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Abstract: The major aim of this study was to check whether a cyclic ozonation process will affect
the preservation of the texture of strawberries stored at room temperature. Strawberry fruit was
stored for 3 days at room temperature and ozonated with gaseous ozone at a concentration of 10 and
100 ppm for 30 min, every 12 h of storage. Research showed that the ozonation process inhibited the
texture deterioration of the fruit during storage. The positive effect of ozone was directly related to
the inhibition of the activity of enzymes involved in the degradation of the fruit cell walls, as well
as indirectly from the improved energy metabolism of the fruit. The higher level of energy charge
corresponded to the higher resistance of ozonated fruit to abiotic stress, leading to the maintenance
of the integrity of cell membranes and, consequently, to maintaining good hardness of the fruit
throughout the storage period.
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1. Introduction

Over the past few years, changes in the lifestyle of the population, as well as the greater
awareness of the importance of healthy foods in the diet, have led to the development of
the market for immediately ready-to-eat food, especially minimally processed fruit and
vegetables, free from synthetic additives [1]. This group includes strawberries (Fragaria
× ananassa Duch.), which are a rich source of a wide range of bioactive compounds, such
as vitamins, flavonoids, phenolic acids and minerals [2]. All of these compounds exert
synergistic effects on human health and have a putative role in the prevention of many
chronic and degenerative diseases associated with oxidative damage, such as cancer and
heart disease [3].

Dynamic changes in the chemical composition and structure of the tissue of fruit
during maturation, aging and processing are related to the content of polyphenols and
vitamin C as well as to characteristics such as size, firmness, colour, taste and smell [4].
Although strawberries are characterised by a high metabolic rate, the main cause of fruit
loss is the development of post-harvest diseases due to latent infections that occur in the
field during the growing season and infections due to harvest and handling damage, which
contribute to severe economic losses [5].

The largely decisive factor for the course of the storage process is the endemic mi-
croflora present on the plant material. Changes in this microflora can potentially affect its
course. However, there are few factors that affect the microflora but do not deteriorate the
quality of the plant material. In recent years, there has been an increase in the amount of
research aimed at the use of safe and effective methods allowing the extension of storage
time, while limiting the negative changes taking place within the plant material [1]. Some
alternative antimicrobials include the action of heat, UV-C radiation, pulsing light, chlorine
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dioxide, ultrasound, natural antimicrobials and the use of edible coatings [6–8]. Ozonation
can also be a technique used for this purpose [9]. Ozone is a substance with a strong
bactericidal and fungicidal effect, which is widely used in the food industry to extend the
shelf life of plant materials, including strawberry fruit [10–15]. Many studies conducted so
far have shown that the use of ozone in the storage of plant materials reduces the growth of
microorganisms that cause fruit spoilage and rotting, and it oxidises the ethylene released.
Moreover, it has been proven that “light” ozonation conditions contribute to the inhibition
of the depletion of biologically active substances or even an increase in their accumulation
by elicitation [9,16,17].

Strawberries belong to the group of perishable fruit that are very susceptible to me-
chanical damage occurring during harvest and at various stages of technological processes
or storage; therefore, texture is one of the most important quality attributes in their con-
sumer assessment [18]. Strawberries are characterised by high heterogeneity and anisotropy
of mechanical properties, which vary depending on the conditions and time of storage. The
study of mechanical properties allows the determination of the quality of the plant material,
its firmness and hardness, which is used to assess the quality of fruit after harvest, to predict
the internal mechanical reaction (e.g., damage evolution) during various technological
processes and storage, and to develop new solutions used in the technological process [19].
The research to date on the mechanics of the texture of strawberries can be divided into two
aspects: that related to the measurements taken immediately after harvest and its impact
on fruit damage, and studies monitoring the change in texture during fruit storage. Early
identification of factors influencing plant material damage enables timely decisions on the
production flow in order to significantly reduce economic losses [20].

In an aqueous environment, such as fresh plant materials, ozone breaks down into
free radicals, mainly reactive oxygen species, an excess of which is toxic to plant cells [9,21].
The studies conducted so far show that one of the reasons for the softening of fruit in
storage is both changes in the components of the cell walls in plant materials, as well as
the occurrence of oxidative stress [22]. However, despite the increasing number of studies
on the use of ozone in extending the shelf life of berries, there are no research data that
fully explain the mechanism of action of gaseous ozone in relation to the texture of the
fruit [13–15,23,24].

The major aim of this study was to check whether a cyclic ozonation process will
affect the preservation of the texture of strawberries stored at room temperature. The
scope of research work included: determining the texture of fruit ozonated with gas at a
concentration of 10 and 100 ppm, examining changes in the activity of enzymes involved
in fruit softening, and explaining the role of energy metabolism in shaping the texture of
ozonated fruit.

2. Materials and Methods
2.1. Ozonation Process and Storage Experiment

The research material consisted of strawberry fruit (Fragaria × ananassa Duch.), Elkat
variety, purchased directly from the producer on the day of harvest (June 2021). The
fruit was fully coloured, with no signs of deterioration or mechanical damage. Before the
ozonation process, strawberries (6 kg) of a uniform size were divided into three equal parts.
The first part of the fruit was a control sample, while the remaining fruit was to be subjected
to ozonation.

In this study, the same technology of cyclic ozonation and storage procedure were
used as in the work of Piechowiak et al. [25] Briefly, the fruit was spread evenly on
a perforated pallet which was then placed in a plastic container with a lid measuring
0.65 × 0.35 × 0.15 m (L × W × H). The fruit was ozonated with a gas concentration of
10 ppm (dose 1) and 100 ppm (dose 2) for 30 min, every 12 h of storage using a Korona
L5 ozone generator (Piotrków Trybunalski, Poland) and the UV-106 M ozone analyser (2B
Technologies, Boulder, CO, USA). At the same time, a control sample was set up, which
consisted of fruit not subjected to the ozonation process. Both the ozonated samples and the
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control sample were stored at room temperature (20–22 ◦C, 65–70% of relative humidity) for
3 days. Samples for analysis were taken after 1, 2 and 3 days of storage, and then subjected
to texture measurement and biochemical analyses. The experiment was performed in three
replications.

2.2. Texture Analysis

The texture profile analysis (TPA) of strawberries was performed using Mecmesin
MultiTest 2.5-i texture analyser (Slinfold, West Sussex, UK) following the appropriate meth-
ods on food products (compression test). The TPA criteria included hardness, cohesiveness,
springiness, adhesion and gumminess [26]. The analysis was performed on six berries from
each replicate of the experiment. The results were presented as mean value ± standard
error (SE).

2.3. Determination of the Activity of Enzymes Related to Fruit Softening

The activity of β-galactosidase (β-Gal) and β-hexosaminidase (β-Hex) in fruit was
determined by measuring the released p-nitrophenol from the appropriate substrate for
β-Gal (4-nitrophenyl β-D-galactopyranoside) and β-Hex (4-nitrophenyl N-acetyl-beta-D-
glucosaminide) [27,28]. One unit of β-Gal and β-Hex was the amount of enzyme causing
an 0.01 increase in the absorbance at 400 nm for 1 min [U]. The activity of polygalacturonase
(PG) was assayed by measuring the amount of the galacturonic acid produced as a results of
pectin hydrolysis catalysed by PG [28]. One unit of PG activity was the amount of enzyme
which catalyses the formation of 1 mg of galacturonic acid within 1 min [U].

2.4. Mitochondria Energy Metabolism Analysis
2.4.1. Energy Charge Analysis

The levels of adenosine triphosphate (ATP) adenosine diphosphate (ADP) and adeno-
sine monophosphate (AMP) were extracted from fruit tissue with perchloric acid according
to the protocol presented by Zhou et al. [29] ATP, ADP and AMP concentration was de-
termined spectophotometrically using the enzymatic method described by Tornheim and
Schultz [30,31]. The contents of these compounds were expressed as mg per 1 kg of fresh
mass of the fruit. The obtained results were used to determine the energy charge of the
mitochondria, in accordance with the following equation:

EC = [ATP + 0.5 ADP]/[ATP + ADP + AMP].

2.4.2. Oxidative Phosphorylation Enzymes Activity Assay

Mitochondria from strawberry fruit was isolated using differential centrifugation
according to protocol described by Zhou et al. [29] The activities of the succinate dehy-
drogenase (SDH), cytochrome C oxidase (CCO) and H+-ATPase in mitochondria were
analysed as described by Piechowiak et al. [32] One unit of SDH and CCO activity was
defined as the amount of protein causing a 0.01 decrease in the absorbance, respectively, at
600 and 550 nm within 1 minute [U]. H+-ATPase activity was calculated as the amount of
liberated phosphate after ATP hydrolysis within one minute [U].

2.4.3. Reactive Oxygen Species Generation Analysis

The generation of superoxide radical anion by mitochondria (mt-O2
−) was assayed

using the spectrophotometric method which was based on the reduction in nitro blue tetra-
zolium by mt-O2

− leading to diformazan production [33]. The ability of mitochondria to hy-
drogen peroxide (mt-H2O2) production was analysed by means of 2′,7′-dichlorofluorescin
diacetate as a fluorescent probe using the protocol presented by Piechowiak and Balawe-
jder [33]. The results were expressed as an increase in the absorbance or fluorescence of
the reaction mixture within 1 min, respectively, for mt-O2

− [∆A min−1] and mt-H2O2 [∆F
min−1] production.
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2.4.4. Antioxidant Enzymes Activity

The activity of mitochondrial superoxide dismutase (mt-SOD) was analysed using
the colorimetric method, which based on the measurement of the level of inhibition of
epinephrine oxidation by mt-SOD. Additionally, 1 unit of mt-SOD activity is the amount of
protein required to inhibit the initial rate of epinephrine oxidation by 50% within 1 min
[U] [33]. The activity of mitochondrial glutathione peroxidase (mt-GPx) was measured
according to the previously described and modified method [28]. One unit of enzyme
activity was defined as the amount of the protein, causing the consumption of 1 µmol of
glutathione (GSH) within 1 min [U].

2.5. Determination of Malondialdehyde Level in Fruit and Cell Membrane Electrolyte Leakage

The level of malondialdehyde (MDA) in the fruit was measured by a method based on
the formation of MDA adduct with thiobarbituric acid (TBA) [34]. The MDA content was
calculated based on the molar absorption coefficient for MDA (ε532nm = 155 mM−1 cm−1).

The leakage of ions from the fruit samples was determined by measuring the conduc-
tivity of the solutions after immersing the fruit slices in distilled water and the slices heated
in distilled water according to the protocol presented by Li-Qin et al. [35]

2.6. Statistical Analysis

The significance of differences between fruit samples was estimated using one-way
ANOVA and Tukey’s test (α = 0.05, n = 9) in GraphPad.

3. Results
3.1. Changes in Fruit Texture during Storage at Room Temperature

The relationship between the hardness (N) of the strawberry fruit and the applied
ozone gas concentration during storage is presented in Figure 1A. On the first day of
fruit storage, no significant differences were observed between those subjected to ozone
concentrations and the control sample. With the passage of storage time, higher values
of the analysed parameter were noted for ozonated fruit in relation to the control. On the
second day of storage, significant differences were found between the control sample and
the hardness of the fruit treated with ozone gas at a concentration of 10 ppm. In the case of
the concentration of 100 ppm, no such relationship was found. On the third day of storage,
the fruit with the concentration of 10 ppm showed no differences in relation to the first date
of measurement. In the case of the concentration of 100 ppm, no significant difference was
found in relation to the earlier date of measurement.

A similar relationship was observed in the case of springiness (mm) (Figure 1B). Over
the duration of the experiment, the value of the analysed parameter for the control sample
decreased, in contrast to the values obtained for the ozonated fruit. On the first day of
storage, there were no significant differences between the values obtained for the ozonated
fruit and the control sample, and on the second and third dates of measurement the fruit
treated with ozone gas was characterised by higher elasticity values compared to the
control, regardless of the ozone dose applied.

Figure 1C shows the relationship between the adhesiveness (N mm−1) of the tested
fruit treated with ozone gas and its storage time. Fruit treated with a dose of 10 ppm of
ozone gas was characterised by significantly higher values of the analysed parameter in
relation to other variants of the experiment, on both the first and the second days of storage.
On the third day of storage, an increase in the adhesiveness of the analysed samples was
noted in each of the variants of the experiment, and the results obtained for the fruit that
was treated with ozone gas were significantly higher compared to the control sample.

In the case of gumminess (N) (Figure 1D), on the first day of storage, no significant
differences were found between the control sample and the fruit treated with ozonation.
On the second day of storage, the highest value of the analysed parameter was observed
for fruit with ozone concentration 10 ppm, but this value did not differ significantly from
the control. On the third day, the fruit on which the ozonation process was carried out was
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characterised by significantly higher values of the analysed parameter as compared to the
control, regardless of the ozone dose applied.

Figure 1E shows the relationship between cohesiveness and the storage time of fruit
exposed to ozone gas in various doses. On the first date of measurement, there was no
effect of using ozone gas on the value of the analysed parameter. On the second date, the
control sample had the highest value, and on the third date, there was no relationship
between the use of ozone gas and cohesiveness.
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Figure 1. Effect of ozonation process on the texture profile of strawberry fruit during storage at room
temperature. (A) fruit hardness; (B) fruit springiness; (C) fruit adhesiveness; (D) fruit gumminess;
(E) fruit cohesiveness. Mean values with standard error (error bars), with the same lower case are not
statistically significant according to the t-Tukey test (α = 0.05).

3.2. Changes in the Activity of β-Gal, β-Hex and PG in Strawberries during Storage

The activity of enzymes directly related to texture changes in the fruit during storage
is shown in Figure 2. In the course of the research, we found that the ozonation process as
well as the storage time clearly influenced the activities of all enzymes analysed.

The activity of polygalacturonase after 1 day of storage decreased by 34% in fruit
ozonated with gas at 10 ppm, and by 53% in fruit ozonated with gas at 100 ppm. In the
control sample, we did not find any significant changes in the activity of this enzyme after
1 day of storage. After the second day of the experiment, the activity of PG in the control
sample had not changed, while in the ozonated fruit it had increased sharply. After 3 days
of storage, we found an increase in PG activity in all fruit samples.

The activity of β-galactosidase in the control sample after 1 day of storage increased
sharply by 193% compared to the initial value. After days 2 and 3, the activity of β-Gal
in the non-ozonated fruit had not changed significantly. In fruit ozonated with a gas
concentration of 10 ppm, we found an increase in β-Gal activity of 122%, and in fruit
treated with 100 ppm, no significant changes were found after 1 d of storage. After 2 and 3
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days, the activity of β-Gal in fruit exposed to ozone at a concentration of 10 ppm had not
changed significantly, while in fruit ozonated with 100 ppm, it had slightly increased, and
on the last day it decreased sharply (to 6 U).
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Figure 2. Effect of ozonation process on the activity of polygalacturonase (A), β-galactosidase (B) and
β-hexosaminidase (C) in strawberry fruit during storage at room temperature. Mean values with
standard deviations (error bars), with the same lower case are not statistically significant according to
the t-Tukey test (α = 0.05).

The activity of β-hexosaminidase increased sharply after 1 d of storage (by 127%) in
non-ozonated fruit and remained at this level for another day. After 3 days, the β-Hex
activity had decreased significantly to 260 U. In the case of ozonated fruit, a significant
change was noted only in fruit ozonated with 100 ppm gas, after 1 day of storage (an
increase of 19%). On the remaining dates of the experiment, the activity of β-Hex did not
change significantly in ozonated fruit.

3.3. The Effect of Ozone Treatment on the Mitochondria Energy Metabolism in Strawberry Fruit

The levels of ATP, ADP, AMP, the energy charge of the fruit and the activity of enzymes
involved in oxidative phosphorylation are shown in Figure 3.

The ATP content and the energy charge of the mitochondria in the control fruit
gradually decreased with the extension of the storage period. On the last day of storage, we
noticed a decrease in the ATP content of 73%, and in the energy charge of 42% compared
to the initial value. The content of ADP in non-ozonated fruit decreased after 1 day of
storage and had not changed at subsequent analysis dates, while the level of AMP showed
a gradual increase with the extension of the storage time. In the case of ozonated fruit,
with gas concentrations of both 10 and 100 ppm, we found a significantly lower rate of
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ATP decrease, which corresponded to the higher value of the energy charge of ozonated
fruit after 1 and 2 days of storage. The ADP content in ozonated fruit did not change
significantly during storage. On the other hand, the content of AMP in ozonated fruit was
significantly lower than in the control fruit on all the dates of the analyses.
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Figure 3. Influence of ozone treatment on the level of ATP (A), ADP (B), AMP (C), energy charge
(D) and the activity of succinate dehydrogenase (E), cytochrome C oxidase (F) and H+ATPase (G) in
strawberry fruit during storage at room temperature. Mean values with standard deviations (error
bars), with the same lower case are not statistically significant according to the t-Tukey test (α = 0.05).

The activity of succinate dehydrogenase in the control fruit did not change significantly
during storage, while in the ozonated fruit the activity of this enzyme increased sharply
after 1 day and remained constant for the following day of the experiment. The activity
of cytochrome oxidase in the control fruit slightly increased after 1 day of storage (39%)
and remained constant over the following days of storage. In ozonated fruit, we noticed an
initial, clear increase in CCO activity of 86 and 94% for 10 and 100 ppm, respectively, and a
gradual decrease after 3 days of storage.
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The activity of H+ATPase in the control fruit showed a noticeable decreasing tendency
with the passage of the storage period. On the other hand, in the ozonated fruit, the rate of
decline in the activity of this enzyme was clearly much lower. Both in the case of H+ATPase,
as well as CCO and SDH, we found no significant influence of ozone concentration on the
activity of this enzyme.

3.4. Changes in Mitochondrial Oxidative Stress Markers in Strawberry Fruit during Storage

The capacity of fruit mitochondria to produce reactive oxygen species (ROS) and the
activity of selected mitochondrial antioxidant enzymes are shown in Figure 4.
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Figure 4. Effect of ozone treatment on the generation of mitochondrial superoxide radical anion
(A) and hydrogen peroxide (B) as well as the activity of mitochondrial superoxide dismutase (C) and
glutathione peroxidase (D) in fruit during storage. Mean values with standard deviations (error bars),
with the same lower case are not statistically significant according to the t-Tukey test (α = 0.05).

In the course of the conducted research, we noticed a clear increase in the capacity of
mitochondria to produce superoxide anion radical and hydrogen peroxide in non-ozonated
fruit along with the extension of the storage period. On the final day of storage, the increase
in the level of superoxide radical anion was 35%, and hydrogen peroxide 415%. Surprisingly,
in the ozonated fruit, we found a lower mitochondrial ROS production capacity than in the
control fruit. However, after 2 and 3 days of storage, the ROS level was higher in the fruit
ozonated with 100 ppm gas than with 10 ppm gas.

The activity of superoxide dismutase in the fruit constituting the control sample did
not change until the second day of storage. After this time, it slightly increased. In the case
of fruit ozonated with gas at a concentration of 10 ppm, the SOD activity increased by 16%
compared to the initial value and did not change significantly over the following days. On
the other hand, the activity of mt-SOD in fruit ozonated with 100 ppm increased sharply
after 1 day of storage by 101% and then it decreased slightly. Glutathione peroxidase
showed an analogous tendency in ozonated fruit. In the control fruit, GPx activity did not
change until the second day of storage, and after that time it significantly decreased.

3.5. The Level of MDA and Electrolyte Leakage in Ozonated Strawberry Fruit

The content of malondialdehyde in the control sample increased with the extension
of the storage period. After 3 days of storage, we noted an increase in lipid peroxidation
products of 83%. In the case of the fruit ozonated with 10 ppm, we found no changes in the
MDA content until after 1 day. After this time, the MDA concentration increased slightly
and fell again to a value comparable to the initial value. In the sample ozonated at 100 ppm,
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we found a significant decrease in MDA after 1 day of storage and, over the remaining
storage periods, a slight increase (Figure 5A).

Antioxidants 2022, 11, x FOR PEER REVIEW 10 of 15 
 

 
Figure 5. Effect of ozonation process on the level of malondialdehyde (A) and electrolyte leakage 
(B) in fruit during storage. Mean values with standard deviations (error bars), with the same lower 
case are not statistically significant according to the t‐Tukey test (α = 0.05). 

4. Discussion 
The firmness of berries, apart from the organoleptic characteristics and biological 

value, is one of the main attributes determining the suitability of the fruit for consump‐
tion, and it can also be an initial marker illustrating microbiological and biochemical 
changes occurring in the fruit during storage [36]. Fruit that is too soft is characterised by 
high susceptibility to mechanical damage, which contributes to an increased multiplica‐
tion of microorganisms that cause fruit spoilage and rotting, thus significantly shortening 
the period of safe storage. Moreover, fruit that is too soft is negatively perceived by 
consumers and discourages purchase and consumption [26,37]. 

The texture of fruit is derived from their turgor pressure, the composition of the in‐
dividual plant cell walls, and the middle lamina that holds the individual cells together 
[38]. The skin of the strawberry fruit is responsible for a significant part of the firmness of 
the fruit, which determines the values of the strength parameters, while the role of the 
subcutaneous and parenchymal tissue is small, but not insignificant [3]. For most plant 
materials, the skin (epidermal cells plus epidermis) is a stiffer structure than the internal 
tissues. On the contrary, in the case of strawberry fruit, which is characterised by a 
weaker skin, the mechanical role of the sub‐epidermal cells is also important. Strawberry 
fruit is not an isotropic material, and its structure varies depending on the type of tissue 
(epidermis, subcutaneous tissue, cortical cells, vascular bundles and core). The 
force‐displacement curve at small deformations is determined not only by the mechanical 
properties of the skin, but also of other tissues. At the cellular and tissue level, there are 
three main structural factors that contribute to the mechanical properties of plant mate‐
rials. They are: the turgor pressure in individual cells (i.e., the force exerted on the cell 
membrane by the intracellular fluid), the stiffness of the cell wall, and the cell–cell adhe‐
sion, determined by the integrity of the middle lamina and plasmodesmata [36]. Our re‐
search has shown that the process of cyclic ozonation of strawberry fruit with gas at a 
concentration of both 10 and 100 ppm contributes to the improvement of texture param‐

Figure 5. Effect of ozonation process on the level of malondialdehyde (A) and electrolyte leakage
(B) in fruit during storage. Mean values with standard deviations (error bars), with the same lower
case are not statistically significant according to the t-Tukey test (α = 0.05).

The level of ion leakage from the fruit tissue is shown in Figure 5B. In the case of the
control sample, we noticed a close relationship between storage time and ion leakage. After
3 days of storage, the ion leakage increased by 3255% compared to the initial value. We
noticed a clear effect of ozone only after the second day of storage. At that time, ozonated
fruit was characterised by lower ion leakage than the control fruit. For example, after the
third day of storage, the leakage of ions in fruit ozonated with 10 ppm gas was lower by
71.5% compared to the non-ozonised sample, and in the case of 100 ppm it was lower
by 51.8%.

4. Discussion

The firmness of berries, apart from the organoleptic characteristics and biological
value, is one of the main attributes determining the suitability of the fruit for consumption,
and it can also be an initial marker illustrating microbiological and biochemical changes
occurring in the fruit during storage [36]. Fruit that is too soft is characterised by high
susceptibility to mechanical damage, which contributes to an increased multiplication of
microorganisms that cause fruit spoilage and rotting, thus significantly shortening the
period of safe storage. Moreover, fruit that is too soft is negatively perceived by consumers
and discourages purchase and consumption [26,37].

The texture of fruit is derived from their turgor pressure, the composition of the indi-
vidual plant cell walls, and the middle lamina that holds the individual cells together [38].
The skin of the strawberry fruit is responsible for a significant part of the firmness of
the fruit, which determines the values of the strength parameters, while the role of the
subcutaneous and parenchymal tissue is small, but not insignificant [3]. For most plant
materials, the skin (epidermal cells plus epidermis) is a stiffer structure than the internal
tissues. On the contrary, in the case of strawberry fruit, which is characterised by a weaker
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skin, the mechanical role of the sub-epidermal cells is also important. Strawberry fruit is not
an isotropic material, and its structure varies depending on the type of tissue (epidermis,
subcutaneous tissue, cortical cells, vascular bundles and core). The force-displacement
curve at small deformations is determined not only by the mechanical properties of the
skin, but also of other tissues. At the cellular and tissue level, there are three main structural
factors that contribute to the mechanical properties of plant materials. They are: the turgor
pressure in individual cells (i.e., the force exerted on the cell membrane by the intracel-
lular fluid), the stiffness of the cell wall, and the cell–cell adhesion, determined by the
integrity of the middle lamina and plasmodesmata [36]. Our research has shown that the
process of cyclic ozonation of strawberry fruit with gas at a concentration of both 10 and
100 ppm contributes to the improvement of texture parameters during storage at room
temperature. Moreover, it turned out that fruit ozonated with a lower concentration gas
had better mechanical parameters. This is consistent with many other scientific reports.
For example, in the work of Chen et al. [39], the effect of weekly ozonation of strawberries
stored at 4 ◦C for 10 h with gas at concentrations of 2.144, 6.432 and 10.72 mg m−3 on
their firmness and biochemical parameters was determined. The authors observed that
all ozone concentrations applied reduced the loss of firmness during storage, and clearly
noticed that the fruit ozonated with the lowest concentration (2.144 mg m−3) had the best
firmness. A similar effect was noted by Ali et al. [40] who ozonated papaya fruit with gas at
concentrations of 1.5, 2.5, 3.5 for 96 h prior to 14-day storage at room temperature. However,
they found that the fruit ozonated with 5 ppm gas showed significantly worse firmness
than the control sample. There are also few studies, showing that the single and short-term
ozone treatment correlates with the maintenance of the good texture of strawberries during
storage. Panou et al. [41] proved that the fruit treated with ozone at a concentration of
1 ppm for 40 min were characterised by much better firmness than the control sample, as
well as fruit ozonated under other process conditions (0.5 and 1.5 ppm). Aday et al. [7] have
found a significant lower decrease in firmness, springiness, cohesiveness and chewiness in
strawberries immersed in water saturated with ozone (0.075 mg L−1) than in the control
during 4-week storage. Moreover, they have noticed that the application of ultrasound
(power 30 W) and chlorine dioxide (6 mg L−1) enhances the positive effect of ozonated
water. Proper turgor leads to stiffness of cells and tissues, and together with the cell wall
provides mechanical support to maintain the shape of the fruit.

Post-harvest softening is one symptom of the progressive aging of fruit. When this
process occurs, a major role is played by a number of biochemical and molecular changes
related to the damage of cell membranes along with the loss of cell turgor, decomposition
and depolymerisation of the components constituting the building blocks of the cell wall,
i.e., pectin, hemicellulose and cellulose, as well as reduction in the contact between cells
and plasmolysis [42]. Additionally, Zhou et al. [29,34] indicate that one of the reasons for
the deterioration of fruit firmness is the loss of antioxidant properties and the occurrence of
oxidative stress in the plant cell.

The immediate cause of the deterioration of fruit firmness after harvesting is the
increased activity of enzymes hydrolysing the components of the cell wall, e.g., polygalac-
turonase, β-galactosidase and β-hexosaminidase, both endo- and exogenous, produced
by microorganisms inhabiting the surface of the fruit. Polygalacturonase is responsible for
the hydrolysis of α-1,4-glycosidic bonds between galacturonic acid residues in pectins [43].
The role of β-galactosidase is, in turn, to remove non-reducing β-D-galactosyl residues in
hemicelluloses and pectins, which increases the porosity of the cell wall and facilitates the
access of other enzymes that degrade the cell wall [42]. β-hexosaminidase cleaves terminal
N-acetyl-D-hexosamine residues from N-glycoproteins, which are also present in the plant
cell wall [27]. In the course of further research, we found that ozonated fruit is characterised
by a reduced activity of PG (only after 1 day of storage) as well as β-Gal and β-Hex on all
analysis dates. In the work by Chen et al. [39] cited above it was shown that ozonation
decreased the expression of genes encoding enzymes involved in the breakdown of cell
wall components, i.e., pectinase, cellulase, endoglucanase and pectinesterase. Therefore, we
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can assume that the lower catalytic capacity of PG, β-Gal and β-Hex directly contributed
to better hardness of ozonated fruit than non-ozonated fruit.

Recently published research shows that the preservation of high-quality plant materi-
als during storage is related to their energy metabolism [44]. Adenosine triphosphate (ATP)
produced by mitochondria through oxidative phosphorylation is a source of the energy
needed to carry out many biochemical processes necessary for the cell to function properly
and to adapt it to various conditions of both abiotic and biotic stress [44,45]. It turns out
that ensuring a high level of ATP in the cell through the use of various elicitors for the
post-harvest processing of fruit and vegetables contributes to the maintenance of the proper
integrity of membranes, increases the activity of antioxidant enzymes and stimulates the
activity of the phenylpropanoid pathway, leading to an increase in the antioxidant status of
the cell [44,46,47]. Moreover, the increased adenylated energy charge corresponds to the
decreased expression of genes that degrade the cell walls, stimulated by the biosynthesis of
phytoalexins, PRs proteins and plant hormones [44,46]. As a consequence, horticultural
crops are characterised by an extended period of storage, while maintaining their high
quality [44].

The following enzymes play an important role in maintaining the correct energy
metabolism of mitochondria: succinate dehydrogenase (SDH), cytochrome C oxidase and
H+ATPase. SDH is an enzyme of respiratory chain complex II that catalyses the succinate
dehydrogenation reaction, leading to the formation of fumarate [48]. Cytochrome C oxidase
(respiratory chain complex IV) collects electrons from cytochrome c and transfers them
to an oxygen molecule, reducing it, resulting in the formation of two water molecules
when H+ ions are attached [49]. In turn, H+ATPase accelerates the breakdown of ATP into
ADP, releasing the energy needed to establish a transmembrane electrochemical gradient
and transport protons across the membrane during ATP biosynthesis [50]. Moreover,
many studies undertaken so far have shown that ATP and ADP content and the value
of the energy charge is closely correlated with the activity of the above enzymes [44].
We have also noticed this regularity in the presented research. Fruit ozonated with gas
at a concentration of 10 ppm was characterised by a higher activity of SDH, CCO and
H+ATPase throughout the storage period, which corresponded to a higher level of ATP
and energy charge. On the other hand, increasing the gas concentration to 100 ppm
produced the same effect only up to the second day of storage. After this time, the values
of the analysed indices did not differ from the non-ozonated sample. An improvement
of the energy metabolism of ozonated fruit was also found in the work of Piechowiak
et al. [45] in raspberry fruit cyclically ozonated with gas at a concentration of 8–10 ppm
(30 min) every 12 h for 3 days of storage at room temperature, as well as in the work by
Piechowiak [48], in which an increase in ATP levels was found in raspberry, strawberry,
blackcurrant, blackberry and highbush blueberry fruit after a single ozonation process
(15 ppm, 30 min). Aghdam et al. [44] in their work explain the role of the energy metabolism
of fruit treated with various elicitors in shaping their post-harvest quality. The authors
indicate that an increased capacity of mitochondria to biosynthesise ATP may result directly
from the activation of genes encoding mitochondrial enzymes. Moreover, increased ATP
biosynthesis may be mediated indirectly by the activation of NAD kinase, catalysing the
phosphorylation of NAD+ to NADP+, which is then converted to NADPH, used in the
respiratory chain, by increased activity of the pentose-phosphate pathway and/or EMP.
Sachadyn-Król and Agriopoulou [9] describe the capacity of ozone to penetrate into the
plant through the stomata into the aqueous apoplast, where it immediately breaks down
into reactive oxygen species that mediate many signal transduction pathways, leading
to the activation of genes involved in protecting the plant against environmental stress.
Therefore, it should be assumed that ozone and/or its decomposition products could
activate the above mechanisms. However, to fully explain them, further research is needed,
including at the molecular level.

Apart from peroxisomes, mitochondria are the main place of production of reactive
oxygen species in the plant cell [51]. The superoxide anion radical is formed during the
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electron reduction of oxygen in respiratory chain complexes I, II and III, which can then
be reduced to hydrogen peroxide by the action of superoxide dismutase [52]. Peroxidases
present in the plant cell and low molecular weight antioxidants can ultimately neutralise
the hydrogen peroxide produced [52]. According to Zhou et al. [29,34], maintenance of an
appropriate redox state in the cell is one of the key determinants of fruit firmness during
storage. The loss of the antioxidant properties of fruit is associated with an increased
generation of reactive oxygen species that have the capacity to oxidise unsaturated fatty
acids, which are a component of cell membranes, leading to loss of membrane integrity,
changes in permeability and, as a result, loss of turgor [53]. Malondialdehyde levels and
the degree of leakage of electrolytes from the tissue are often used as markers for cell
membrane integrity [44].

In our research, we showed that the mitochondria of ozonated strawberries produced
less ROS than non-ozonated fruit. This was probably due to the stimulation of the biosyn-
thesis of mitochondrial antioxidant enzymes as a result of ozone elicitation of the fruit, and
ultimately, the higher catalytic activity of the SOD and GPx proteins. Ultimately, the higher
antioxidant capacity of mitochondria translated into lower levels of MDA and the degree
of ion leakage in the ozonated fruit. However, as can be seen in Figure 4, the level of MDA
and ion leakage in the fruit ozonated with 100 ppm gas was higher after the third day of
storage than in the fruit ozonated with 10 ppm, which could be due to the cytotoxic effect
of ozone and damage to the defence mechanisms observed as a sharp decrease in SOD and
GPx activity after 2 days of storage, as well as worse mechanical parameters. It should,
therefore, be assumed that the beneficial effect of ozonation with regard to the texture of
the fruit is obtained by using a gas with a concentration of 10 ppm.

5. Conclusions

In conclusion, the ozonation process significantly prevented the loss of fruit texture
during storage at room temperature. The positive effect of ozone was directly related to the
inhibition of the activity of enzymes involved in the degradation of the fruit cell walls, i.e.,
polygalacturonase, β-galactosidase and β-hexosaminidase, as well as indirectly from the
improved energy metabolism of the fruit. The higher content of ATP and adenylated energy
charge corresponded to the higher resistance of ozonated fruit to abiotic stress, leading to
the maintenance of the integrity of cell membranes and, consequently, to maintaining good
hardness of the fruit throughout the storage period. However, in order to fully understand
these mechanisms, it is necessary to conduct deeper analysis, especially at a molecular level.

Author Contributions: Conceptualization, T.P.; Methodology, T.P., D.M. and R.J.; Investigation, T.P.,
D.M. and R.J.; Writing—original draft preparation, T.P. and D.M.; Writing—review and editing, T.P.
and M.B.; Formal analysis, T.P., D.M., R.J. and M.B. Funding acquisition, T.P., D.M. and M.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Science Centre, Poland (OPUS, 2019/35/B/NZ9/
01552) and Foundation for Polish Science (START 63.2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Robles-Flores, G.D.C.; Abud-Archila, M.; Ventura-Canseco, L.M.C.; Meza-Gordillo, R.; Grajales-Lagunes, A.; Ruiz-Cabrera, M.A.;

Gutiérrez-Miceli, F.A. Development and Evaluation of a Film and Edible Coating Obtained from the Cajanus Cajan Seed Applied
to Fresh Strawberry Fruit. Food Bioprocess Technol. 2018, 11, 2172–2181. [CrossRef]

2. Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The Strawberry: Composition, Nutritional
Quality, and Impact on Human Health. Nutrition 2012, 28, 9–19. [CrossRef] [PubMed]

http://doi.org/10.1007/s11947-018-2175-5
http://doi.org/10.1016/j.nut.2011.08.009
http://www.ncbi.nlm.nih.gov/pubmed/22153122


Antioxidants 2022, 11, 821 13 of 14

3. Duarte-Molina, F.; Gómez, P.L.; Castro, M.A.; Alzamora, S.M. Storage Quality of Strawberry Fruit Treated by Pulsed Light: Fungal
Decay, Water Loss and Mechanical Properties. Innov. Food Sci. Emerg. Technol. 2016, 34, 267–274. [CrossRef]

4. Mazur, S.P.; Nes, A.; Wold, A.B.; Remberg, S.F.; Martinsen, B.K.; Aaby, K. Effects of Ripeness and Cultivar on Chemical
Composition of Strawberry (Fragaria × ananassa Duch.) Fruits and Their Suitability for Jam Production as a Stable Product at
Different Storage Temperatures. Food Chem. 2014, 146, 412–422. [CrossRef]

5. Kelly, K.; Madden, R.; Emond, J.P.; do Nascimento Nunes, M.C. A Novel Approach to Determine the Impact Level of Each Step
along the Supply Chain on Strawberry Quality. Postharvest Biol. Technol. 2019, 147, 78–88. [CrossRef]

6. Marquenie, D.; Michiels, C.W.; Van Impe, J.F.; Schrevens, E.; Nicolaï, B.N. Pulsed White Light in Combination with UV-C and
Heat to Reduce Storage Rot of Strawberry. Postharvest Biol. Technol. 2003, 28, 455–461. [CrossRef]

7. Aday, M.S.; Caner, C. Individual and Combined Effects of Ultrasound, Ozone and Chlorine Dioxide on Strawberry Storage Life.
LWT-Food Sci. Technol. 2014, 57, 344–351. [CrossRef]

8. Chitravathi, K.; Chauhan, O.P.; Raju, P.S.; Madhukar, N. Efficacy of Aqueous Ozone and Chlorine in Combination with Passive
Modified Atmosphere Packaging on the Postharvest Shelf-Life Extension of Green Chillies (Capsicum annuum L.). Food Bioprocess
Technol. 2015, 8, 1386–1392. [CrossRef]

9. Sachadyn-Król, M.; Agriopoulou, S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of
Plant Products—A Review. Molecules 2020, 25, 2416. [CrossRef]

10. Horvitz, S.; Cantalejo, M.J. Application of Ozone for the Postharvest Treatment of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr.
2014, 54, 312–339. [CrossRef]

11. Jaramillo-Sánchez, G.; Contigiani, E.V.; Castro, M.A.; Hodara, K.; Alzamora, S.M.; Loredo, A.G.; Nieto, A.B. Freshness Mainte-
nance of Blueberries (Vaccinium corymbosum L.) During Postharvest Using Ozone in Aqueous Phase: Microbiological, Structure,
and Mechanical Issues. Food Bioprocess Technol. 2019, 12, 2136–2147. [CrossRef]

12. Ong, M.K.; Kazi, F.K.; Forney, C.F.; Ali, A. Effect of Gaseous Ozone on Papaya Anthracnose. Food Bioprocess Technol. 2013, 6,
2996–3005. [CrossRef]

13. Maryam, A.; Anwar, R.; Malik, A.U.; Raheem, M.I.U.; Khan, A.S.; Hasan, M.U.; Hussain, Z.; Siddique, Z. Combined Aqueous
Ozone and Ultrasound Application Inhibits Microbial Spoilage, Reduces Pesticide Residues and Maintains Storage Quality of
Strawberry Fruits. J. Food Meas. Charact. 2021, 15, 1437–1451. [CrossRef]

14. Pérez, A.G.; Sanz, C.; Ríos, J.J.; Olías, R.; Olías, J.M. Effects of Ozone Treatment on Postharvest Strawberry Quality. J. Agric. Food
Chem. 1999, 47, 1652–1656. [CrossRef] [PubMed]

15. Zhang, H.; Li, K.; Zhang, X.; Dong, C.; Ji, H.; Ke, R.; Ban, Z.; Hu, Y.; Lin, S.; Chen, C. Effects of Ozone Treatment on the Antioxidant
Capacity of Postharvest Strawberry. RSC Adv. 2020, 10, 38142–38157. [CrossRef]

16. Carbone, K.; Mencarelli, F. Influence of Short-Term Postharvest Ozone Treatments in Nitrogen or Air Atmosphere on the Metabolic
Response of White Wine Grapes. Food Bioprocess Technol. 2015, 8, 1739–1749. [CrossRef]

17. Piechowiak, T.; Grzelak-Błaszczyk, K.; Sójka, M.; Balawejder, M. Changes in Phenolic Compounds Profile and Glutathione Status
in Raspberry Fruit during Storage in Ozone-Enriched Atmosphere. Postharvest Biol. Technol. 2020, 168, 111277. [CrossRef]

18. Liang, Z.; Xu, L.; De Baerdemaeker, J.; Li, Y.; Saeys, W. Optimisation of a Multi-Duct Cleaning Device for Rice Combine Harvesters
Utilising CFD and Experiments. Biosyst. Eng. 2020, 190, 25–40. [CrossRef]

19. Chaves, V.C.; Calvete, E.; Reginatto, F.H. Quality Properties and Antioxidant Activity of Seven Strawberry (Fragaria × ananassa
Duch) Cultivars. Sci. Hortic. 2017, 225, 293–298. [CrossRef]

20. Hashemi, S.M.B.; Mousavi Khaneghah, A. Characterization of Novel Basil-Seed Gum Active Edible Films and Coatings Containing
Oregano Essential Oil. Prog. Org. Coat. 2017, 110, 35–41. [CrossRef]

21. Piechowiak, T.; Skóra, B.; Balawejder, M. Ozone Treatment Induces Changes in Antioxidative Defense System in Blueberry Fruit
During Storage. Food Bioprocess Technol. 2020, 13, 1240–1245. [CrossRef]

22. Rosli, H.G.; Civello, P.M.; Martínez, G.A. Changes in Cell Wall Composition of Three Fragaria × ananassa Cultivars with Different
Softening Rate during Ripening. Plant Physiol. Biochem. 2004, 42, 823–831. [CrossRef] [PubMed]

23. Contigiani, E.V.; Kronberg, M.F.; Jaramillo Sánchez, G.; Gómez, P.L.; García-Loredo, A.B.; Munarriz, E.; Alzamora, S.M. Ozone
Washing Decreases Strawberry Susceptibility to Botrytis Cinerea While Maintaining Antioxidant, Optical and Sensory Quality.
Heliyon 2020, 6, e05416. [CrossRef]

24. Aday, M.S.; Büyükcan, M.B.; Temizkan, R.; Caner, C. Role of Ozone Concentrations and Exposure Times in Extending Shelf Life
of Strawberry. Ozone Sci. Eng. 2014, 36, 43–56. [CrossRef]

25. Piechowiak, T.; Antos, P.; Kosowski, P.; Skrobacz, K.; Józefczyk, R.; Balawejder, M. Impact of Ozonation Process on the
Microbiological and Antioxidant Status of Raspberries (Rubus ideaeus L.) fruit during Storage at Room Temperature. Agric. Food
Sci. 2019, 28, 35–44. [CrossRef]

26. Peleg, M. The Instrumental Texture Profile Analysis Revisited. J. Texture Stud. 2019, 50, 362–368. [CrossRef]
27. Cao, L.; Zhao, C.; Su, S.; Luo, C.; Han, M. The Role of β-Hexosaminidase in Peach (Prunus persica) Fruit Softening. Sci. Hortic.

2014, 169, 226–233. [CrossRef]
28. Deng, Y.; Wu, Y.; Li, Y. Changes in Firmness, Cell Wall Composition and Cell Wall Hydrolases of Grapes Stored in High Oxygen

Atmospheres. Food Res. Int. 2005, 38, 769–776. [CrossRef]
29. Zhou, Q.; Zhang, C.; Cheng, S.; Wei, B.; Liu, X.; Ji, S. Changes in Energy Metabolism Accompanying Pitting in Blueberries Stored

at Low Temperature. Food Chem. 2014, 164, 493–501. [CrossRef]

http://doi.org/10.1016/j.ifset.2016.01.019
http://doi.org/10.1016/j.foodchem.2013.09.086
http://doi.org/10.1016/j.postharvbio.2018.09.012
http://doi.org/10.1016/S0925-5214(02)00214-4
http://doi.org/10.1016/j.lwt.2014.01.006
http://doi.org/10.1007/s11947-015-1511-2
http://doi.org/10.3390/molecules25102416
http://doi.org/10.1080/10408398.2011.584353
http://doi.org/10.1007/s11947-019-02358-z
http://doi.org/10.1007/s11947-012-1013-4
http://doi.org/10.1007/s11694-020-00735-3
http://doi.org/10.1021/jf980829l
http://www.ncbi.nlm.nih.gov/pubmed/10564033
http://doi.org/10.1039/D0RA06448C
http://doi.org/10.1007/s11947-015-1515-y
http://doi.org/10.1016/j.postharvbio.2020.111277
http://doi.org/10.1016/j.biosystemseng.2019.11.016
http://doi.org/10.1016/j.scienta.2017.07.013
http://doi.org/10.1016/j.porgcoat.2017.04.041
http://doi.org/10.1007/s11947-020-02450-9
http://doi.org/10.1016/j.plaphy.2004.10.002
http://www.ncbi.nlm.nih.gov/pubmed/15596102
http://doi.org/10.1016/j.heliyon.2020.e05416
http://doi.org/10.1080/01919512.2013.833851
http://doi.org/10.23986/afsci.70291
http://doi.org/10.1111/jtxs.12392
http://doi.org/10.1016/j.scienta.2014.02.015
http://doi.org/10.1016/j.foodres.2005.03.003
http://doi.org/10.1016/j.foodchem.2014.05.063


Antioxidants 2022, 11, 821 14 of 14

30. Tornheim, K.; Schultz, V. Adenosine Diphosphate and Adenosine Monophosphate: Enzymatic Spectrophotometric Determination.
J. Nutr. Biochem. 1990, 1, 440–444. [CrossRef]

31. Tornheim, K.; Schultz, V. Adenosine Triphosphate: Enzymatic Spectrophotometric Determination. J. Nutr. Biochem. 1990, 1,
172–176. [CrossRef]

32. Piechowiak, T.; Sowa, P.; Tarapatskyy, M.; Balawejder, M. The Role of Mitochondrial Energy Metabolism in Shaping the Quality of
Highbush Blueberry Fruit During Storage in Ozone-Enriched Atmosphere. Food Bioprocess Technol. 2021, 14, 1973–1982. [CrossRef]

33. Piechowiak, T.; Balawejder, M. Impact of Ozonation Process on the Level of Selected Oxidative Stress Markers in Raspberries
Stored at Room Temperature. Food Chem. 2019, 298, 125093. [CrossRef] [PubMed]

34. Zhou, Q.; Ma, C.; Cheng, S.; Wei, B.; Liu, X.; Ji, S. Changes in Antioxidative Metabolism Accompanying Pitting Development in
Stored Blueberry Fruit. Postharvest Biol. Technol. 2014, 88, 88–95. [CrossRef]

35. Li-Qin, Z.; Jie, Z.; Shu-Hua, Z.; Lai-Hui, G. Inhibition of Browning on the Surface of Peach Slices by Short-Term Exposure to
Nitric Oxide and Ascorbic Acid. Food Chem. 2009, 114, 174–179. [CrossRef]

36. Alzamora, S.M.; Viollaz, P.E.; Martínez, V.Y.; Nieto, A.B.; Salvatori, D. Exploring the Linear Viscoelastic Properties Structure
Relationship in Processed Fruit Tissues. In Food Engineering: Integrated Approaches; Springer: New York, NY, USA, 2008.

37. Contigiani, E.V.; Jaramillo-Sánchez, G.; Castro, M.A.; Gómez, P.L.; Alzamora, S.M. Postharvest Quality of Strawberry Fruit
(Fragaria × Ananassa Duch Cv. Albion) as Affected by Ozone Washing: Fungal Spoilage, Mechanical Properties, and Structure.
Food Bioprocess Technol. 2018, 11, 1639–1650. [CrossRef]

38. Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables:
Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50,
369–389. [CrossRef]

39. Chen, C.; Zhang, X.; Zhang, H.; Ban, Z.; Li, L.; Dong, C.; Ji, H.; Xue, W. Label-Free Quantitative Proteomics to Investigate the
Response of Strawberry Fruit after Controlled Ozone Treatment. RSC Adv. 2019, 9, 676–689. [CrossRef]

40. Ali, A.; Ong, M.K.; Forney, C.F. Effect of Ozone Pre-Conditioning on Quality and Antioxidant Capacity of Papaya Fruit during
Ambient Storage. Food Chem. 2014, 142, 19–26. [CrossRef]

41. Panou, A.A.; Akrida-Demertzi, K.; Demertzis, P.; Riganakos, K.A. Effect of Gaseous Ozone and Heat Treatment on Quality and
Shelf Life of Fresh Strawberries during Cold Storage. Int. J. Fruit Sci. 2021, 21, 218–231. [CrossRef]

42. Yang, H.; Liu, J.; Dang, M.; Zhang, B.; Li, H.; Meng, R.; Qu, D.; Yang, Y.; Zhao, Z. Analysis of β-Galactosidase during Fruit
Development and Ripening in Two Different Texture Types of Apple Cultivars. Front. Plant Sci. 2018, 9, 539. [CrossRef] [PubMed]

43. Natalini, A.; Vanesa, M.D.; Ferrante, A.; Pardossi, A. Effect of Temperature and Ripening Stages on Membrane Integrity of
Fresh-Cut Tomatoes. Acta Physiol. Plant. 2014, 36, 191–198. [CrossRef]

44. Aghdam, M.S.; Jannatizadeh, A.; Luo, Z.; Paliyath, G. Ensuring Sufficient Intracellular ATP Supplying and Friendly Extracellular
ATP Signaling Attenuates Stresses, Delays Senescence and Maintains Quality in Horticultural Crops during Postharvest Life.
Trends Food Sci. Technol. 2018, 76, 67–81. [CrossRef]

45. Piechowiak, T.; Sowa, P.; Balawejder, M. Effect of Ozonation Process on the Energy Metabolism in Raspberry Fruit During Storage
at Room Temperature. Food Bioprocess Technol. 2021, 14, 483–491. [CrossRef]

46. Jin, P.; Zhu, H.; Wang, J.; Chen, J.; Wang, X.; Zheng, Y. Effect of Methyl Jasmonate on Energy Metabolism in Peach Fruit during
Chilling Stress. J. Sci. Food Agric. 2013, 93, 1827–1832. [CrossRef]

47. Shu, C.; Zhang, W.; Zhao, H.; Cao, J.; Jiang, W. Chlorogenic Acid Treatment Alleviates the Adverse Physiological Responses
of Vibration Injury in Apple Fruit through the Regulation of Energy Metabolism. Postharvest Biol. Technol. 2020, 159, 110997.
[CrossRef]

48. Piechowiak, T. Effect of Ozone Treatment on Glutathione (GSH) Status in Selected Berry Fruit. Phytochemistry 2021, 187, 112767.
[CrossRef]

49. Millar, A.H.; Eubel, H.; Jänsch, L.; Kruft, V.; Heazlewood, J.L.; Braun, H.P. Mitochondrial Cytochrome c Oxidase and Succinate
Dehydrogenase Complexes Contain Plant Specific Subunits. Plant Mol. Biol. 2004, 56, 77–90. [CrossRef]

50. Lin, Y.; Lin, Y.; Lin, H.; Ritenour, M.A.; Shi, J.; Zhang, S.; Chen, Y.; Wang, H. Hydrogen Peroxide-Induced Pericarp Browning of
Harvested Longan Fruit in Association with Energy Metabolism. Food Chem. 2017, 225, 31–36. [CrossRef]

51. Mhamdi, A.; Van Breusegem, F. Reactive Oxygen Species in Plant Development. Development 2018, 145, dev164376. [CrossRef]
52. Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol.

Biochem. 2010, 48, 909–930. [CrossRef] [PubMed]
53. Wang, H.; Cheng, X.; Wu, C.; Fan, G.; Li, T.; Dong, C. Retardation of Postharvest Softening of Blueberry Fruit by Methyl Jasmonate

Is Correlated with Altered Cell Wall Modification and Energy Metabolism. Sci. Hortic. 2021, 276, 109752. [CrossRef]

http://doi.org/10.1016/0955-2863(90)90121-Z
http://doi.org/10.1016/0955-2863(90)90019-H
http://doi.org/10.1007/s11947-021-02696-x
http://doi.org/10.1016/j.foodchem.2019.125093
http://www.ncbi.nlm.nih.gov/pubmed/31260960
http://doi.org/10.1016/j.postharvbio.2013.10.003
http://doi.org/10.1016/j.foodchem.2008.09.036
http://doi.org/10.1007/s11947-018-2127-0
http://doi.org/10.1080/10408391003626322
http://doi.org/10.1039/C8RA08405J
http://doi.org/10.1016/j.foodchem.2013.07.039
http://doi.org/10.1080/15538362.2020.1866735
http://doi.org/10.3389/fpls.2018.00539
http://www.ncbi.nlm.nih.gov/pubmed/29740469
http://doi.org/10.1007/s11738-013-1399-2
http://doi.org/10.1016/j.tifs.2018.04.003
http://doi.org/10.1007/s11947-021-02591-5
http://doi.org/10.1002/jsfa.5973
http://doi.org/10.1016/j.postharvbio.2019.110997
http://doi.org/10.1016/j.phytochem.2021.112767
http://doi.org/10.1007/s11103-004-2316-2
http://doi.org/10.1016/j.foodchem.2016.12.088
http://doi.org/10.1242/dev.164376
http://doi.org/10.1016/j.plaphy.2010.08.016
http://www.ncbi.nlm.nih.gov/pubmed/20870416
http://doi.org/10.1016/j.scienta.2020.109752

	Introduction 
	Materials and Methods 
	Ozonation Process and Storage Experiment 
	Texture Analysis 
	Determination of the Activity of Enzymes Related to Fruit Softening 
	Mitochondria Energy Metabolism Analysis 
	Energy Charge Analysis 
	Oxidative Phosphorylation Enzymes Activity Assay 
	Reactive Oxygen Species Generation Analysis 
	Antioxidant Enzymes Activity 

	Determination of Malondialdehyde Level in Fruit and Cell Membrane Electrolyte Leakage 
	Statistical Analysis 

	Results 
	Changes in Fruit Texture during Storage at Room Temperature 
	Changes in the Activity of -Gal, -Hex and PG in Strawberries during Storage 
	The Effect of Ozone Treatment on the Mitochondria Energy Metabolism in Strawberry Fruit 
	Changes in Mitochondrial Oxidative Stress Markers in Strawberry Fruit during Storage 
	The Level of MDA and Electrolyte Leakage in Ozonated Strawberry Fruit 

	Discussion 
	Conclusions 
	References

