provided as output. If the
input PPI networks contain information about the respective
dominant isoform of each protein, PPICompare can additionally
report for each rewiring event if it is caused by differential
expression, dominant isoform switching, or possibly a
combination of both (Figure 3, step 4).

On that basis, a bipartite graph of significantly rewired
interactions and individual causal reasons is constructed
(Figure 3, step 5). For each such reason, a score is
computed from the number of significant rewiring events
affected by it and the number of pairwise comparisons in
which it took place. Determining a small set of causes that can
explain all rewired interactions is then a weighted set-cover
problem that is solved with the application of a greedy

FIGURE 3 | Given two sets of condition-specific PPI networks, PPICompare counts the added and deleted interactions for each pairwise comparison and the
comparison-specific rewiring probability (1). Then, the overall differential PPI network is constructed by summarizing the individual comparisons (2) and identifying the
statistically significant rewiring events (3). Finally, the causal reason of each rewired interaction is identified (4) and a small set of causes that can explain all of them is
determined (5).
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algorithm and the resulting collection of reasons is reported
by the tool.

Application: Interactome Rewiring in Hematopoiesis
To evaluate PPICompare, a case study was performed on
hematopoietic interactome rewiring (Will and Helms, 2017).
First, PPIXpress was applied to 59 samples of 11
hematopoietic cell types from the BLUEPRINT epigenome
project (Chen et al., 2014) to generate the cell type-specific
PPI networks. The differential interactomes of adjacent cell
types in the classical blood development progression model
were then constructed with PPICompare and further analyzed.
When comparing results on undersampled data sets, it turned out
that a minimum number of three samples per group is required to
yield robust results. Then, the statistical model employed by
PPICompare is able extract most differentially altered
interactions of possible relevance.

In most rewired interactions, differential gene expression of a
single interaction partner was identified by PPICompare as the
cause. A comparison with rewiring instances in which both
interaction partners were deregulated showed that concurrent
deregulation occurred more often in similar processes and
known protein complexes, and thus possible functional
modules more generally. A closer examination further
indicated that different causes can be responsible for the
same rewiring events. Underlining the importance of
considering AS events in differential PPI analyses, alternative
splicing was the identified reason for many differentially altered
interactions relevant to the hematopoietic developmental
transitions. Alternatively spliced proteins that were part of
the set of most explanatory causes were associated with
transcriptional control. Furthermore, proteins associated with
hematopoiesis and targets of hematopoietic transcription
factors were significantly overrepresented amongst the set of
proteins participating in rewired interactions.

USE-CASE COMPARISON

To compare the tools from a user’s standpoint, we inspected the
human tumor necrosis factor receptor protein 6 (TNR6) encoded
by the FAS gene (UniProt accession: P25445) with the software
tools and webservices reviewed here. Due to the large number of
such tools, not all results can be discussed in detail, and we will
mainly focus on the protein-level webservice HIPPIE, the
domain-based webservices and tools DIIP, DIGGER and
PPIXpress, and the differential network analysis tool
PPICompare. An overview of all protein-level resources can be
found in Table 1, while Table 2 summarizes features of the tools
DIIP, DIGGER, PPIXpress, SPECTRA, DifferentialNet, and
PPICompare. Figure 1 illustrates the graphical output
generated by selected tools when using the human protein
TNR6 as input. We compare the tools with respect to user
experience and significance of results.

Differences already emerge in the input scenarios. While most
protein-level resources accept query proteins, or like HIPPIE,
DIIP and DIGGER additionally accept a PPI network as input,

PPIXpress strictly requires a PPI network with expression data to
expose condition-specific subnetworks with confidence. The
integration of expression data for interaction network
construction is also possible with MyProteinNet, DIGGER,
and SPECTRA, although this is optional. PPICompare requires
two sets of context-specific PPI and DDI networks generated by
PPIXpress and is thus optimally used downstream of PPIXpress
for reliable discovery of protein rewiring events caused by
differential expression. For that reason, we illustrate the use of
PPIXpress for the TNR6 interaction network specific for neuronal
stem cell and compare the output network to a H1 stem cell-
specific network using PPICompare.

The chosen tools produced results that vary in terms of
information and presentation. For HIPPIE, DIGGER and
PPIXpress, the visualization of network topology is available at
different levels of analysis. HIPPIE, as a protein-based tool, shows
a network of genes interacting with FAS where edge weights
indicate interaction strength (Figure 1A). The domain-based tool
DIGGER additionally shows associated domains and DDIs in the
network of interacting proteins, where the edges indicate whether
an interaction is missing or if residue-level evidence is available
(Figure 1C). With PPIXpress, one can use Cytoscape to visualize
the condition-specific weighted PPI or DDI network (Figure 1D).
Results produced by PPICompare, including information for
gained and lost protein interactions or the statistical
significance of the rewiring event, can also be illustrated with
Cytoscape (Figure 1E). As a tool that does not generate graphical
visualizations for the output networks, DIIP results are
summarized as look-up tables where the interactions between
each isoform of the queried protein and their interacting partners
are listed in long format (Figure 1B). Similarly, IID generates a
table with interactions involving the query proteins and
optionally a table with significantly enriched annotations, a
feature that HIPPIE provides as well. While DIIP classifies an
interaction only as lost or retained, all other tools provide users
with a metric to assess interaction confidence (HIPPIE,
SPECTRA, DifferentialNet, and PPIXpress) or domain-based
reliability of the found PPIs (DIGGER and PPICompare).

As a consequence of differences in the underlying data sources,
methodologies and focuses, the results for TNR6 differ in terms of
the number of found interactions and the type of information.
For example, HIPPIE found 118 PPIs involving TNR6, while IID
found 367 including predicted interactions and 122 when only
considering experimentally validated ones. Both computed
significant enrichment of proteins associated with cancer
among the interaction partners. In contrast, DIIP found two
experimentally observed interactions with underlying DDIs for
TNR6, namely with the tumor necrosis factor ligand 6 (TNFL6,
UniProt accession: P48023) and the FAS-associated death
domain protein (FADD, UniProt accession: Q13158). It
predicted that for all but one TNR6 isoform the interaction
with FADD would be lost, whereas most isoforms can enter
domain-based interactions with TNFL6. DIGGER additionally
offers isoform- and exon-level visualization of the interacting
domains. It is thus possible to visually inspect how the domain
presence leads to the loss or retention of the protein interaction in
TNR6 isoforms predicted by DIIP. A similar analysis can be
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performed based on the results produced by PPIXpress but
requires users to manually visualize and overlay the generated
PPI and DDI networks. While comparing sample-specific PPI
and DDI networks generated by PPIXpress from H1 stem cells to
those from neuronal stem cells, PPICompare detected two
statistically significant rewiring events (p < 0.01) involving
TNR6. In neuronal stem cells, TNR6 gains interactions with
FAIM2 (UniProt accession: Q9BWQ8) and TCAP (UniProt
accession: O15273). FAIM2 is an important regulatory
molecule for apoptotic control during neurological
development and pathogenesis (Reich et al., 2011), while
TCAP was associated to dendrite and axon formation during
neurogenesis (Woelfle et al., 2016).

In summary, the results of the reviewed tools are diverse and
suggest that users should weigh the advantages and disadvantages
of each method carefully for the purpose of their specific needs.
Depending on the use-case, it may be beneficial to cross-check
and compare the results from multiple tools to obtain a richer
picture.

OUTLOOK

In this final section, we discuss some technical points of the
presented methods and where we see a potential for future
improvements. In addition, we point out future directions and
areas of applications of context-specific PPI networks.

Use of Proteomic Data Instead of
Transcriptomic Data
First, one may wonder why context-specific PPI networks are
typically constructed based on transcriptomic data rather than
on proteomic data from mass spectrometry. Experimentally
measured mRNA and protein concentrations typically show
an average Pearson correlation of about 0.6 in mammalian
tissues (Buccitelli and Selbach, 2020) and the true correlation
is expected to be higher than this. However, there are of course
clear outliers that may occur if mRNA and protein half-lives
differ substantially. The reason for working with transcriptomic
data is simply the scarcity of available proteomic data, as
publications often only report at most a few mass
spectrometry datasets.

The overall scarcity of proteomic data and frequent lack of
replicate data sets is particularly problematic for approaches that
aim to determine PPI rewiring events in a statistically significant
manner (Will and Helms, 2017). A first step in this direction was
made by Liu et al. who used proteome data from mass
spectrometry for 30 tissues to generate tissue-specific PPI
networks based on experimental data for protein
concentrations (Liu et al., 2014). The authors realized the
problematic nature of single data sets and tried to reduce this
effect by only considering the overlap of two experimental
studies. This gave 627 tissue specific proteins and 1,093
housekeeping proteins, which is likely a low estimate of the
actual numbers. A remarkable step forward was made recently
in a proteomic atlas of human skin that reported 3–5 mass

spectrometry data sets each for CD1A+dendritic cells, CD14+

dendritic cells, macrophages, mast cells, fibroblast, keratinocytes,
endothelial cells, melanocytes, and skin layers (Dyring-Andersen
et al., 2020). An increased prevalence of similar datasets would
likely lead to an increased usage of proteomic data in PPI rewiring
studies and stimulate the adaptation and development of existing
and new PPI network software tools and webservices.

While transcriptomic data is much more abundantly available
than proteomic data, there are nevertheless research areas where
typically only a few replicates are measured. Pooling
transcriptomic data from different studies could enable the
study of PPI network rewiring in these cases. However, it
remains to be carefully examined how robust PPI networks
are with respect to the technical variability introduced by
combining multiple sources.

Technical Aspects of Working With
Transcriptomic Data
Context-specific PPI network approaches use gene expression
levels to approximate which PPIs are present in the given
condition. A technical question is then what concentration
level should be used to consider a gene as “sufficiently
expressed” so that the respective protein is available to form
interactions. The most straightforward approach is to simply take
all genes covered by at least a single read. Another option is to
select and justify applying a minimum threshold. A suitable
threshold could, for example, be derived from independent
proteome abundance data (Will and Helms, 2017). However,
the underlying proteomics experiments use thresholds as well,
and it is not clear if relying on those leads to an improvement.

Single Cell Transcriptomic Datasets
Recently, there has been a considerable shift of attention in the
transcriptomic field toward single-cell sequencing. So far, we
detected only a single study where such data was used to infer cell-
type specific protein interactomes. Namely, Kellis and co-workers
recently extended the expression-level filtering concept to single
cell RNAseq data and attempted to construct PPI networks for
single cells (Mohammadi et al., 2019). Due to the noisy nature of
scRNAseq data, they applied regression-based imputation to infer
missing values and to balance gene expression levels. Given the
increased availability of such data sets, there is certainly a
considerable potential for such applications in future.

Extending Domain-Level Approaches
Domain- and isoform-level approaches such as DomainGraph,
DIIP, DIGGER, PPIXpress, and PPICompare use Pfam domains
as smallest units for resolving alternative splicing effects. Under
this paradigm, about half of all human proteins can be assigned to
one or more Pfam domains. However, this approach does not
allow resolving AS events that affect smaller splice insertions or
deletions. Hence, it appears worthwhile to extend the description
of domains by also including shorter amino acid sequences such
as, for example, short linear motifs. While these motifs often
occur in structurally disordered regions, they are contiguous
amino acid modules that nevertheless show evolutionary
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conservation (Kumar et al., 2020) and can be specified and
identified based on regular expressions (Davey et al., 2007;
Diella et al., 2008; Van Roey et al., 2014). They have been
shown to be relevant for interaction rewiring by splicing
(Yang et al., 2016) and may thus extend the applicability of
domain-level approaches to model interactions mediated by such
regions that often play crucial roles in cellular control
mechanisms (Buljan et al., 2012; Uversky, 2018). There already
exist established resources on short motifs such as the ELM
(eukaryotic linear motif) database (Kumar et al., 2020) as well
as more general approaches working on short peptides (Chen
et al., 2015) that could prove valuable for future inclusion.

Data Integration
Apart from modelling the rewiring of interactions due to changes
in the transcriptome, it is also of considerable interest to study
how protein mutations affect the edge-specific adaption of the
interactome (Zhong et al., 2009; Sahni et al., 2013; Sahni et al.,
2015). Whereas established tools such as SIFT (Kumar et al.,
2009) and PolyPhen2 (Adzhubei et al., 2010) estimate whether a
mutation affects the general function of a protein, recent tools
that rely on structural data such as dSysMap (Mosca et al., 2015)
and StructMAn (Gress et al., 2016) attempt to infer the effect of
mutations on specific protein interactions. Furthermore, the
IMEx Consortium recently released a data set of roughly
28,000 mutations and their effects on physical protein
interactions that was curated from experimental data (Del-
Toro et al., 2019).

It further appears worthwhile to connect the rewiring analysis
of PPI networks to alterations in other data types. For example,
one could inspect formation of protein complexes involving
chromatin reader or modifier proteins and relate this to
respective epigenetic data on histone marks. Additionally, one
could correlate the presence or absence of specific protein
isoforms to the activity of individual splicing factors that are
predicted to bind at the respective exon-intron boundaries.
Splicing factor activity can either by modified by deregulated
expression or by the presence or absence of epigenetic marks at
exon/intron boundaries.

Finally, one may also connect PPI networks to gene-regulatory
networks and connect, for example, the combinatorial complexity
of transcription factor complexes to the presence or absence of
their transcription factor binding motifs in the promoters of their
target genes. This was done for transcription factor-containing
protein complexes of yeast that were then related to their activity
in regulating target genes that periodically cycle during the cell-
cycle of yeast (Will and Helms, 2014).

CONCLUSION

In summary, there are now several sophisticated tools available
to construct context-specific protein-protein interaction
networks. These include both webservices as well as stand-
alone software packages, some of which support domain-level
and isoform-level analyses. Differential analysis of context-
specific PPI networks is currently only possible with the tools
SPECTRA, DifferentialNet and PPICompare. SPECTRA and
DifferentialNet are available as easily accessible web-based
resources for human PPIs. On the other hand, the stand-
alone tool PPICompare more generally enables identifying
statistically significant rewiring events between two groups
of samples. Lastly, integration with other data types appears
worthwhile.
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