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Abstract

Social learning theory posits that adolescents learn to adopt social norms by observing the behaviors of others and internalizing the
associated outcomes. However, the underlying neural processes by which social learning occurs is less well-understood, despite exten-
sive neurobiological reorganization and a peak in social influence sensitivity during adolescence. Forty-four adolescents (Mage = 12.2
years) completed an fMRI scan while observing their older sibling within four years of age (Mage = 14.3 years) of age complete a risky
decision-making task. Group iterative multiple model estimation (GIMME) was used to examine patterns of directional brain region
connectivity supporting social learning. We identified group-level neural pathways underlying social observation including the ante-
rior insula to the anterior cingulate cortex and mentalizing regions to social cognition regions. We also found neural states based on
adolescent sensitivity to social learning via age, gender, modeling, differentiation, and behavior. Adolescents who were more likely
to be influenced elicited neurological up-regulation whereas adolescents who were less likely to be socially influenced elicited neuro-
logical down-regulation during risk-taking. These findings highlight patterns of how adolescents process information while a salient
influencer takes risks, as well as salient neural pathways that are dependent on similarity factors associatedwith social learning theory.

Key words: adolescence; fMRI; social learning; siblings; risk taking

Adolescents develop behaviors and attitudes associated with
risk taking through modeling the actions of other individuals
(e.g. Whiteman et al., 2014). According to social learning the-
ory, adolescents learn social norms by observing the behaviors
of others and internalizing the associated outcomes (Bandura,
1977; Akers et al., 1979). Adolescents are especially sensitive to
social cues as a result of rapid biopsychosocial development and
dynamic shifts in environmental contexts during adolescence
(Gardner and Steinberg, 2005; Blakemore and Robbins, 2012;
Perino et al., 2016; Casey et al., 2019), including influence from
parents, peers and siblings (Telzer et al., 2018). This growing litera-
ture suggests that adolescent learning is dependent on their social
context such that adolescents will change their perception of risk
and prosocial attitudes based on the opinions endorsed by peers
(Knoll et al., 2017; Foulkes et al., 2018). While social influence peaks
during adolescence (Blakemore and Mills, 2014), as well as exten-
sive neurobiological reorganization of the adolescent brain during
puberty (Casey et al., 2019), the underlying neural processes by
which social learning occurs is less well-understood.

Developmental neuroscience research has identified brain
regions associatedwith decision-making and learning during ado-
lescence. In particular, a recent meta-analysis identified the
ventral striatum (VS), anterior insula (AI) and medial prefrontal
cortex (mPFC) as key brain regions involved in decision-making
across social contexts (van Hoorn et al., 2019). Indeed, the
VS is involved in reward processing, particularly in the pres-
ence of social cues (Chein et al., 2011; Perino et al., 2016),
the mPFC is implicated in regulation and value-based decision-
making (Qu et al., 2015; Blankenstein et al., 2018) and the
AI integrates feedback from affective and cognitive regions to
guide decision-making and learning processes (Jones et al., 2014;
Op de Macks et al., 2018). Regions implicated in salience detection
during context-dependent decision-making may also underlie
social learning, including the amygdala, which is involved in
affective processing (Mather et al., 2004), and the anterior cin-
gulate cortex (ACC), which is involved in decision-making during
reward-dependent processing (Jones et al., 2011), particularly in
processing social information during learning (Kendal et al., 2018).
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Additional social cognition regions, such as the temporoparietal
junction (TPJ), superior temporal sulcus (STS), temporal poles and
precuneus, are involved in mentalizing during decision-making
in adolescence (van Hoorn et al., 2014; Welborn et al., 2016).
Finally, adolescent decision-making across various social con-
texts includes receiving visual information, such as goal-oriented
actions. Error-processing of incorrect actions associates with acti-
vation in the intraparietal sulcus (IPS) and may be partially
responsible for interpreting intentions in peer actions (Hamilton
and Grafton, 2006), and the fusiform face area (FFA) is involved in
visual attention given to people relative to other objects and may
support observational processes being receptive to social cues
(Schultz et al., 2003; Rhodes et al., 2004).

Although these neuroscience models have examined key
regions associated with social influence on adolescent learn-
ing and decision-making, they typically rely on group trends
despite research suggesting a large degree of individual variabil-
ity in adolescent risky decision-making (Silverman et al., 2015;
Blankenstein et al., 2018). Further, prior work typically examines
these brain regions in isolation using univariate brain activa-
tion rather than as a network of functional connectivity between
brain regions. Using social learning theory as a guiding frame-
work, identifying functional pathways in the adolescent brain
that underlie social learning during risk taking may contribute to
our understanding of context-specific behavioral outcomes dur-
ing adolescence. Using group iterative multiple model estimation
(GIMME; Gates and Molenaar, 2012), we can utilize variability
within and across individuals to reliably examine patterns of
directional brain region connectivity that support social learn-
ing. In addition, GIMME estimates functional connectivity across
a task such that previous time points are controlled for to test
directionality (Lane and Gates, 2017), which allows us to capture
change in neural connectivity underlying the complex processes
of social learning. Using sophisticated tools such as GIMME pro-
vides the opportunity to accurately identify social learning con-
nectivity maps, as well as account for variability in individuals,
and time as the process of social learning unfolds.

Individuals are selective in who they attend to in the con-
text of social learning (Kendal et al., 2018), suggesting that the
characteristics of a model, and the way in which adolescents
perceive a model, likely influences the degree to which ado-
lescents learn from others. Sibling relations provide a fruitful
opportunity to examine social learning given their extensive time
spent in joint activities and observing one another in shared envi-
ronments (Tucker et al., 2001; Buchanan et al., 2009). Previous
literature on social proximity during development has identified
greater engagement in health-risk behaviors for adolescents who
maintain close ties with social agents who model risky behaviors
(Ennett et al., 2006; Christakis and Fowler, 2013). In a peer net-
work, social proximity and status may determine the direction
of influence, which tends to be multidirectional as adolescents
observe and learn from one another (Meldrum et al., 2012). How-
ever, for siblings, the direction of influence tends to be unidirec-
tional. Due to age and experience, older siblings generally have
a unique position of power relative to a younger sibling and are
used as a source of reference by younger siblings when navigat-
ing their own personal development (Furman and Buhrmester,
1985). This imbalance of power can create an asymmetric effect
by which younger siblings perceive closer social proximity to their
older sibling(s) than vice versa, and, thus, younger siblings are
more readily susceptible to influence (Magee and Smith, 2013),
especially in same-sex dyads (Whiteman et al., 2011). Indeed,

older and younger siblings show similar behavior in their sub-
stance use, risky sexual behaviors and delinquency (Stormshak
et al., 2004; Whiteman et al., 2014; Samek et al., 2018). Moreover,
we have shown in this same sample that similarity in siblings’
risky (and cautious) behavior increases following observation of
older sibling behavior during adolescence (Rogers et al., 2021).
Furthermore, sibling risk-taking behavior predicts adolescent risk
taking above and beyond that of parents and peers (Duncan et al.,
1996; Pomery et al., 2005; Yurasek et al., 2018), highlighting the
unique position of siblings as models in adolescent social learn-
ing. Of note, the extent to which sibling influence plays a role in
adolescent behavior becomes stronger among sibling dyads with
increased characteristic similarities such as being closer in age
(Feinberg and Hetherington, 2000; Samek and Rueter, 2011), same
sex (Rowe and Gulley, 1992; Slomkowski et al., 2001) and when
older siblings are perceived as a valuable model and younger sib-
lings do not try to differentiate from them (Whiteman et al., 2007).
When characteristically similar in age or sex or when individu-
als hold favorable views of their older sibling, adolescents may
be more inclined to adopt observed sibling behavioral patterns
during circumstances involving risk or uncertainty (D’Amico and
Fromme, 1997; Loewenstein et al., 2001; Slomkowski et al., 2001).

Developmental neuroscience has begun examining functional
connectivity between brain regions during social cognition in
adolescence (McCormick et al., 2018), and these neural path-
ways may provide unique information about how social learning
differs across different types of dyads. Thus, we investigated
the functional brain connections that underlie adolescent social
learning from older siblings, particularly based on sibling age
spacing, sex composition of the sibling dyad, adolescent percep-
tion of older sibling modeling, adolescent differentiation from
their older sibling modeling and change in adolescents’ behav-
ior after observing their older sibling. To capture social learn-
ing, adolescents completed an functional magnetic resonance
imaging (fMRI) scan while they observed their older siblings
complete a risky decision-making task, the Yellow Light Game
(YLG; Op deMacks et al., 2018). GIMME (Gates andMolenaar, 2012)
was conducted to identify group network connectivity maps of
social learning. In addition, five confirmatory GIMME analyses
were conducted to create subgroup connectivity maps to identify
differences between adolescents who are more likely to be influ-
enced (i.e. high-influence subgroup) and those who are less likely
to be influenced (i.e. low-influence subgroup) based on social
learning factors: demographics that suggest higher probability
of influence (i.e. age spacing and sex composition), self-reported
modeling and differentiation that suggest higher probability of
influence and actual influence (i.e. change in task behavior). Given
that these social learning factors likely distinguish the neurobio-
logical processing adolescents exhibit, we proposed that signif-
icant paths would emerge differentially between high-influence
subgroups (e.g. closer in age siblings) compared to low-influence
subgroups (e.g. further in age siblings), as well as between dif-
ferent sources of influence (e.g. closer in age versus self-report
influence).

Methods
Participants
Participants included 44 families with a focal adolescent
(Mage =12.2 years, range=10.6–14.3; 23 females) and their older
sibling (Mage =14.6 years, range=12.7–17.1; 20 females). Inclu-
sion criteria included being 10–14 years old, with an older sibling
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Table 1. Demographics of adolescent ethnicity, sex composition
of sibling dyads, family total income, parental education and
parental marital status (n=44)

Variables n (%)

Adolescent ethnicity
Latino/Hispanic 5 (11.4%)
African American/Black 4 (9.1%)
Asian American/Pacific Islander 1 (2.3%)
Caucasian/White 31 (70.4%)
Multiethnic 3 (6.8%)

Sex composition of sibling dyads
Female–female 9 (20.5%)
Male–male 10 (22.7%)
Female–male 14 (31.8%)
Male–female 11 (25.0%)

Total family income
< $45000 3 (6.8%)
$45 000—$74999 11 (25.0%)
$75 000—$99999 13 (29.5%)
$100000—$150000 11 (25.0%)
> $150 000 6 (13.6%)

Participating parent education
Some high school 1 (2.3%)
High school diploma 1 (2.3%)
Some college 6 (13.6%)
Associate’s degree 6 (13.6%)
Bachelor’s degree 12 (27.3%)
Some graduate school 3 (6.8%)
Master’s degree (e.g. M.A., M.SW.) 12 (27.3%)
Professional degree (e.g. M.D., Ph.D.) 3 (6.8%)

Participating parent marital status
Divorced or never married 3 (6.8%)
Married 34 (77.3%)
Divorced and remarried 7 (15.9%)

within 4 years of age (M age spacing=2.43 years, range=1.19–
4.29). Criteria for siblingship included that the older sibling lived
in the home for the duration of the focal adolescent’s life as a sib-
ling. Family demographic information is displayed in Table 1. Both
adolescent participants (n=88) from each family were screened
for and free from MRI contraindications, psychological disorders,
learning disabilities and neurological-altering medications. One
additional sibling dyad was excluded from analyses because one
adolescent did not complete the scan due to claustrophobia.

Both older and younger siblings completed an fMRI scan and
questionnaires at the session. Older siblings first completed one
run of the risky decision-making task (described below) during an
fMRI scan, during which the screen was recorded using a com-
puter screen recording program (Bandicam, Seoul, Korea). The
recording showed only the screen from the participant’s point
of view. Focal adolescents then completed an fMRI scan, during
which they completed two runs of the same task, then observed
the recording of their older sibling’s performance on the task,
which was the social learning run of interest in this study, and
then completed the task one more time. Although participants
were informed during the consenting process that their perfor-
mance might be shared with family members, older siblings were
not made explicitly aware that their task was being recorded dur-
ing the session. However, focal adolescents were informed prior
to the session that their older sibling’s performance had been
recorded, and they were explicitly instructed during the social
learning condition to not press any buttons but to watch how
their sibling played the game. The same participants and task was

used in Rogers et al. (2021), which utilized the first and last runs
of the task to examine neural similarity in sibling dyads during
risky decision-making. All participants provided written assent
with parental consent in accordance with the institutional review
board.

Risky decision-making task
Older and younger siblings completed the YLG (Op de Macks et al.,
2018), a risky decision-making task adapted from the Stoplight
task (Chein et al., 2011), to examine adolescent social learning of
risk taking from older siblings. The YLG paradigm and sequence
of rounds are displayed in Figure 1. This task serves as a model
of unpredictable risk and offers participants the choice between
risky and safe decisions, which more closely resembles real-life
decision-making. Participants completed a virtual driving course
in which a car from the driver’s point of view is driven along a
straight road with several intersections. Each intersection is con-
trolled by a stoplight that turns yellow as the car approaches,
signaling the need for a decision. Participants were instructed to
complete the course as quickly as possible by choosing to either
stop or go at each intersection. Choosing to go through the inter-
section is the fastest option and results in no delay if successful
and is paired with a positive chiming sound and a blue visual tilde
cue. However, if a go decision results in a crash, the car is delayed
5 s and is paired with a honking car sound, crash noise and bro-
ken windshield cue. Choosing to stop results in a 2.5-s delay and
is paired with either an approaching car that honks or an empty
intersection. Importantly, any cars that approach the intersection
are not visible to the participant until after they have made their
decision.

Participants were trained on the YLG by playing two full rounds
before the scan to improve engagement and eliminate learning
effects, which was successful in this sample (see Rogers et al.,
2021). Participants received warning cues if they did not choose
to go or stop, which included a red X cue, error noise and a 5-s
delay, which prompted engagement in the task. The no-response
trials resulted in a 1-s delay during the actual scan, but partici-
pants were not explicitly prompted about this change. Each run
of the task included 30 intersections and lasted for approximately
4min. The probability of a car passing through the intersection
was kept constant at 50%, and the perceived distance to the yel-
low light varied between 200 and 250 feet. Participants were not
made explicitly aware of the probability of crashing. The timing
and onset of the yellow light were 1.5 s after the previous trial and
200 or 250ms prior to the onset of the red light. All runs of the
YLG were different from one another in the onset of yellow and
red lights, as well as the intersections in which cars approached
the intersection.

Subgrouping measures
Adolescents were separated into two subgroups (i.e. high influ-
ence versus low influence) across five measures based on how
likely sibling characteristics and dynamics were to influence ado-
lescents. This resulted in a total of 10 overlapping subgroups.
For instance, an individual could be considered to be in the
‘high-influence’ subgroup based on closeness in age but in the
‘low-influence’ subgroup based on sex composition (see Figure 2
for characteristics and ns of each subgroup). The distribution of
adolescents who belonged to a given number of the five high-
influence subgroups across the five sets of analyses was normally
distributed such that being a member in high-influence sub-
groups varied from 0 to 5 (0 high-influence subgroups: n=3;
1 high-influence subgroup: n=7; 2 high-influence subgroups:
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Fig. 1. OS=older sibling; YS=younger sibling. (A) Decision outcomes of YLG. (B) Sequence of YLG rounds across OS (purple outline) and YS (blue
outline) sessions. Red box highlights the social learning run of interest.

n=11; 3 high-influence subgroups: n=11; 4 high-influence sub-
groups: n=9; 5 high-influence subgroups: n=3).

Sibling age spacing
Age spacing between siblings was computed by subtracting ado-
lescent age from older sibling age, with higher scores indicating
greater distance in age spacing. Given that the average age spac-
ing between siblings was 2.5 years apart (s.d.=0.83, min=1.19,
max=4.28), dyads that were less than 2.5 years apart in age were
designated as high influence, whereas those that were more than
2.5 years apartwere labeled as low influence. These age subgroups
are developmentally appropriate as adolescent siblings closer in
age report higher levels of interaction, including intimacy and
conflict (Campione-Barr and Killoren, 2019). Separating individ-
uals based on the varied dimensions below allowed for greater
insight into the potential brain mechanisms that associate with
each type of social learning influence.

Sex composition of sibling dyad
Participants reported on their biological sex, and sibling dyads
were separated as same-sex andmixed-sex (i.e. male and female).
Same-sex sibling dyads were specified as high influence, whereas
mixed-sex dyads were designated as low influence. One par-
ticipant was excluded due to their recent identification as a
transgender individual (n=43).

Adolescent perception of older sibling modeling
Adolescents completed eight items on modeling from the Sibling
Influence Scale (Whiteman et al., 2010) to measure the degree
to which adolescents perceive that they model their older sib-
ling’s behavior. The scale ranged from 1=never to 5=very often
with higher scores indicative of higher older sibling influence on

adolescent behavior. Two example items included ‘From watch-
ing my sibling, I have learned how to do things’ and ‘My sib-
ling gives me advice on how to behave’. The internal reliability
was satisfactory (0.733). Adolescents were separated into sub-
groups based on the scale 3= sometimes such that adolescents
who reported more frequent sibling modeling (score≥3) were
specified as high influence, whereas adolescents who reported
less (score< 3) were designated as low influence. These two sub-
groups also closely corresponded to a mean split of the data
(M=2.84, s.d.=0.66, min=1.63, max=4.38). Four participants
were excluded due to missing data (n=40).

Adolescent differentiation from older sibling
Adolescents also completed 10 items from the Sibling Influence
Scale (Whiteman et al., 2010) on differentiation or the degree to
which they try to act different than their sibling. The scale ranged
from 1=never to 5=very often and was reverse coded such that
higher scores indicated lower levels of adolescents trying to dif-
ferentiate from their older siblings. Two example items included
‘I live my life differently so I won’t be like my sibling’ and ‘I try
to make different choices than my sibling’. The internal relia-
bility was good (0.815). Again, adolescents were separated into
subgroups based on the scale 3= sometimes such that adoles-
cents who reported less differentiation from their older sibling
(score≥3) were specified as high influence, whereas adolescents
who reported more (score<3) were designated as low influence.
These two subgroups also closely corresponded to a mean split
of the data (M=3.07, s.d.=0.69, min=1.30, max=4.20). Four
participants were excluded due to missing data (n=40).

Adolescent behavior change
Adolescents were separated into subgroups based on their change
in behavior between baseline (i.e. first round of the task) and
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Fig. 2. Five subgroup models were estimated based on high- and low-influence subgroups. Samples sizes for each subgroup are noted in their
respective boxes.

after observing their sibling on the YLG. A continuous measure
of younger sibling’s change in risky behavior toward their older
sibling’s risky behavior was used from Rogers et al. (2021), with
positive scores reflecting change toward their sibling, zero reflect-
ing no change and negative scores reflecting change away from
their sibling (M=2.30, s.d.=3.82, min=−7, max=12). As previ-
ously reported, shifts in adolescent behavior were significant such
that adolescents changed their behavior toward the behavior of
their older sibling following observation (Rogers et al., 2021). These
changes in behavior were toward more or less risky behavior, ulti-
mately reflecting the behavior of the older sibling. Subgroupswere
created based on this variable such that adolescents whose risky
behavior changed in the direction of their older sibling’s risky
behavior were designated as high influence, whereas adolescents

whose risky behavior did not change in the direction of their older
sibling’s risky behavior were specified as low influence, includ-
ing adolescents who did not change their behavior at all. Three
participants were excluded because their baseline rate of risk tak-
ing was the same as their older sibling and, thus, change toward
similarity could not be examined (n=41).

fMRI data acquisition
Brain images were collected using a research-dedicated 3 Tesla
Siemens Prisma MRI scanner. The YLG was presented on a com-
puter screen and projected through a mirror. A high-resolution
structural T2*-weighted echo-planar imaging (EPI) volume (repeti-
tion time (TR)=2000ms; echo time (TE)=25ms; matrix=92×92;
field-of-view (FOV)=230mm; 37 slices; slice thickness=3mm;

Fig. 3. ROIs used in the fMRI analyses.
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voxel size 2.5 × 2.5 × 3mm3) was acquired coplanar with a T2*-
weighted structural matched-bandwidth (MBW), high-resolution,
anatomical scan (TR=5700ms; TE=65ms; matrix=192×192;
FOV=230mm; 38 slices; slice thickness=3mm). In addi-
tion, a T1* magnetization-prepared rapid-acquisition gradient
echo (MPRAGE; TR=2400ms; TE=2.22ms; matrix=256×256;
FOV=256mm; sagittal plane; slice thickness=0.8mm; 208
slices) was acquired. The orientation for the EPI and MBW scans
was oblique axial tomaximize brain coverage and to reduce noise.

fMRI data preprocessing and analysis
Preprocessing was carried out using FSL (FMRIB’s Software
Library, version 5.0.10; www.fmrib.ox.ac.uk/fsl). Preprocessing
was applied for motion correction using MCFLIRT (Jenkinson
et al., 2002), skull stripping using BET (Smith., 2002), spatial
smoothing using a 6-mm Gaussian kernel of full width at half
maximum, high-pass temporal filtering with a 1280-s cutoff to
remove low-frequency drift and grand-mean intensity normaliza-
tion of the entire 4D dataset by a single multiplicative factor. In
addition, independent components analysis (ICA) denoising for
motion and physiological noise was conducted using MELODIC
(version 3.15) in conjunction with an automated component clas-
sifier (Tohka et al., 2008; Neyman–Pearson threshold=0.3). For
spatial normalization, the EPI time series was registered to the
T1 image with a linear transformation, followed by a white-
matter boundary-based transformation (Greve and Fischl, 2009)
using FLIRT. Next, linear and nonlinear transformations to stan-
dard Montreal Neurological Institute (MNI) 2-mm brain were per-
formed using Advanced Neuroimaging Tools (ANTs; Avants et al.,
2011) and then spatial normalization from the EPI image to MNI
space. Participants exhibited motion of less than 2mm for inter-
slice movement on 90% or more of slices; however, slices with
greater than 3 mm of motion were scrubbed from each individ-
ual’s time series to eliminate spikes in movement across each
time series. After scrubbing, the time-series data ranged from 93
to 114 TRs (M=104.23; s.d.=5.12).

A time series of each a priori region of interest (ROI) was
extracted for each participant. A total of 20 a priori ROIs were
selected based on previous neuroimaging work examining the
social brain and risk taking during adolescence (McCormick et al.,
2018; van Hoorn et al., 2019). ROIs included the left and right
VS given their relation to reward processing during risk taking
(Schreuders et al., 2018), as well as the salience of reward process-
ing in social contexts during adolescence (Telzer et al., 2018; van
Hoorn et al., 2019), and were defined via Neurosynth by searching
‘ventral striatum’ and thresholding the resulting meta-analytic
image at Z=14. In addition, 18 brain regions were identified as
salient in functional connectivity of the social brain during ado-
lescence and defined based on the ROIs used in McCormick et al.
(2018), including bilateral masks of the AI, temporal poles (TP),
posterior STS (pSTS), IPS, TPJ, amygdala, mPFC and FFA, as well
as the ACC and precuneus. These ROIs were defined from a num-
ber of sources, including the Harvard-Oxford (ACC, AI, amygdala;
Harvard Center for Morphometric Analysis) and SPM Anatomy
toolbox (IPS, TP, FFA; Eickhoff et al., 2005) probabilistic atlases,
the Saxe Lab social brain ROIs (TPJ, precuneus; Dufour et al., 2013)
and the social brain ROIs defined by (Blakemore and Mills, 2014).
(mPFC, pSTS). No ROIs had any overlapping voxels. A brain map
containing all the ROI masks is shown in Figure 3 and is available
on Neurovault (https://neurovault.org/collections/GCIXDBNW/).

Group iterative multiple model estimation
The time series from the entire social learning run (i.e. ado-
lescents’ observation of their older sibling’s performance on
the YLG), including decisions and feedback trials, was used in
GIMME (Gates and Molenaar, 2012). GIMME utilizes heteroge-
neous individual- and group-level information to reliably examine
patterns of directional brain region connectivity and construct
functional. Although each participant’s time serieswas a different
length due to the self-paced nature of the YLG, GIMME can model
unequal amounts of data between participants (Gates et al., 2014).
And while prior work has shown that improvement in recovery of
paths occurs as the length of time increases, we had more than
adequate lengths of time for all participants (far greater than the
T=60 minimum suggested by prior simulation work; Lane et al.,
2019). Additionally, prior work has confirmed that GIMME per-
forms well in identifying subgroup-specific paths even when the
subgroup sizes are unequal and has been tested for use with sam-
ple or subgroup sizes as low as 7 per subgroup (Gates et al., 2017).
Furthermore, GIMME performs satisfactorily modeling up to 20
ROIs (Henry et al., 2019).

GIMME provides estimates for contemporaneous (cross-
sectional effects between ROIs; i.e. ROI1 at t predicts ROI2 at t),
lagged (longitudinal effects between ROIs; i.e. ROI1 at t-1 predicts
ROI2 at t) and autoregressive (longitudinal effects within ROIs)
pathways in the same analytic model. Importantly, including the
autoregressive effects improves the accuracy in recovering the
true directionality of the paths (Lane and Gates, 2017). Group-
level paths must yield significance (P<0.001) for at least 75% of
individuals to qualify as a group path, and all other individual
paths are kept if they improve model fit. Thus, significant path-
ways for the majority of individuals are estimated, whereas path-
ways that are nonsignificant are set to zero across individuals,
yielding a group-level map that represents the majority of the
sample, as well as individual-level paths (Henry et al., 2019). Of
note, GIMME corrects for multiple comparisons at P<0.05 per
the number of paths tested per person and the number of sub-
jects. Further, GIMME encompasses a parsimonious approach
as it stops model-building once the model obtains a good fit,
which together yields to a very low false-positive rate (Nestler
and Humberg, 2021). GIMME is freely available through the open-
source R platform, and additional model information can be
found in Gates et al. (2017).

Subgroup-level analyses on predefined subsets of individu-
als can also be performed using GIMME in an extension called
confirmatory subgroup GIMME (CS-GIMME), which can also

Table 2.Differences in younger sibling risky behavior toward older
sibling risky behavior by high- and low-influence subgroups

Difference in behavior
toward older sibling

High influence Low influence
Subgroup models M (s.d.) M (s.d.) t-value

Sibling age spacing 3.40 (3.61) 0.74 (3.57) 2.437*

Sex composition 2.42 (3.44) 2.12 (4.11) 0.258
Older sibling modeling 2.96 (3.00) 1.22 (4.61) 1.519
Adolescent differentiation 2.90 (3.96) 1.65 (3.61) 1.092

Note: M=mean; s.d.= standard deviation. Risky behavior measured as
number of go decisions younger adolescents took in the Yellow Light Game.
*P<0.05. Two-tailed significance.

https://www.fmrib.ox.ac.uk/fsl
https://neurovault.org/collections/GCIXDBNW/


C. R. Rogers et al. 1013

Fig. 4. Group-level brain connectivity map showing directional pathways for at least 75% of focal adolescents during observation of older sibling
decision-making.

L= left; R= right; mPFC=medial prefrontal cortex; TP= temporal pole; AI=anterior insula; ACC=anterior cingulate cortex; Amy=Amygdala; VS=ventral
striatum; FFA= fusiform face area; IPS= intraparietal sulcus; Precun=Precuneus; TPJ= temporal parietal junction; pSTS=posterior superior temporal sulcus.
Autoregressive paths (brain region predicted by same brain region previously) were estimated but not shown in the figure. All brain region paths were
contemporaneous associations.

satisfactorily model up to 20 ROIs (Henry et al., 2019). This
approach uses a priori subgroup assignments to examine addi-
tional paths that emerge for each respective subgroup. Signifi-
cant subgroup pathways will yield a beta coefficient and undergo
Bonferoni correction at P<0.05, whereas nonsignificant pathways
across individuals are constrained to zero. Five sets of CS-GIMME
results were examined to identify adolescents who may be highly
susceptible versus less susceptible to social influence based on
social learning theory and behavioral findings. These subgroup
models included: sibling age spacing, sex constellation of the sib-
ling dyad, older sibling modeling, adolescent differentiation from
older siblings and adolescent behavioral change toward older sib-
ling behavior (see Figure 2). The lowest sample size for a subgroup

included 11 participants, which is satisfactory for CS-GIMME to
perform well (Henry et al., 2019).

Results
Group-level results
We first examined the group-level connectivity patterns in the
adolescent brain during the observation of older sibling risk tak-
ing. These group-level paths existed across all five of the subgroup
allocation analyses, suggesting that these paths consistently exist
for adolescents engaged in this task. Group paths included asso-
ciations between all nine bilateral brain regions, which are dis-
played in Table 3 and Figure 4. Paths appeared from the AI to the
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ACC and from the TP to the amygdala. Paths from the bilateral
TPJ to the bilateral pSTS also emerged, with paths from the pSTS
to the TP and FFA. In addition, the TPJ also exhibited a path to the
precuneus and the IPS.

Subgroup-level results
Behavioral differences
We first conducted analyses to determine whether the high- and
low-influence subgroups showed significant changes in behavior
presocial and postsocial learning. Independent samples t-tests
were conducted to compare high- and low-influence subgroups,
with the exception of the subgroup for adolescent change in
behavior to avoid redundancy (Table 2). Specifically, these tests
examined differences in the degree to which younger sibling risky
behaviors changed in the direction of their older sibling’s risky
behaviors (using the continuous measure of behavior change,
as described in the methods section) between high- and low-
influence subgroups. Significant differences in behavior emerged
for the sibling age spacing subgroups such that adolescents in
the high-influence subgroup (i.e. closer in age to sibling) showed
more change in behavior toward their older sibling than the low-
influence subgroup (i.e. further in age to sibling; t(42)=2.44,
P=0.019, 95% CI [0.457, 4.869], d=0.742). The other three sub-
group models did not exhibit significant differences in behav-
ior from baseline to after observing older sibling performance.
Of note, these three subgroups did yield the expected patterns
of behavioral differences as adolescents in high-influence sub-
groups tended to exhibit a higher change in behavior compared
low-influence subgroups (see Table 2).

Subgroup-level connectivity
Subgroup-level connectivity analyses were conducted based on
social learning influence factors including dyad sex, age spac-
ing, modeling, differentiation and behavior (Figure 2). Each of
these subgroup models included a high-influence subgroup and
a low-influence subgroup, which are displayed in Supplemental

Table 3. Group-level connectivity pathways (supplement to
Figure 4)

Paths β s.d.

R mPFC → L mPFC 0.61 0.15
L AI → R AI 0.69 0.13
L TPJ → Precun 0.45 0.17
L IPS → R IPS 0.61 0.20
R TPJ → R pSTS 0.52 0.35
R pSTS → L pSTS 0.45 0.25
R TPJ → L TPJ 0.52 0.24
L FFA → R FFA 0.50 0.17
R TP → L TP 0.60 0.21
L Amy → R Amy 0.51 0.20
L VS → R VS 0.56 0.18
L pSTS → L FFA 0.38 0.19
L TP → L Amy 0.45 0.21
L TPJ → L pSTS 0.42 0.21
R pSTS → R TP 0.35 0.22
R TPJ → L IPS 0.34 0.34
R AI → ACC 0.37 0.21

Note: Significant group-level contemporaneous pathways. No lagged pathways
were significant.
L= left; R= right; mPFC=medial prefrontal cortex; TP= temporal pole;
AI=anterior insula; ACC=anterior cingulate cortex; Amy=Amygdala;
VS=ventral striatum; FFA= fusiform face area; IPS= intraparietal sulcus;
Precun=Precuneus; TPJ= temporal parietal junction; pSTS=posterior
superior temporal sulcus.

Table 4. High-influence subgroup-level pathways (supplement to
Figure 5)

Paths β s.d.

Closer in age
L TPJ → L mPFC 0.33 0.22
R pSTS → R FFA 0.22 0.19
R pSTS → R AI 0.15 0.28
L Amy → L AI 0.43 0.26
R TPJ → R mPFC 0.25 0.24
L TP → R mPFC 0.17 0.19

Same sex
R AI → R TPJ 0.28 0.24
R AI → R TP 0.31 0.15
R AI → R mPFC 0.17 0.19
L TPJ → R mPFC 0.28 0.20

More effective model
R FFA → Precun 0.10 0.18
L Amy → L AI 0.35 0.25
Lag: R TPJ → L TPJ −0.30 0.17

Less differentiation
R TPJ → Precun 0.33 0.11
ACC → L VS 0.36 0.17
R AI → R TPJ 0.23 0.19
R VS → R mPFC 0.15 0.14
L TPJ → R mPFC 0.22 0.24
R mPFC → R TP 0.22 .30
Lag: R TPJ → L pSTS −0.18 0.14
Lag: R IPS → L mPFC −0.07 0.11

More similar behavior
R TPJ → Precun 0.30 0.17
R mPFC → ACC 0.21 0.18
R TP → R Amy 0.30 0.25
R pSTS → R FFA 0.21 0.19
Lag: L IPS → R IPS −0.29 0.19

Note: Significant subgroup-level pathways for high-influence adolescents
during observation of older sibling decision-making. Lagged pathways are
denoted with ‘Lag’. All others represent contemporaneous associations.
L= left; R= right; mPFC=medial prefrontal cortex; TP= temporal pole;
AI=anterior insula; ACC=anterior cingulate cortex; Amy=Amygdala;
VS=ventral striatum; FFA= fusiform face area; IPS= intraparietal sulcus;
Precun=Precuneus; TPJ= temporal parietal junction; pSTS=posterior
superior temporal sulcus.

Figures S1–S5. In addition, collective patterns for high-influence
subgroups and low-influence subgroups are reported.

Neural paths in high-influence subgroups. Paths for the high-
influence subgroups are displayed in Table 4 and Figure 5. Several
collective patterns are noted. First, the AI and mPFC served as
hubs for connectivity across most of the subgroups. The AI evi-
denced input from the pSTS and the amygdala, and output to the
mPFC, TPJ and TP. Further, the mPFC exhibited input from sev-
eral regions (e.g. TPJ, TP, AI and VS) and displayed output to the
TP and ACC. Second, subcortical regions, such as the amygdala
and VS, provided input to the AI and mPFC, whereas the AI and
mPFC did not provide input to subcortical regions. The direction of
pathways from subcortical structures to cortical structures sug-
gests bottom-up processes. Third, several subgroups evidenced
significant lagged pathways that were negative, such that higher
activation in one brain region predicted later lower activation
in a different brain region across the task. The TPJ and IPS evi-
denced these lagged negative pathways to the pSTS, mPFC and
the corresponding hemispheric region.

Neural paths in low-influence subgroups. Paths for the low-
influence subgroups are displayed in Table 5 and Figure 6. Several
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Fig. 5. Subgroup-level brain connectivity map showing directional pathways for high-influence adolescents during observation of older sibling
decision-making.

L= left; R= right; mPFC=medial prefrontal cortex; TP= temporal pole; AI=anterior insula; ACC=anterior cingulate cortex; Amy=Amygdala; VS=ventral
striatum; FFA= fusiform face area; IPS= intraparietal sulcus; Precun=Precuneus; TPJ= temporal parietal junction; pSTS=posterior superior temporal sulcus.
Subgroup-level connectivity map showing directional pathways. Arrow colors indicate pathways for high-influence subgroups compared to low-influence
subgroups, where grey reflects group-level pathways. Autoregressive paths (brain region predicted by same brain region previously) were estimated but not shown
in the figure. Solid arrow paths represent maps contemporaneous associations, whereas dashed arrow paths represent lagged paths across observation.

collective patterns are observed. First, consistent with the high-
influence subgroups, low-influence subgroups showed a pattern
of concentrated pathways to and from the mPFC as a hub of con-
nectivity, exhibited by input from the TPJ and TP and output to
the TPJ, TP, VS and ACC. In kind, the AI emerged as a region
that provided substantial output to other brain regions, includ-
ing the TPJ, TP, FFA, pSTS and amygdala. However, this region
did not exhibit input from other brain regions. Second, in con-
trast with high-influence subgroups, subcortical regions, such
as the amygdala and VS, received input from the AI and mPFC.
However, the opposite direction of pathways was not exhibited.

The direction of pathways from subcortical structures to cortical
structures suggests top-down processes. Third, two low-influence
subgroups evidenced significant lagged pathways that were neg-
ative. Although these pathways were half in number compared
to the high-influence subgroups, the TPJ and precuneus provided
lagged negative input to the TPJ and IPS.

Discussion
Although social learning theory provides a framework for exam-
ining howadolescents adopt and internalize social norms through
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observation (Bandura, 1977), it is advantageous to better under-
stand the neural mechanisms that underlie this process. Devel-
opmental neuroscience has identified potential neural candidates
that may underlie social learning processes, including the neural
correlates of adolescent decision-making in social contexts (for a
meta-analysis, see van Hoorn et al., 2019), but these methods typ-
ically do not account for within-individual and within-group vari-
ability which is important for capturing individual differences. In
addition, prior work heavily relies on analyses that test univariate
brain activation rather than connectivity across key brain regions.
Thus, we used a social learning paradigm with older siblings and
an analysis that incorporated both individual and group differ-
ences (i.e. GIMME).We identified group-level pathways underlying
social observation in the adolescent brain, as well as pathways
specific to adolescents who were more, or less, likely to engage
in social learning. These findings highlight collective patterns of
how adolescents process information in the brain during social
observation, as well as important pathways in the brain that are
model-dependent based on factors associatedwith social learning
theory.

Two neural mechanisms of social observation appeared across
adolescents. First, the pathway from the AI to the ACC emerged
as an important pathway for adolescents to process information
during social learning, consistent with a recent paper exploring
risky decision-making using GIMME (McCormick et al., 2019). The
insular cortex serves as a hub and guides the salience network
in determining which aspects of the environment are salient
to attend to, specifically through coordination with the ACC to
drive other networks, such as the central external network to
initiate actions (Uddin, 2015). Dynamic functional connectivity
within this network occurs when individuals attend to environ-
ments with fluctuating stimuli (Kucyi et al., 2017), highlighting
the importance of the salience network in learning in complex
environments, particularly ones with social models. Our find-
ing suggests that the pathway from the AI to the ACC may be
foundational in processing information during social observa-
tion of risky decision-making. Second, we found that mentalizing
regions involved in perspective-taking and identifying relevant
social information, including the TPJ and TP (Blakemore andMills,
2014; Welborn et al., 2016; Lin et al., 2018), provided input to
social cognition regions, such as the pSTS, FFA and precuneus,
which specifically encode, identify salience and track errors in
social information (Gunther Moor et al., 2012; Zerubavel et al.,
2015; Stephanou et al., 2016). These pathways may facilitate the
identification of the utility of observing and integrating informa-
tion from a specific social context across adolescents. Together
these findings suggest that salience detection, via the AI to the
ACC pathway, and mentalizing, via a social cognition pathway
including the TP and TPJ to the pSTS, FFA and precuneus, are
important neural mechanisms of observation during adolescent
social learning.

Interestingly, the AI and mPFC both served as connectiv-
ity hubs to provide contextual social information during social
observation, but their roles were dependent on the influen-
tial nature of the older sibling on adolescent social learning.
For younger siblings who are more likely to be influenced by
their older siblings, we found that affective regions such as the
VS and amygdala directed functional connectivity to the AI, a
brain region associated with salience detection and decision-
making (Smith et al., 2014; Uddin, 2015), and the mPFC, a brain
region implicated in regulation and value-based decision-making
(McCormick and Telzer, 2017; Blankenstein et al., 2018), during
social observation. This trend of affective brain regions driving

Table 5. Low-influence subgroup-level pathways (supplement to
Figure 6)

Paths B s.d.

Further in Age
R FFA → Precun 0.19 0.13
R AI → R TPJ 0.24 0.24
R AI → R TP 0.30 0.20
R TP → R mPFC 0.24 0.25
L TP → L mPFC 0.15 0.12
R TP → R FFA 0.17 0.15
L mPFC → L TPJ 0.25 0.21
L AI → L Amy 0.25 0.23
L AI → L TP 0.28 0.14
Lag: Precun → L IPS −0.27 0.19

Mixed sex
L TP → R mPFC 0.19 0.17
R TPJ → R mPFC 0.27 0.21
Lag: R TPJ → L TPJ −0.29 0.16

Less effective model
L TP → L AI 0.34 0.21
ACC → R TPJ 0.25 0.29
L mPFC → R TP 0.26 0.21
R TPJ → L mPFC −0.22 0.16
L AI → L Amy 0.38 0.26

More differentiation
R mPFC → L VS 0.19 0.21
R FFA → Precun 0.15 0.10
R pSTS → R FFA 0.25 0.21
L TP → R mPFC 0.13 0.17
R TPJ → R mPFC 0.28 0.22

Less similar behavior
R AI → R Amy 0.37 0.27
L mPFC → ACC 0.34 0.14
R Amy → R TP 0.25 0.25
R TP → R mPFC 0.27 0.23
R AI → R TPJ 0.23 0.13
R FFA → Precun 0.15 0.13
R AI → R pSTS 0.18 0.13
R AI → R FFA 0.14 0.15

Note: Significant subgroup-level pathways for low-influence adolescents
during observation of older sibling decision-making. Lagged pathways are
denoted with ‘Lag’. All others represent contemporaneous associations.
L= left; R= right; mPFC=medial prefrontal cortex; TP= temporal pole;
AI=anterior insula; ACC=anterior cingulate cortex; Amy=Amygdala;
VS=ventral striatum; FFA= fusiform face area; IPS= intraparietal sulcus;
Precun=Precuneus; TPJ= temporal parietal junction; pSTS=posterior
superior temporal sulcus.

decision-making regions may reflect that adolescents who are
highly influenced by a given social model use affective informa-
tion to inform the salience of information and their decisions to
incorporate and update their schema of risky decision-making
during social learning. On the other hand, for younger siblings
who are less likely to be influenced by their older siblings, the
AI and mPFC provided contextual social information to affective
regions, including the VS and amygdala, to inform social learn-
ing. These findings align with prior research, such that the mPFC
directed connectivity to the amygdala during risky decision-
making for adolescents, compared to adults (McCormick et al.,
2019). Functional connectivity from the mPFC to the amygdala
has been proposed as a neurobiological mechanism underlying
downregulation, a critical process in guiding behavior in socioe-
motional contexts, particularly during adolescence (Hare et al.,
2008). Given that less salient social models elicited downregula-
tion connectivity when adolescents engaged in social observation
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Fig. 6. Subgroup-level brain connectivity map showing directional pathways for low-influence adolescents during observation of older sibling
decision-making.

L= left; R= right; mPFC=medial prefrontal cortex; TP= temporal pole; AI=anterior insula; ACC=anterior cingulate cortex; Amy=Amygdala; VS=ventral
striatum; FFA= fusiform face area; IPS= intraparietal sulcus; Precun=Precuneus; TPJ= temporal parietal junction; pSTS=posterior superior temporal sulcus.
Subgroup-level connectivity map showing directional pathways. Arrow colors indicate pathways for low-influence subgroups compared to high-influence
subgroups, where grey reflects group-level pathways. Autoregressive paths (brain region predicted by same brain region previously) were estimated but not shown
in the figure. Solid arrow paths represent maps contemporaneous associations, whereas dashed arrow paths represent lagged paths across observation.

in this study, this neurobiological mechanism may enable ado-
lescents to resist social influence and more efficiently evaluate
the salience of the observed behavior (Morawetz et al., 2017).
Interestingly, this finding contrasts with neural connectivity of
high-influence adolescents, such that more salient social models
elicited upregulation connectivity, which likely underlies learning
that is more highly motivated by the rewarding nature of social
cues. Together, these findings suggest that the influential nature
of social models engender opposing trends in the neurobiological
mechanisms that underlie adolescent social observation of risk
behavior.

In addition to neural connectivity trends across adolescents
in high- and low-influence subgroups, there were many unique

pathways that emerged depending on factors associated with
social learning theory, including age spacing, sex constellation,
modeling, differentiation and real-world behavior in relation to
their older sibling as a social model. These unique pathways pro-
vide a starting point to better understand how different aspects of
the relationship between a learner and social model can inform
the underlying neural mechanisms of social learning. Specifically,
similarity (or dissimilarity) in characteristics, such as age spac-
ing and sex constellation, elicited different neural connectivity
compared to the attitudes about the social model, includingmod-
eling and differentiation, and compared to the learner’s change
in behavior toward (or away from) the social model. Given that
similarity, attitudes and behavior each elicit different patterns
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in neural connectivity during social learning, which likely under-
lies differences in information processing, this study highlights
the importance of considering a breadth of factors that may con-
tribute to whether learners are motivated to learn from specific
social models. Of note, the only instance of negative contempora-
neous functional connectivity occurred from the TPJ to the mPFC
for adolescents who perceived their older siblings as less salient
models compared to adolescents who perceived more salient
modeling. This finding suggests that greater activation in the TPJ,
a region associatedwithmentalizing and identifying salient social
cues, may simultaneously downregulate activation in the mPFC,
a brain region associated with social decision-making, for adoles-
cents who are not easily influenced in a given context. Although
some literature indicates that affective regions, such as the amyg-
dala and VS, may downregulate the mPFC while youth make
decisions in the context of salient social agents, such as moth-
ers (Gee et al., 2014; Guassi Moreira and Telzer, 2018; Rogers et al.,
2020), this work provides preliminary evidence that social cog-
nition brain regions may play a role in downregulation in less
influential contexts. Together, these findings have clear implica-
tions for the significance of variability between adolescents who
learn from a social model, as well as variability within these
groups based on social learning factors.

To our knowledge, this is the first study to examine direc-
tional neural connectivity patterns underlying adolescent social
observation using group-, subgroup- and individual-level variabil-
ity. Although it provides an initial foundation for future direc-
tions, the limitations of this study should be noted. First, 20
ROIs were chosen for this study based on recent seminal papers
that rigorously examined brain regions associated with adoles-
cent decision-making in social contexts (i.e. McCormick et al.,
2019; van Hoorn et al., 2019), but selecting different ROIs would
likely lead to a different set of findings. Relatedly, GIMME and
CS-GIMME do not model analyses across the entire brain and,
as such, require careful consideration of ROI inclusion (Henry
et al., 2019). Second, because sibling behavior can be a salient
predictor of adolescent attitudes, learning and behavior (for a
review, McHale et al., 2012), this study used dyads of adoles-
cent siblings to examine directional functional connectivity in
the brain during a social learning paradigm. Future work would
benefit from investigating whether the findings in this study are
specific to older sibling models or whether social learning from
individuals with a shared history (e.g. parents, younger siblings,
best friends and teachers) prompt similar patterns of directed
neural connectivity. In kind, the real behavior of older siblings was
used for the observation phase to provide ecological validity to the
social learning paradigm; however, this decision limited our abil-
ity to test for controlled differences between risky and cautious
social models. Third, although this study used dyadic character-
istics at multiple levels to examine connectivity maps of social
observation, the individual characteristics of adolescents were
not investigated. It would be beneficial for future work to focus
on age, pubertal status and gender to explore whether directional
functional connectivity during social learning varies as a function
of these individual differences. Last, given that the majority of
the sibling dyads were full biological siblings, future work should
replicate this study using genetically informed designs to examine
the extent to which shared genetics and environment contribute
to the neural mechanisms underlying social learning.

In conclusion, the current study provides a basis for investi-
gating adolescent neural states during social learning. The use
of an innovative social learning paradigm, and rigorous analyses
that utilize both individual and group heterogeneity, allowed us

to identify directional neural connectivity during social observa-
tion across adolescents and between subgroups of adolescents
based on tenets of social learning theory. We found that ado-
lescents neurobiologically responded to information differentially
depending on the salience of models, highlighting the impor-
tance of teens being able to, and wanting to, identify with
social learning models. These findings direct future work to bet-
ter understand how different levels of model influence associate
with different connectivity networks andwhich of these networks
may represent ‘mature’ social information processing to promote
adolescent learning.
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