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Abstract

To predict the odor quality of an odorant mixture, the interaction between odorants must be

taken into account. Previously, an experiment in which mice discriminated between odorant

mixtures identified a selective adaptation mechanism in the olfactory system. This paper

proposes an olfactory model for odorant mixtures that can account for selective adaptation

in terms of neural activity. The proposed model uses the spatial activity pattern of the mitral

layer obtained from model simulations to predict the perceptual similarity between odors.

Measured glomerular activity patterns are used as input to the model. The neural interaction

between mitral cells and granular cells is then simulated, and a dissimilarity index between

odors is defined using the activity patterns of the mitral layer. An odor set composed of three

odorants is used to test the ability of the model. Simulations are performed based on the

odor discrimination experiment on mice. As a result, we observe that part of the neural activ-

ity in the glomerular layer is enhanced in the mitral layer, whereas another part is sup-

pressed. We find that the dissimilarity index strongly correlates with the odor discrimination

rate of mice: r = 0.88 (p = 0.019). We conclude that our model has the ability to predict the

perceptual similarity of odorant mixtures. In addition, the model also accounts for selective

adaptation via the odor discrimination rate, and the enhancement and inhibition in the mitral

layer may be related to this selective adaptation.

Introduction

Predicting the quality of an odor composed of multiple odorant components is a challenging

problem. Even if the smell of each odorant component was known, the resultant quality of an

odorant mixture may differ from the linear addition of the respective odorant qualities [1].

An interesting approach to predicting odorant quality is that proposed by Haddad et al.,
in which an odorant quality space was derived from about 1400 kinds of odorant descriptor

using principal analysis [2]. Their group also applied the developed method to predict the

pleasantness of an odorant [3]. Our group proposed a model that can predict glomerular
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activity patterns from the chemical structure of an odorant [4], and found that the similarity

indices between the activity patterns of rats correlates with the perceptual similarity of humans

[5]. Hence, the prediction of the quality of a single odorant is gradually becoming a reality,

although more accurate prediction is desirable. Recently, odor quality predictions for odorant

mixtures have been studied. Snitz et al. used odorant descriptors to form a chemical space and

proposed a distance measure between the odorant mixtures that enables the perceptual simi-

larity to be predicted [6]. Haddad et al. proposed a method that can convert artificial sensor

responses into the pleasantness of both odorants and odorant mixtures [7].

In addition to the techniques described above, this paper focuses on the brain expression of

odors evoked on the olfactory bulb, including the odor maps on the glomerular layer [8–13],

to predict the perceptual similarity of odorant mixtures. Previous studies [14, 15] have revealed

the close relationship between neural activity and odor quality, and neural interaction in the

olfactory system can change the characteristics of odor perception. For example, Youngentob

et al. reported that the glomerular activity patterns can predict the perceptual similarity of

odorants [14], and the same holds for odorant mixtures according to Grossman et al. [15]. In

addition, through odor discrimination experiments on mice, we have found that selective

adaptation contributes significantly to perceptual similarity [16]. That is, after associating the

reward with a mixture of three odorants, the mice adapted to certain components in the mix-

ture, leading to trouble distinguishing between the full mixture and certain subsets of these

odorants. The same phenomenon was observed in an experiment on humans, who used selec-

tive adaptation to improve the reliability of identification of odor components in a mixture.

This is because humans cannot identify the respective odor characteristics of more than three

odorant components [17]. This selective adaptation function may be consistent with measure-

ment results given by Giraudet et al. [18], which suggest that, in most cases, the response of the

mitral cells to a binary mixture is dominated by one of the components.

Although selective adaptation in the olfactory system has been observed, its application to

the prediction of perceptual similarity has not been studied. This paper thus proposes a mathe-

matical model based on previous olfactory models [19, 20] that attempted to simulate the

selective adaptation toward odorant components. We use the proposed model to generate neu-

ral activity patterns in the olfactory bulb, including the glomeruli, mitral cells, and granular

cells, and compare the activity patterns of mitral cells evoked by different odorant mixtures.

The similarity between odorant mixtures is identified by examining the correlation between

activity patterns, and the results are compared to the perceptual similarity sensed by mice. The

results show that the proposed model is capable of predicting the discrimination rate of mice

with a strong correlation (r> 0.8, q< 0.05). This suggests that the model is capable of predict-

ing perceptual similarity considering the selective adaptation mechanism.

The remainder of this paper is organized as follows. Section 2 explains the structure of the

proposed model and our parameter adjustment algorithm, as well as the simulation procedure.

Section 3 presents the simulation results and related discussion, and Section 4 states our con-

clusions. An odor discrimination experiment conducted on mice is described in S1 Appendix.

S1 Appendix also lists and explains the symbols used in the model.

Materials and Methods

Olfactory model

The proposed model is composed of a glomerular layer and a mitral cell/granular cell layer, as

shown in Fig 1. The model takes measured glomerular activity patterns as input, and outputs a

dissimilarity index between odors. The parameters and symbols used in the model are summa-

rized in Tables A-E in S1 Appendix.

Olfactory Model for Selective Adaptation Mechanism
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Glomerular Layer. The glomerular layer, which is composed of 1805 glomerular units,

takes each measured glomerular activity pattern of the odorant components as input. The

number of glomerular units is consistent with the actual number of glomeruli distributed on

the olfactory bulbs of mice [21]. It then generates the glomerular activity evoked by an odorant

mixture taking the respiratory cycle into account. The input of the i-th glomerular unit ci(nq)
generated by odorant np is determined by the following procedure (cf. Fig 2), where q is the

index of the odorant component.

1. Obtain a whole olfactory bulb surface image of the glomerular activity pattern correspond-

ing to odorant nq from a web database (http://gara.bio.uci.edu/).

2. Based on the procedure used in our previous study [5], the image file of the activity pattern

is divided into 1805 lattices corresponding to the glomerular units. First, each pixel of the

activity pattern image is converted into a z-score corresponding to its activation level based

on the color bar given by the database. A lattice filter is then adapted to divide the activity

pattern into 1805 lattices.

3. Calculate the average z-score of each lattice and determine the input ci(nq).

The above procedure provides the input vector CðnqÞ ¼ ½c1ðnqÞ; . . . ; ckðnqÞ; . . . ; c1805ðnqÞ� 2
R1805�1 for odorant component nq.

The output Isiniff,i(t) of the i-th glomerular unit at time t is given by the following equations,

which are based on a respiratory function that originated from measurement data of a rabbit

Fig 1. Schematic diagram of the proposed olfactory model. The model consists of a glomerular layer, mitral and granular layer, and a dissimilarity

evaluation module. The model takes the glomerular activity patterns of odorants composing an odor as input, and considers respiration cycles to simulate

the glomerular response to odorant mixture. The neural activity in mitral and granular cells is simulated based on the models proposed in a previous study

[20, 21]. The dissimilarity evaluation module defines a dissimilarity index E and compares the activity patterns evoked in the mitral layer by different input

odorant mixtures.

doi:10.1371/journal.pone.0165230.g001
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and was employed in the olfactory model proposed by Li et al. [19] (cf. Fig 1: Breath Function):

Isniff;iðtÞ ¼
PiðogÞðt � tinhaleÞ þ Isniff;iðtinhaleÞ; if 0≦ t≦ tinhale;

Isniff;iðtexhaleÞexp
� ðt � texhaleÞ

texhale

� �

; if tinhale < t≦ texhale;
ð1Þ

8
><

>:

where tinhale = 220 [ms], texhale = 400 [ms], τexhale = 33 [ms] are the inhalation duration,

exhalation duration, and time constant of exhalation, respectively [19]. In addition,

P ¼ ½P1ðogÞ; . . . ; PkðogÞ; . . . ; P1805ðogÞ� 2 R
1805�1 denotes the maximum output of a glomer-

ular unit to odor oγ, and is calculated by Eq (2). This equation was derived under the

assumption that a glomerular activity pattern of an odorant mixture is the linear combina-

tion of its odorant components [10]. Note that this is a simplified formulation, because

Grossman et al. [15] reported that a simple linear addition is not always applicable.

PiðogÞ ¼
1

k

Xk

q¼1
f ciðnqÞ
� �

; f ciðnqÞ
� �

¼
1; if ciðnpÞ≧ y

0; if ciðnpÞ < y
; ð2Þ

(

where k is the number of odorant components in an input odor, nq is the odorant compo-

nent in odorant mixture oγ, and θ is a threshold variable. The threshold function f(�) was

applied to enhance the contrast, because the 2-deoxyglucose (2-DG) method can blur the

spatial response. The output Pi(oγ) of the i-th glomerular unit is sent to the mitral unit.

Mitral and Granular layer. The mitral and granular layer was derived from the Li–Hop-

field model [19] and the Erdi model [20]. These models, which can simulate the neural dynam-

ics caused by the interaction between mitral and granular cells, can be written as follows:

Ii ¼ Isniff ;i þ Ibackground ð3Þ

_X ¼ � HGY �
1

tx
X þ c

XN

j¼1
LGX þ I

_Y ¼WGX �
1

ty
Y þ Ic

8
>>><

>>>:

ð4Þ

Fig 2. Method of generating the model input from measured glomerular activity patterns provided by a web database (http://gara.bio.uci.

edu/) (adapted from [5]). The original image of the glomerular activity pattern (left) is composed of 357 × 197 pixels, and the grayscale of each pixel

corresponds to the activity strength. The original image is divided into 1805 lattices, approximately equal to the actual number of glomeruli distributed

on the olfactory bulb. The average activity strength is calculated for each pixel and converted into a vector representing an activity pattern.

doi:10.1371/journal.pone.0165230.g002

Olfactory Model for Selective Adaptation Mechanism

PLOS ONE | DOI:10.1371/journal.pone.0165230 December 19, 2016 4 / 16

http://gara.bio.uci.edu/
http://gara.bio.uci.edu/


Where X ¼ ½x1; . . . ; xk; . . . ; x1805� 2 R
1805�1 and Y ¼ ½y1; . . . ; yk; . . . ; y1805� 2 R

1805�1 are the

internal states of the mitral and granular cells, respectively, I ¼ ½I1; . . . ; Ik; . . . ; I1805� 2 R
1805�1

is the input from the glomeruli, Ibackground is the background noise, Ic is the excitatory input

from the olfactory cortex, and τx = τy = 7 [ms] are time constants [20]. H; L;G 2 R1805�1805 are

synapse connection matrices, where H represents the connection from granular cells to mitral

cells, L represents that between mitral cells, and G represents that from mitral cells to granular

cells. In addition, GY ¼ ½gyðy1Þ; . . . ; gyðykÞ; . . . ; gyðy1805Þ� 2 R
1805�1 corresponds to the mem-

brane potentials of mitral and granular cells, respectively. Based on the Li–Hopfield model, the

membrane potentials are calculated by the following equations [19]:

gxðxiÞ ¼
S0x þ S

0
xtanh

xi � z

S0x

� �

; if x < z; S0x ¼ 0:14

S0x þ Sxtanh
xi � z

Sx

� �

; if x≧ z; Sx ¼ 1:4

; ð5Þ

8
>>><

>>>:

gyðyiÞ ¼

S0y þ S
0
ytanh

yi � z

S0y

 !

; if y < z; S0y ¼ 0:29

S0y þ Sytanh
yi � z

Sy

 !

; if y≧ z; Sx ¼ 2:9

; ð6Þ

8
>>>>><

>>>>>:

where the threshold z is set to 1.0 based on the Erdi model [20]. As several tens of mitral cells

typically receive excitatory input from the same glomerulus [22], they can be considered to

form a column [23]. Thus, a mitral unit represents a mitral cell column, and each mitral unit is

connected to one glomerular unit. In the same manner, the granular units represent groups of

granular cells. Thus, in the proposed model, the mitral units and granular units share the same

spatial distribution as the glomerular units.

To determine the synapse connection matrices, we consider each type of neuron to form a

layer on a spherical surface in the olfactory bulb. First, a unit is placed on a two-dimensional

α-β coordination, as shown in Fig 3. Each mitral unit is then connected to the other mitral

units within a distance of zm units based on the actual connection structure of mitral cells [18].

In the same manner, each granular unit is connected to the mitral units within a distance of zg

units. If this distance exceeds the extent of the two-dimensional surface, the connection is

folded back to the opposite end, considering the spherical surface of the olfactory bulb shown

on the right of Fig 3. The gray shadow in Fig 3 is an example of the connection range from the

i-th unit located at (αi, βi). To achieve such a connection, the following equations are used to

determine the synapse connection matrices:

daði;jÞ ¼ minððminðaA;i � ai; aiÞ � minðaA;i � aj; ajÞÞ
2
; ðai � ajÞ

2
Þ ð7Þ

dbði;jÞ ¼ minððminðbB;i � bi; biÞ þminðbB;i � bj; bjÞÞ
2
; ðbi � bjÞ

2
Þ ð8Þ

dði;jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

aði;jÞ þ d2
bði;jÞ

q
ð9Þ
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H0ði;jÞ ¼

Ri;j
zm
; if 0 < dði;jÞ < zm

0; if zm < dði;jÞ

ð10Þ

8
><

>:

W0ði;jÞ ¼

Rw;i
zg
; if 0 < dði;jÞ < zg

0; if zg < dði;jÞ

ð11Þ

8
><

>:

L0ði;jÞ ¼
Rl;i; if 0 < dði;jÞ < zg

0; if zg < dði;jÞ
ð12Þ

(

where dα(i,j) and dβ(i,j) denote the distance between two units along the α-axis and β-axis,

respectively. H0 ¼ ½H0ð1;1Þ; . . . ;H0ðj;kÞ; . . . ;H0ð1805;1805Þ� 2 R
1805�1805 is the synapse connection

matrix from granular units to mitral units,

Fig 3. Configuration of synapse connections. The figure represents the connection range of a mitral or a granular unit. A unit at the center of the

grey circle is connected to all units within a range of the circle. If the connection range exceeds the limit, it is folded back to the other end, considering

the bulbous shape of the olfactory bulb, using Eqs (7)–(12).

doi:10.1371/journal.pone.0165230.g003
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W0 ¼ ½W0ð1;1Þ; . . . ;W0ðj;kÞ; . . . ;W0ð1805;1805Þ� 2 R
1805�1805 is that from mitral units to granular

units, and L0 ¼ ½L0ð1;1Þ; . . . ; L0ðj;kÞ; . . . ; L0ð1805;1805Þ� 2 R
1805�1805 is that between mitral units.

Note that, in Eqs (10) and (11), Ri,j, Rw,i, Rl,i are random numbers selected from the normal

distribution N(1.0,0.05), and each connection parameter is divided by the connection range

parameters zm or zg so that the input strength to a unit is independent of the connection range

parameters.

Dissimilarity Evaluation Part. The mitral cells transfer neural activity to the olfactory

cortex, and higher brain functions judge the odor quality based on individual experiences

[23]. In the proposed model, the dissimilarity evaluation simulates this role by calculating a

dissimilarity index based on the Pearson correlation between the spatial patterns of the

mitral layer evoked by different odors. The action potential of each mitral unit responding

to an odor oγ(nq) composed of odorants nq is averaged over the respiration duration

(texhale = 400 [ms]) using the following equation to give the spatial activity pattern of the

mitral layer Sog
¼ ½S1;og

; . . . ; Sk;og
; . . . ; S1805;og

� 2 R1805�1.

Si;og
¼

Z texhale

0

xiðtÞ
maxðxiÞ

dt ð13Þ

The dissimilarity index between arbitrary odors o1 and o2 is then calculated by the follow-

ing equation, which reflects the ease of discrimination, that is, the discrimination rate

obtained from the mice experiment.

E ¼ 1 �

Pn
i¼1
ðSi;1 � Si;1ÞðSi;2 � Si;2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðSi;1 � Si;1Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðSi;2 � Si;2Þ

2
q ð14Þ

Therefore, the dissimilarity index E can be compared to the observed discrimination rate

to test whether the model can predict the perceptual similarity exhibited by mice, from

which the selective adaptation mechanism in the olfactory system was identified.

Simulation procedure

In our simulations, the synapse connection matrix H was adjusted using a Hebbian learning

rule [20, 24] based on the experimental procedure applied to mice [16], and then the dissimi-

larity index obtained from the model was compared to the experimentally observed discrimi-

nation rate. We consider the proposed model to correctly account for selective adaptation if it

can predict the perceptual similarity of mice. This section describes the simulation procedure,

including a parameter adjustment and comparison method between the simulations and

experiments.

Configurations. The majority of the parameters included in the proposed model were

determined based on the Li–Hopfield model [19] and the Erdi model [20], as shown in Tables

C and D in S1 Appendix. The newly introduced parameters in the proposed model are the

threshold θ that determines the activity pattern of the glomerular layer, and zm, zg that deter-

mine the synapse connection range of mitral units and granular units, respectively. The thresh-

old parameter was set to θ = 0.60 to enhance the strongly activated part corresponding to a z-

score greater than 2 measured by the 2-DG method. The synapse connection range parameters

were set to zm = 4 and zg = 15 under the assumption that granular cells have a wider influential

range than the mitral cells [25]. In addition, each component of the synapse connection matri-

ces H, L, W was determined by Eqs (10)–(12), and 20 sets of initial connection matrices were

generated to perform the following simulations. The random numbers Ri,j, Rw,i, Rl,i used to

Olfactory Model for Selective Adaptation Mechanism
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generate different connection matrices allow us to test the robustness of prediction ability

against different configurations of initial values.

Prediction of perceptual similarity.

STEP 1: Simulation of conditioning training

Based on the mice experiment [16], the rewarded odor ([IA, EB, Ci], cf. Table F in S1

Appendix) was input to the proposed model. Assuming that selective adaptation is caused

by the interaction between mitral cells and granular cells, the proposed model used the fol-

lowing Hebbian rule [20, 24] to learn the synapse connection matrix H:

_HijðtÞ ¼ � Z1H
2

ij þ Z2gxðxiðtÞÞgyðyjðtÞÞ ð15Þ

where the learning rates were set to η1 = 10−5 and η2 = 10−3 [19], and the adjustment was termi-

nated when the connection parameters converged to constant values. Here, the activity pattern

of the mitral layer when rewarded odor [IA, EB, Ci] was input after parameter learning is

denoted as S1 ¼ ½S1;1; . . . ; Sk;1; . . . ; S1805;1� 2 R1805�1.

STEP 2: Odor discrimination simulation

Based on the mice experiments, five discrimination target odors (except the rewarded

odor [IA, EB, Ci], cf. Table F in S1 Appendix) were input to the model with adjusted

synapse connection matrix H, and each activity pattern obtained was represented by

S2 ¼ ½S1;2; . . . ; Sk;2; . . . ; S1805;2� 2 R1805�1. Activity patterns S1 evoked by the rewarded

odor and S2 evoked by the discrimination target were substituted into Eq (14), and the dis-

similarity index E was calculated. As the dissimilarity index corresponds to the discrimina-

tion rate obtained from the experiments on mice, we computed the Pearson correlation

between the dissimilarity indices and the discrimination rate.

Parameter analysis. To test the dependency of the prediction accuracies on the connec-

tion structure in the mitral and granular layers, various connection ranges zm and zg were iter-

atively searched. Based on a previous study [25, 26], we assumed that granular cells have

a wider range of influence than the mitral cells, and searched for parameters in the range

3≦ zm≦ 7, 13 ≦ zg≦ 17. We then determined the combination of zm and zg that yielded the

highest correlation between the dissimilarity index E and discrimination rate of rats. We also

investigated the changes in the activity patterns of the mitral layer and synapse connection

parameters in H along with the Hebbian learning.

Results and Discussion

Results

Fig 4 shows the simulation results for an odor set composed of odorants Isoamyl acetate (IA),

Etyhl butyrate (EB), and Citral (Ci). Fig 4(a) shows the transformation from glomerular activ-

ity patterns of IA, EB, and Ci into the input of the glomerular layer based on the procedure

described in Section 2. Fig 4(b) compares the dissimilarity index E obtained from the simula-

tion along with the discrimination rate of mice. Fig 4(c) shows a scatter plot of the dissimilarity

index E and discrimination rate. Fig 4(b) and 4(c) confirm a strong correlation (r = 0.88,

p = 0.019) between the discrimination rate of mice and the dissimilarity index E.

To evaluate the prediction ability of perceptual similarity, multiple testing was performed

using Bonferroni’s method on the discrimination rate of mice between odor pairs. The results

Olfactory Model for Selective Adaptation Mechanism
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Fig 4. Prediction of perceptual similarity for odors composed of IA, EB, and Ci. (a) Output from the glomerular layer for odorant input [IA, Ci, EB].

The figure shows the steps taken to generate output for the glomerular layer. The activity strength is represented in grayscale, where whiter pixels

correspond to higher activity. The uppermost row shows the glomerular activity pattern for the odorant composing odor [IA, EB, Ci] obtained from

Johnson et al. [27–31]. The middle row shows the binarized activity patterns given by adapting Eq (2) after dividing the pixels into 1805 lattices and

generalizing the activity strength into the range [0, 1]. The third row shows the output from the glomerular layer, and the bottom row shows that from the

mitral layer generated by the procedure described in Section 2. (b) Comparison between discrimination rates of mice obtained from experiments and

dissimilarity obtained from simulations (ζm = 4, ζg = 15). The figure compares the dissimilarity index E obtained from the simulation and discrimination

rate for each odor. The orange bars denote simulation results and the blue bars represent the experimental results. The error bars added to the

experimental results address the standard deviation in 10 mice, and the error bars added to the simulation results correspond to the standard deviation

Olfactory Model for Selective Adaptation Mechanism
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are shown in Fig 4(b), where blue lines above pairs of bars denote a significant difference

(p<0.01) between the corresponding odor pairs, and in the second column of Table 1, where

double asterisks represent a significant difference. Multiple testing was also adopted for the

dissimilarity index E between odor pairs. The results are shown in Fig 4(b) and the third col-

umn of Table 1. These results show that the dissimilarity index E of [IA, EB] is significantly

lower (p<0.01: green background in Table 1) than that for the other five odors ([IA Ci], [EB

Ci], [IA], [EB], [Ci]), the dissimilarity index of [Ci] is significantly higher (p<0.01: yellow

background in Table 1) than that of the other odors ([IA EB], [IA Ci], [EB Ci], [IA], [EB]), and

there is little significant difference among the dissimilarity indices of the four odors [IA, Ci],

[EB, Ci], [IA], and [EB] (white background in Table 1). This result is generally consistent with

the discrimination rates of mice, as shown in the second column of Table 1.

In the above simulations, the Hebbian learning rule [20, 24] was used to learn the synapse

connection matrix H. Fig 5(a) shows the parameters in H with respect to time, and Fig 5(b)

shows the activity pattern of the mitral layer with respect to the respiratory cycle. Fig 5(a) con-

firms the convergence of the synapse connection parameters within five respiratory cycles. Fig

5(b) demonstrates that part of the input activity pattern has been enhanced, while the remain-

der is inhibited as the Hebbian learning evolves.

The parameters zm and zg, determine the number of neighbor units connected to each

mitral and granular unit, and correspond to the axonal length extended from the mitral cells

and granular cells in the actual olfactory bulb, respectively. To test the dependency on the con-

nection structure, the parameters zm and zg, were iteratively varied over the range 3–7 and 13–

17, respectively (giving a total of 25 parameter combinations). The resultant correlations

of 20 sets of synapse connection parameters. Orange and blue lines above the bars denote a significant difference of p<0.01 between odor pairs.

Orange lines represent multiple comparison results from the simulation, and blue lines represent that of experiments on mice. (c) Scatter plot between

discrimination rates of mice obtained from experiments and dissimilarity index E obtained from simulations. The figure shows a scatter plot between

the dissimilarity index and discrimination rate. The error bars correspond to those in (b).

doi:10.1371/journal.pone.0165230.g004

Table 1. Difference between discrimination rates (Experiment) of odor pairs and that between dissimi-

larity index (Simulation).

Odor pair Experiment Simulation

[IA, EB]-[IA, Ci] ** **

[IA, EB]-[EB, Ci] ** **

[IA, EB]-[IA] ** **

[IA, EB]-[EB] ** **

[IA, EB]-[Ci] ** **

[IA, Ci]-[EB, Ci] - -

[IA, Ci]-[IA] - -

[IA, Ci]-[EB] - **

[EB, Ci]-[IA] - -

[EB, Ci]-[EB] - -

[IA]-[EB] - -

[Ci]-[IA] - **

[Ci]-[EB] ** **

[Ci]- [IA, Ci] ** **

[Ci]- [EB, Ci] ** **

**: p<0.01

doi:10.1371/journal.pone.0165230.t001
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between the dissimilarity index E and discrimination rate of mice [16] are shown in Fig 6,

from which the best parameter combination was determined to be zm = 4 and zg = 15.

Discussion

Fig 4(a) shows that the output of the glomerular layer for the odor [IA, EB, Ci] is a linear addi-

tion of the activity patterns of each odorant component. This representation is consistent with

the measurement data provided by Belluscio and Katz [11]. The output of the mitral layer sup-

pressed part of the activity in the glomerular layer, which may correspond to selective adapta-

tion. Indeed, Fig 4(c) confirms that there is a strong correlation between the dissimilarity

index E and the discrimination rate of mice (r = 0.88, p = 0.019). The mice find it difficult to

distinguish between the full mixture odor [IA, EB, Ci] and the subset mixture odor [IA, EB].

These results can be interpreted as the mice learning to selectively adapt and attend to certain

glomeruli, which happen to be very similar for the full mixture as well as the subsets that mice

have difficulty identifying.

Fig 4 also show that accurate perceptual similarity of odors [IA, Ci], [EB, Ci], [IA Ci], [IA],

and [EB] to odor [IA EB Ci] are difficult to predict, and the correlation largely depends on [IA,

Fig 5. Results of Hebbian learning. (a) Convergence of the synapse connection strength of H. (b) Changes of activity patterns in

mitral layer. The deep red parts are the most activated and blue parts are least activated.

doi:10.1371/journal.pone.0165230.g005
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Fig 6. Parameter set ζm, ζg and prediction accuracy. Pearson correlations between dissimilarity index E

and discrimination rate of the mice obtained from experiments are plotted with different ζg and ζm.

doi:10.1371/journal.pone.0165230.g006
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EB] and [Ci]. However, Table 1 demonstrates that the model can predict three levels of odor

similarity: odor [IA, EB] is significantly similar to [IA, EB, Ci], odor [Ci] is significantly dis-

similar to [IA, EB, Ci], and odors [IA, Ci], [EB, Ci], [IA], and [EB] are moderately similar to

[IA, EB, Ci]. In this regard, the results of multiple testing presented in Table 1 indicate the

robustness of the prediction ability of the model against random initial values of connection

matrices H, W, and L. The proposed model can therefore be considered to have the ability to

predict the perceptual similarity between odors. In other words, as selective adaptation was

observed in the odor discrimination rate of mice and the model can predict this discrimination

rate, we can conclude that the model is sufficiently accurate to account for selective

adaptation.

Fig 5(a) shows that the synapse connection parameters converged after Hebbian learning,

and the learning step can be terminated after five respiratory cycles. Fig 5(b) shows that part of

the activity pattern input from the glomerular layer to the mitral layer was enhanced, whereas

the other part was suppressed. This simulation result may correspond to the measurement

data reported by Giraudet et al. [19], which indicated that one of the binary mixture compo-

nents generally dominates the activity pattern on the mitral layer. Therefore, the measurement

data of Giraudet et al. [19] may be a neural representation of selective adaptation in the olfac-

tory system. Further investigation into selective adaptation should therefore measure the activ-

ity of mitral cells. In addition, as the selective adaptation emerged from Hebbian learning, our

approach could be used to account for the difference in perceptual characteristics caused by

odor experiences.

From the results of the parameter search described in Fig 6, the connection range parame-

ters of mitral cells and granular cells were determined to be zm = 4 and zg = 15, which yields

the highest correlation with the odor discrimination rates of mice [16]. The anatomy of the

olfactory bulb, however, is not consistent with this straightforward result, because the den-

drites extending from the granular cells are shorter than those from the mitral cells [32]. How-

ever, as the number of granular cells is approximately 100 times that of mitral cells [26], we

assumed that the granular cells have a wider influential range than the mitral cells, and

searched within the range of 3 ≦ zm≦ 7, 13 ≦ zg≦ 17. While this assumption was derived

from a previous olfactory model proposed by Linster et al. [25], it is also possible that the corti-

cal feedback onto granular cells gives a broader view and suppresses the response of mitral

cells in an odor-selective manner. It has long been known that the olfactory cortex sends feed-

back to the olfactory bulb [33]. The role of this feedback was analyzed by Boyd et al. [34], who

found that pyramidal cells in the olfactory cortex send odor-selective excitatory feedback to

glomerular cells in the olfactory bulb, which gates the response of the mitral cells.

The proposed model and the above discussion are based on the assumption that the sup-

pression of certain activities in the olfactory bulb is the cause of selective adaptation. If this is

correct, there are at least two more mechanisms that could be involved in selective adaptation.

1. Intraglomerular inhibition through periglomerular cells

Interglomerular inhibition can decorrelate similar sensory inputs [35]. Selective adaptation

may be a side effect of such a decorrelation.

2. Inhibitory feedback from pyramidal cells in the olfactory cortex to the mitral cells via glo-

merular cells

Selective adaptation should involve a learning process and be modulated according to the

given task, because successive odor discrimination experiments on mice produced substan-

tially improved discrimination rates for odor [IA EB] against odor [IA EB Ci] [16]. Such task-

oriented learning can only be directed by higher brain functions. In addition, the cortical
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inhibitory feedback to the olfactory bulb helps amplify the odor-evoked inhibition [34], which

is an important aspect of selective adaptation. Therefore, cortical feedback is quite possibly

involved in selective adaptation and its modulation.

In addition to the above scenarios, Linster et al. proposed the following mechanism:

3. Synaptic modulation in the olfactory cortex

Selective adaptation may also be implemented in the olfactory cortex. Combined analysis of

computer models and behavior experiments on mice suggests that synaptic adaptation and

synaptic potentiation in the olfactory cortex can cause odor-specific habituation [36], which is

similar to selective adaptation. (Please note that this study did not discuss odorant mixtures or

measure activity patterns.)

Although our simulation results suggest that selective adaptation forms solely in the olfac-

tory bulb, the above possibility should be considered in future to clarify the relationship

between selective adaptation and internal representation in the olfactory bulb and olfactory

cortex. To achieve this goal, further neural activity data are required from corresponding

behavior experiments.

Conclusion

We have proposed an olfactory model based on previous models [19, 20], as well as some bio-

logical facts revealed in previous studies. The proposed model was used to simulate an odor

discrimination experiment performed by Takiguchi et al. [16], and predicted the perceptual

similarity observed in mice. Our results indicate that the proposed model is able to account for

selective adaptation in the olfactory system, as observed in the odor discrimination rate of

mice. We plan to investigate whether the proposed model is also applicable to humans by clari-

fying their selective adaptation characteristics, and then improving the proposed model to pre-

dict humans’ perceptual characteristics.
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