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Quantum chemical calculations have been used in the development of synthetic methodologies to analyze

the reaction mechanisms of the developed reactions. Their ability to estimate chemical reaction pathways,

including transition state energies and connected equilibria, has led researchers to embrace their use in

predicting unknown reactions. This perspective highlights strategies that leverage quantum chemical

calculations for the prediction of reactions in the discovery of new methodologies. Selected examples

demonstrate how computation has driven the development of unknown reactions, catalyst design, and

the exploration of synthetic routes to complex molecules prior to often laborious, costly, and time-

consuming experimental investigations.
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1. Introduction

The discovery of chemical reactions is a primary research area
that can provide new synthetic methods to create molecules in
organic chemistry. Based on the developed methods, synthetic
plans can be constructed for the preparation of complex mole-
cules such as drug candidates or functional materials.1–3

However, the development of synthetic methodologies usually
requires a number of experiments, mainly because the process
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Chemical Science Perspective
relies on trial and error as well as on the intuition of organic
chemists, which generates unwanted waste and inates costs.
Moreover, unexpected reactions are also oen found during the
research campaign, which may change the direction of the
research project and are recognized as serendipitous ndings
that depend both on the researchers' intuition and on luck.4,5

Therefore, an efficient and systematic process without unnec-
essary experiments has long been desired, in line with the
recent trends of research automation and digitalization.6

For this purpose, extensive investigations into the applica-
tion of experimental or informatic technologies for method-
ology development have been conducted. For example, high-
throughput experimentation (HTE), a technique widely used
in medicinal chemistry for drug discovery7 that performs
multiple experiments in parallel and thus accelerates the
screening process, has been applied to investigate chemical
reactions. This technique enables the combinatorial screening
of reaction parameters, including reagents, catalysts, or addi-
tives, leading to conditions that provide better yields or selec-
tivities in known chemical reactions.8 Although HTE has been
proven to be effective in discovering certain unknown chemical
reactions, it still requires a large number of experiments (typi-
cally >1000).9–11 For the systematic development of chemical
reactions, data-driven approaches have also made signicant
progress with the advancement of chemoinformatic techniques,
in which the experimental results are correlated to reaction
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parameters in order to create models that capture data trends,12

understanding of mechanistic insights, and prediction of
reaction outcomes. This approach has evolved from the
Brønsted catalysis law,13 a pioneering study in organic chem-
istry that established a quantitative relationship between acidity
and reaction rate, to the data-driven optimization of reaction
parameters that include not only conventionally effective
factors such as the solvent and temperature, but also the
substrate or catalyst structures, to improve the yield or
selectivity.14–16 Despite the signicant progress in modeling
chemical reactions, applications for discovering unknown
reactions still remain underdeveloped, and the models devel-
oped in reported studies are currently limited to predicting the
optimal conditions for known reactions.

Quantum chemical calculations have also been used to
investigate the properties of molecules and reaction mecha-
nisms.17 Since the 1960s, signicant advances in computational
chemistry, such as the launch of the Gaussian program18 and
the development of density functional theory (DFT),19 have
made the use of quantum chemical calculations more common
in organic chemistry. The technology and its accuracy continue
to improve, enabling calculations that reveal detailed reaction
processes, ranging from entire catalytic cycles to biological
reaction pathways involving enzymatic catalysis. Consequently,
quantum chemical calculations are at present primarily
employed to gain mechanistic insight into known chemical
reactions.

Due to the ability of quantum chemical calculations to be
performed on even unknown reaction processes, their applica-
tion in the prediction of reactions holds signicant potential for
methodology development. In biochemistry, analogous studies
are oen conducted to simulate protein–protein interactions or
docking simulations between small molecules and target
protein binding pockets using computational methods such as
molecular dynamics, molecular mechanics, or their hybrid
methods.20 Unlike such simulations, which primarily focus on
a single chemical process, the prediction of chemical reactions
requires consideration of potential competitive reaction path-
ways; this encompasses the calculation of the relative energies
of potential transition states and the resulting products using
quantum-chemical calculations. It should be noted some such
processes, e.g., those involving dynamical bifurcations, cannot
be predicted accurately based solely on these parameters.21–23

This perspective highlights the development of synthetic
methodologies based on computational predictions using
quantum chemical calculations (Fig. 1). While other reviews on
this topic have mainly focused on improving yields or selectiv-
ities based on existing results,24–30 this perspective places
greater emphasis on research in which prediction has signi-
cantly contributed to the discovery of new methodologies,
including unexplored selectivity, catalyst design, and new
synthetic routes toward complex molecules. We also compare
the current calculation methods used to explore chemical
reaction pathways, which are critical for predicting reactions,
and discuss the potential of modern methods to guide
computation-based methodology development. Although such
predictive strategies have not yet reached a mature level of
© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 Conceptual illustration of the computation-based develop-
ment of reactions.
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practical use, they promise substantial potential to evolve into
a next-generation tool. Finally, this perspective discusses the
hurdles that remain to be overcome, along with an outlook for
the future.

2. Approaches for estimating
chemical reaction pathways using
quantum chemical calculations

In computational studies, reaction pathways have traditionally
been traced starting from the structure of the transition state,
which serves as the rst-order saddle point on the potential-
energy surface, using intrinsic reaction coordinate (IRC) calcu-
lations (Fig. 2a).31,32 Therefore, computational methods to
obtain a transition state for a desired chemical transformation
have been the focus of development in the eld of quantum
Fig. 2 Approaches for reaction path explorations using quantum chem
from the transition state. (b) Quasi-Newton method to locate the tran
transition states. (d) Automated reaction path exploration to create a rea

© 2023 The Author(s). Published by the Royal Society of Chemistry
chemistry.33,34 The most common tool is the quasi-Newton
method,35–38 which can nd the transition state closest to the
initial structure, as illustrated in Fig. 2b.

However, the quasi-Newton method does not converge or
converges to a transition state of an unintended transformation
if the assumed structures are not sufficiently close to those of
the transition state of focus. To avoid such shortcomings,
several approaches have been developed, which can be broadly
classied into two subcategories: coordinate driving and inter-
polation (Fig. 2c).33,34 The coordinate driving approach maxi-
mizes the energy along a selected variable, such as a bond
length or a normal mode, while minimizing the energy for all
other variables.35,39–44 This procedure provides the approximate
pathway for a chemical transformation driven by a change in
the selected variable, and the maximum energy point on the
pathway provides an appropriate estimate for the transition
state that can serve as an input in further calculations using the
quasi-Newton method. The relaxed scan and eigenvector
following techniques are well-established and available in many
standard quantum chemistry soware packages.35,39 The inter-
polation approach minimizes a set of structures that represent
a pathway between two equilibrium states while ensuring that
the structures are properly distributed along the pathway.45–51

This procedure generates a minimum energy pathway by iter-
atively minimizing the energy until a predened convergence is
reached. Additionally, the quasi-Newton method is used to
optimize the maximum energy point on the pathway, either
aer or in parallel with path optimization. The nudged elastic
band (NEB) and string methods are widely employed as inter-
polation techniques, and can be found in various computa-
tional programs.48,49
ical calculations. (a) IRC calculations for tracing the reaction pathways
sition states. (c) Method for searching for approximate structures of
ction path network.
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Fig. 3 Computational prediction of the ring-opening of 3-for-
mylcyclobutene; calculations were performed at the HF/6-31G(d)//
HF/3-21G level.
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By harnessing the aforementioned approaches, automated
procedures have been devised to capture theoretically conceiv-
able reaction pathways, enabling their effective application for
the elucidation of reaction mechanisms and the prediction of
reactions (Fig. 2d).32,52,53 For example, through iterative appli-
cation of the coordinate driving method using different vari-
ables selected from an equilibrium structure, pathways to the
other equilibrium structures can be obtained, and by
continuing this process with the generated equilibrium struc-
tures, a network of reaction pathways can be established.
Likewise, analogous networks can be obtained by generating
hypothetical molecular graphs and applying an interpolation
method iteratively to all of them or to systematically selected
pairs. The practical effectiveness of these algorithms depends
on the level of thoroughness inherent in the selected path
nding method. Although sufficiently exhaustive methods for
exploring all the important reaction pathways are still
limited,54,55 and bi- or multimolecular processes involving
molecules that are not included in calculations cannot be
considered, these algorithms are potentially suitable not only
for mechanistic investigations of known reaction processes, but
also for the estimation of unknown reaction modes, ultimately
leading to the development of new synthetic methods.

This perspective is divided into two parts based on the
calculation approach. The rst part describes examples of
prediction-based reaction developments, in which the original
reaction candidates are primarily provided by researchers. The
second part presents a distinct example in which an automated
reaction path search algorithm provided the original idea for
the development of chemical reactions.
3. Reaction development using
computational predictions of
researcher-guided reaction pathways
3.1 Pericyclic reactions

In 1987, the predictive capability of quantum chemical calcu-
lations based on transition states was rst reported by Houk
and co-workers in the eld of synthetic organic chemistry with
the successful prediction and subsequent experimental valida-
tion of the conrotatory electrocyclic ring-opening of 3-for-
mylcyclobutene (Fig. 3).26,56 During their study on the ring-
opening of substituted cyclobutenes, the authors found that
the reaction of C3-substituted cyclobutenes such as 3-methyl-,
3-chloro-, 3-acetoxy-, and 3-ethoxycyclobutene exhibited a pref-
erence for the outward rotation of the substituent, resulting in
the selective formation of the E-alkene.57,58 The authors also
investigated the analogous reaction of 3-formylcyclobutene
using quantum chemical calculations, which indicated that this
substrate can be expected to selectively undergo inward rotation
(DDG‡ = −4.6 kcal mol−1) due to the participation of the p*

C]C

orbital in the stabilization of the HOMO sC–C orbital of the
inward transition state, which stands in contrast to the selec-
tivity of the aforementioned example. This counterintuitive
prediction was subsequently validated experimentally. These
ndings prompted further investigations to understand the
11604 | Chem. Sci., 2023, 14, 11601–11616
reaction mode.59–63 This study demonstrated that computations
could provide predictions that are contrary to human intuition.
3.2 Computational design of organocatalysts

The computational design of catalysts is the holy grail in
organic chemistry, as conventional catalyst development tradi-
tionally relies on a trial-and-error approach based on empiri-
cism. This approach oen requires a large number of
experiments including the preparation of catalyst candidates
and the evaluation of their catalytic activity. To transition from
an intuitive approach to a systematic design, studies using
computational methods have emerged as one of the most
promising and prominent topics in this research eld. In
particular, catalytic enantioselective reactions have attracted
the attention of many researchers due to their utility in
producing optically active molecules and their relatively simple
principle for achieving selectivity, in which enantiomeric excess
is typically determined by the energy difference between the
transition states leading to each enantiomer.29 Recently, che-
moinformatic approaches, in whichmodels are generated using
the experimental results and parameters of each target reaction,
have been studied extensively for the prediction of the perfor-
mance of chiral catalysts.17–19 Some studies have successfully
developed models capable of predicting enantioselectivity, even
in extrapolation spaces, allowing for the identication of cata-
lysts that provide higher enantiomeric excess compared to
others in the model.

Likewise, the application of quantum chemical calculations
in the design of catalysts for controlling enantioselective
processes is undeniably attractive, as it offers a rational strategy
for the development of catalyst scaffolds. Conventionally,
quantum chemical calculations have oen been used to eluci-
date the structure of the transition states in known
© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 Computational design of organocatalysts for enantio- and anti-
selectiveMannich reactions; calculations were performed at the HF/6-
31G* level.
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enantioselective reactions, as well as to identify the factors that
contribute to the induction of the observed selectivities. These
abilities have prompted chemists to use them for enantiose-
lectivity predictions, whereby most studies have hitherto
focused on the modication of substituents on catalysts to
improve known selectivities.24–30 In contrast, Houk, Tanaka,
Barbas, and co-workers have jointly reported a remarkable
Fig. 5 Computational truncation of a thiourea catalyst for the asymmetr
the M06-2X/6-311+G(d,p)/CPCM(CH2Cl2) level.

© 2023 The Author(s). Published by the Royal Society of Chemistry
design achievement in the eld of enantioselective organo-
catalysis (Fig. 4).64 Typically, proline-catalyzed Mannich reac-
tions provide an enantioenriched product with syn-selectivity,
in which the catalyst dictates the conformation of the chair-like
transition state, assisted by the hydrogen-bonding interaction
between the imine substrate and the carboxylic acid moiety of
proline.65 In their computational study, a catalyst bearing
a methyl group at the C2 position and a carboxylic acid at the C4
position on pyrrolidine was expected to favor the transition
state leading to the formation of the anti-product, which was
successfully validated experimentally with high enantiomeric
excess and anti-selectivity (70% yield, >99% ee, anti : syn = 94 :
6). While the general approach for designing proline catalysts
involves introducing a bulky substituent at the C2 position to
enhance their enantiodiscrimination ability,66 this work pres-
ents a different strategy (using a small substituent) guided by
quantum chemical calculations, highlighting the potential of
computational approaches for catalyst design in the develop-
ment of new methodologies.

In addition to designing catalysts for superior catalytic
activity, computational methods can also facilitate the simpli-
cation of catalyst structures. In this context, Paton, Dixon, and
co-workers have reported the enantioselective desymmetriza-
tion of a prochiral cyclohexanone catalyzed by thiourea-based
organocatalysts (Fig. 5).67 Initially, they conducted experi-
mental catalyst screening trials to enhance the enantiose-
lectivity in the target reaction, leading to a thiourea catalyst68,69

bearing both tert-leucine and trans-1,2-cyclohexanediamine
units that furnished the product in 84% yield with 96% ee, and
ic desymmetrization of cyclohexanes; calculations were performed at

Chem. Sci., 2023, 14, 11601–11616 | 11605
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>98 : 2 dr. In the mechanistic study, calculations indicated that
the tert-leucine moiety on the thiourea catalyst no longer
contributes to controlling the selectivity at the stereo-deter-
mining proton transfer step aer the enantioselective intra-
molecular Michael addition. Accordingly, replacing this unit
with a methyl group resulted in a structurally signicantly
simpler catalyst with similar catalytic activity (83% yield, 97%
ee, and >98 : 2 dr).
3.3 Computational design of transition–metal complexes

Transition-metal complexes have been studied extensively in
the development of synthetic methodologies because they
exhibit unique abilities that cannot be achieved using organic
compounds alone, which has led to the discovery of new
elementary processes and catalytic reactions that serve as
valuable synthetic tools in organic synthesis.70 Given that the
reactivity and selectivity of metal complexes are signicantly
affected by the constituent ligands, the design of ligand struc-
tures and their complexes with metals is critical for the devel-
opment of transition-metal-mediated or -catalyzed reactions. In
this context, computational chemistry has been used to inves-
tigate the properties of complexes and elucidate the structures
of intermediates or transition states in mechanistic studies.71–74

However, predicting their reactivity or selectivity poses
a considerable challenge due to many factors beyond the cost of
calculations. Altering the structure of metal complexes not only
affects their reactivity and selectivity, but also other properties,
such as catalyst stability and solubility, which are difficult to
estimate via calculations. In addition, reactions are oen
inuenced by solvents or additives, making it virtually unfea-
sible to fully understand their role using quantum chemical
calculations due to the vast number of possible mechanisms.
Charge and spin multiplicity must also be considered, and the
Fig. 6 Computational design of phosphine ligands for the reductive e
performed at the ONIOM(B3LYP/6-31+G(d) (with LANL2DZ for Pd): HF/LA
the B3LYP/6-31+G(d,p) (with LANL2DZ for Pd) level.

11606 | Chem. Sci., 2023, 14, 11601–11616
involvement of counterions makes the prediction even more
challenging. Even when calculations are performed to account
for the factors mentioned above, the estimation of energy is
signicantly affected by the calculation method, and the
appropriate calculation level for each reaction is not yet well
understood. For example, calculations of the dispersion effect
are highly dependent on the choice of functional.75 Due to the
aforementioned considerations, predicting transition-metal-
mediated or -catalyzed reactions is signicantly more compli-
cated than predicting organic reactions.

Despite these challenges, in certain cases, computational
predictions can effectively aid in the development of organo-
metallic reactions. For example, Schoenebeck and co-workers
have reported an approach that uses computational methods
for ligand design in the reductive elimination of benzotri-
uoride from palladium complexes (Fig. 6).76 Previously, this
reaction had been studied experimentally using bidentate
phosphine ligands. The palladium complex with Xantphos is
able to effectively promote this step at 80 °C, while the complex
with 1,2-bis(diphenylphosphino)ethane (DPPE) does not
furnish the desired elimination product, not even at 130 °C.77–79

This result suggests that the large bite angle of the bidentate
phosphine ligand plays a crucial role in the acceleration of
reductive elimination.80

Later, the authors also investigated the energy barriers for
these reductive eliminations using DFT calculations.81 The
computations revealed that the reaction with Xantphos had
a much lower energy barrier compared to that with DPPE
(barrier of electronic energy, DE‡ = 25.7 kcal mol−1 vs. 34.0 kcal
mol−1; bite angle :P–Pd–P = 106.1° vs. 86.8°). In contrast, an
analogous ligand with two hydrogen atoms on the phosphine
atoms on DPPE instead of phenyl groups exhibited a signicant
reduction of these values (DE‡ = 28.4 kcal mol−1, :P–Pd–P =
limination of benzotrifluoride from Pd complexes; calculations were
NL2MB) level. The bite angles shown in parentheses were calculated at

© 2023 The Author(s). Published by the Royal Society of Chemistry
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84.5°), suggesting that an appropriate substituent on the
phosphine atom might accelerate this step even when using an
ethylene-bridged scaffold, beyond the effect of the bite angle.
Accordingly, replacing the phenyl groups in DPPE with tri-
uoromethyl groups resulted in a reduced barrier that was even
lower than that with DPPE or Xantphos (DE‡ = 24.8 kcal mol−1,
:P–Pd–P = 83.0).76 This observation was further validated
experimentally, resulting in a quantitative conversion to provide
benzotriuoride at 80 °C. The acceleration in this case can be
attributed to two factors, i.e., the destabilization of the complex
caused by electrostatic repulsion between the triuoromethyl
groups of one of the phosphine ligands and the ligand bound to
palladium, and the reduced electron density of the metal center,
which oen facilitates the reductive elimination step in other
organometallic reactions.82

Reactive metal complexes oen cause decomposition or side
reactions that can be problematic in catalytic reactions.83–85

Therefore, a balance between the reactivity and stability of
metal complexes species is critical for reaction efficiency. In this
context, Buchwald and co-workers reported the computational
design of copper complexes with sufficient reactivity and
stability to act as catalysts in the C–N cross-coupling of aryl
bromides and amines (Fig. 7).86 The copper complexes comprise
copper(I) species and an anionic N1,N2-diarylbenzene-1,2-
diamine ligand designed to accelerate the oxidative addition
step of aryl electrophiles, which is conventionally problematic
in copper-catalyzed cross-coupling reactions.87–89 Initially, the
reaction of 4-bromoanisole and morpholine using a copper
complex with an anionic N1,N2-diphenylbenzene-1,2-diamine
ligand was investigated, albeit the desired amination product
was not obtained, presumably due to the instability of the naked
Fig. 7 Computational design of diamine ligands for the copper-cataly
B3LYP-D3/LACV3P/cc-pVTZ(-f)//B3LYP-D3/LACVP/6-31G(d,p) level.

© 2023 The Author(s). Published by the Royal Society of Chemistry
anionic copper species. To this end, a computational analysis
was conducted, which revealed that the introduction of two
phenyl groups onto the ligand stabilizes the complex through
copper–p interactions (DG = 13.6 kcal mol−1), while main-
taining sufficient reactivity for the oxidative addition of 4-bro-
moanisole (DG‡ = 8.4 kcal mol−1). The reaction with this ligand
proceeds at room temperature and provides the amination
product in quantitative yield. While this work successfully
demonstrates a predictive strategy for the development of
catalytic reactions by focusing mainly on one elementary step,
the prediction of entire catalytic cycles requires considering all
individual steps in the catalytic cycle as well as the turnover for
their catalytic efficiency.90

3.4 Computational prediction of the key step in complex
natural product syntheses

The computational prediction of chemical reactions is also
potentially useful for retrosynthetic analysis, a concept used to
devise synthetic routes toward complex molecules from readily
available starting materials by converting a target compound to
synthetic precursors and applying this process to each
precursor, especially in the eld of natural product synthesis.
Since Corey's report on computational retrosynthetic analysis,91

this approach has received considerable attention, leading to
studies using advanced chemoinformatics methods and data-
bases that contain experimental data pertaining to molecular
synthesis. These studies enable innovative computational
synthetic planning for the synthesis of complex molecules,17–19

which has been veried experimentally.92–98

Given that complex natural product synthesis oen involves
key synthetic steps, a considerable number of experimental
zed amination of aryl bromides; calculations were performed at the

Chem. Sci., 2023, 14, 11601–11616 | 11607
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investigations are oen required to identify suitable substrates
and reaction conditions. Ultimately, unsuccessful results force
modications onto the original synthetic route. To avoid such
dead ends and detours, quantum chemical calculations have
been used for the prediction of key steps and prospective
substrates, thus enhancing the reliability of the retrosynthetic
plan.99 In this context, Overman and co-workers reported the
total synthesis of (−)-chromodorolide B, demonstrating the
utility of computational predictions in a key step to achieve the
desired stereoselectivity (Fig. 8).100 In their rst report, one of
the key steps was a radical cascade reaction involving an
intermolecular C–C bond formation and subsequent stereo-
selective 5-exo-trig cyclization.101 Although their developed
conditions afforded the product, the yield and stereoselectivity
were low, i.e., the major product consisted of the undesired
stereoisomer. To gain insight into the structure of the transition
state and improve the selectivity, they performed DFT
Fig. 8 Computational analysis of stereoselective radical cyclization to
performed at the TPSSh-D3/Def2-TZVP/COSMO(CH2Cl2)//TPSS-D3/De

11608 | Chem. Sci., 2023, 14, 11601–11616
calculations for the radical cyclization step. While the alkyl
radical derived from the original substrate exhibited the unde-
sired preference (DDG‡ = 1.0 kcal mol−1, favoring the undesired
stereochemistry B), consistent with the observed selectivity in
the experiment, the cyclization of the chlorinated variant
exhibited inverse selectivity, resulting in the desired stereo-
selectivity (DDG‡ = 1.9 kcal mol−1, favoring the desired stereo-
chemistry A). These distinct selectivities were rationalized in
terms of the steric interactions between the substituent at the a-
position of the g-butyrolactone and the alkene moiety at the
transition states of 5-exo-trig cyclization. In the case of chlori-
nated substrates, the steric effects govern the olen geometry of
the transition state towards the desired diastereomer. Based on
this notion, the reaction was performed using chlorinated
substrates bearing either a methyl or a menthyl group, which
resulted in selective cyclization and provided the desired
product without the undesired diastereomer. The introduced
ward the total synthesis of (−)-chromodorolide B; calculations were
f2-TZVP/COSMO(CH2Cl2) level.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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chlorine atom was removed under the applied reaction condi-
tions. With this improved key step, the authors ultimately
completed the synthesis of (−)-chromodorolide B with a higher
overall yield compared to that of the rst-generation route.

Quantum chemical calculations have also been applied for
selecting prospective substrates even prior to experimental
investigations. Newhouse and co-workers reported the total
synthesis of paspaline A and emindole PB using computation-
directed substrate selection (Fig. 9).102 In that study, the
authors aimed to synthesize both compounds from the same
precursor in a divergent fashion.103 To this end, calculations
were conducted to assess the energy barriers of the Friedel–
Cras type cyclization and the 1,2-methyl shi leading to each
key scaffold, in which these pathways were explored from
a carbocation intermediate bearing various substituents distant
from the reaction site. Calculations revealed that among car-
bocations a–c, the reaction of carbocation c has the highest
preference for forming the hexacyclic motif in paspaline A.
Inspired by these theoretical results, the synthesis commenced
with the preparation of the computationally proposed precursor
for carbocation c bearing a hydroxy group as a leaving group.
However, when subjected to the reaction in the presence of
a stoichiometric amount of aluminum chloride as a Lewis acid
additive to promote the elimination of the hydroxy group, both
products were obtained via cyclization and methyl shi in 44%
combined yield with the inverse selectivity ratio (A/B= 1/3). The
observed mismatched selectivity might be attributed to the
involvement of a concerted elimination/1,2-methyl shi,
a process that was not considered in the calculations. From
isolated A, the synthesis of paspaline A was accomplished in 9
Fig. 9 Computational substrate design for the divergent synthesis of p
mPW1PW91/6-31+G(d,p)//B3LYP/6-31G(d) level.

© 2023 The Author(s). Published by the Royal Society of Chemistry
overall steps, which is shorter than the previously reported
synthetic route. The rst total synthesis of emindole PB was also
achieved from B. Although this computational strategy was
unable to accurately predict the experimental ratio, it guided
the selection of substrates that ultimately led to the develop-
ment of a shorter synthetic route and the achievement of the
rst total synthesis in a divergent manner.

4. Reaction development with
automated reaction path search
methods
4.1 Automated reaction path search methods for reaction
development

The strategies presented above successfully showcase the
possibility to develop new synthetic methodologies based on
computational prediction in which researchers select the target
reactions and competitive side reactions. While this is without
a doubt very impressive, the success of these strategies still
largely depends on the researchers' knowledge of organic
chemistry and computational skills. In particular, when
competitive side reactions that are preferred over the target
reaction are overlooked, the computational prediction becomes
less reliable. In this context, an automated reaction path search
algorithm that can explore conceivable reaction pathways may
be highly benecial (Fig. 2d). Such algorithms offer distinct
advantages, as they are not solely reliant on human knowledge
and oen user-friendly, requiring minimal computational
skills, and a variety of algorithms for exploring reaction path-
ways have been developed over the years.32,52,53 Given the recent
aspaline A and emindole PB. The calculations were performed at the
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continuous advances in computing power as well as automated
workows (for examples since 2021, see: QChASM,104 autodE,105

ChemDyME,106 YARP,107 AutoMeKin2021,108 CARNOT,109 Chem-
TraYzer-TAD,110 and Chemoton 2.0 (ref. 111)), these methods
have been able to realize the transition from applications in
mechanistic studies to comprehensive reaction prediction.
While the developed algorithms have been used effectively for
these purposes, little effort has been devoted to the experi-
mental validation of the discovered reactions or mechanisms in
the context of synthetic methodology development.

A highly comprehensive exploration of chemical reaction
pathways, integrated with deterministic kinetic simulations
that possess numerical stability, is crucial for predicting all
potential reaction products along with their yields. The articial
force induced reaction (AFIR) method,32,44,112–115 which uses
a virtual force in quantum chemical calculations to nd reac-
tion pathways from an equilibrium structure, has been devel-
oped for this purpose (Fig. 10a). It has been shown to be
sufficiently comprehensive for certain reaction classes
including their conformational space.116 This method explores
chemical reaction pathways by applying an arbitrary force to the
input molecular structure to forcibly induce structural defor-
mation. The force is applied to an automatically dened frag-
ment pair in mutually approaching or diverging directions. The
approximate reaction pathway estimated by minimizing the
force-modied energy based on ab initio or semi-empirical
calculations is optimized to obtain the actual reaction
pathway or the IRC pathway. By applying the force to all
conceivable fragment pairs, not only in the initial structure but
also in the generated equilibrium structures, an exhaustive
reaction path search can be performed to construct a network of
chemical reaction pathways. To realize on-the-y kinetic simu-
lations,117 this method has been further combined with the
deterministic and numerically stable kinetic simulation tech-
nique, termed rate constant matrix contraction (RCMC), which
employs kinetics-based graph clustering to efficiently analyze
complex reaction path networks that comprise thousands or
more elementary reaction steps (Fig. 10b).118,119 By leveraging
the integrated AFIR and RCMC methods, the forward on-the-y
kinetic simulation can be performed to estimate potential
products together with their computational yields, starting
Fig. 10 Schematic illustration of the AFIR and RCMCmethods, which are
reaction pathway from an equilibrium structure, in which the bond-formin
example; a: arbitrary force-constant. (b) Kinetic simulation to determine
calculations using the AFIR method to search for forward and backward
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from the input reaction components; moreover, the backward
on-the-y kinetic simulation can also be performed to provide
potential reactant species that could generate the input chem-
ical structure as the reaction product in high yield.117 The
detailed algorithms of the AFIR and RCMC methods have
already been discussed in other reviews and are beyond the
scope of this perspective;116,117 instead, the application of these
methods in the context of reaction prediction and experimental
validation is discussed. In the next section, the application of
the AFIR method for reaction prediction will be described.
4.2 Computational retrosynthetic analysis for a new
synthetic route to diuoroglycine derivatives

While the AFIR and RCMC methods have mainly been used for
mechanistic investigations of established reactions or
researcher-predicted reactions,120–130 our research group has
embarked on exploring their potential as computational tools
for predicting unexplored synthetic routes or reactions. In 2020,
our research group reported a new synthetic route to diuor-
oglycine derivatives based on calculations using the AFIR/
RCMC methods (Fig. 11).131 Due to limited synthetic routes
toward this uorinated motif, its promising applications have
hitherto remained unexplored. To explore the potential
synthetic route, the AFIR method was leveraged in computa-
tional retrosynthetic analysis, in which possible synthons were
investigated by searching for equilibrium structures connected
to diuoroglycine through reaction pathways. Among the 76
equilibrium structures generated as substrate candidates, the
combination of ammonia, diuoroglycine, and carbon dioxide
(CO2) had prospects for experimental implementation due to
the facile assembly of these three components (DG‡ = 3.1 kcal
mol−1) as well as their availability. Further calculations were
conducted to explore the possible reaction pathways from
ammonia, the bromodiuoromethyl anion as a diuorocarbene
precursor, and CO2 using the AFIR method, aer which the
computational yields of possible products were estimated based
on the obtained rate constant at the designated temperature
and time using the RCMCmethod. Accordingly, diuoroglycine
was expected to be formed in 69.6% yield, together with side
products such as bromodiuoroacetic acid in 29.3% yield. To
used to explore chemical reaction pathways. (a) The process to find the
g reaction between atoms A and B in an input structure is shown as the
the priority of the generated equilibrium structures for the subsequent
reactions.

© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 11 Computational retrosynthetic analysis and reaction prediction toward a new method for the preparation of difluoroglycine derivatives.
The automated search for the reaction pathways as well as the path optimizations were performed using the AFIR method at the uB97X-D/6-
31+G(d)/CPCM(THF) level. The computational yields in the reaction path network at 300 K within 1 hour were obtained using the RCMCmethod.
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further explore other potential substrate candidates that could
provide the glycine scaffold in better yield, analogous calcula-
tions were performed with trimethylamine instead of ammonia,
resulting in a theoretically quantitative conversion to trime-
thyldiuoroglycine, while effectively suppressing the formation
of any side products.

Based on these promising computational predictions, the
experimental realization of the reaction with the proposed
substrates was investigated. Ultimately, the reaction was
experimentally realized using commercially available trime-
thylamine, CO2, and (bromodiuoromethyl)trimethylsilane
(TMSCF2Br) as the precursor for the generation of diuor-
ocarbene in the presence of tetrabutylammonium diuoro-
triphenylsilicate (TBAT), furnishing the desired product in 96%
yield. The developed three-component reaction can proceed
with a wide range of tert-alkylamines and N-heteroaromatic
compounds.132 However, the reaction with ammonia, one of the
reactions originally predicted in this study, did not provide
diuoroglycine experimentally, but ammonium uoride
instead. This is presumably due to the in situ formation of
ammonium carbamate from ammonia and CO2, which was not
estimated in the calculations due to the involvement of two
molecules of ammonia; additional calculations and experi-
ments indicated that this undesired pathway leads to the
formation of ammonium uoride.
© 2023 The Author(s). Published by the Royal Society of Chemistry
4.3 In silico reaction screening with diuorocarbene for the
development of three-component reactions

As the AFIR/RCMC method successfully guided the develop-
ment of a new synthetic route to diuoroglycine derivatives, our
group envisioned that these methods would also be effective in
computational reaction screening toward the development of
unexplored chemical reactions.133 To demonstrate this,
diuorocarbene was used as a component in a calculation using
the AFIR method due to its synthetic utility in incorporating
diuoromethylene groups into organic molecules and its small
size, which can reduce calculation costs for the quantum
chemical calculations (Fig. 12). Computational reaction simu-
lations were conducted to explore the three-component reaction
of diuorocarbene and two components bearing unsaturated
bonds (C]O, C]N, C]C, and C^C bonds), in which formal-
dehyde, methanimine, ethylene, and acetylene were chosen due
to their low computational costs and the inherent reactivity
associated with unsaturated bonds. Based on the combinatorial
screening using the AFIR/RCMCmethod for all combinations to
create the reaction path network that encompasses the possible
intermediates, transition states, or products with their compu-
tational yields, four reactions with methanimine, diuor-
ocarbene, and a series of unsaturated bonds were expected to
provide the a,a-diuorinated N-heterocyclic compounds A1–4
Chem. Sci., 2023, 14, 11601–11616 | 11611



Fig. 12 Computational reaction screening with difluorocarbene for the exploration of three-component reactions. The automatic searches for
the reaction pathways were performed using the AFIR method at the uB97X-D/LanL2DZ/CPCM(THF) level. Single-point energy calculations
were performed for the obtained pathways at the uB97X-D/Def2-SVP/CPCM(THF) level. The top three predicted products in terms of
computational yield in the reaction path network at 300 K within 1 second are shown.
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as major products rather than other potential products such as
B1–4 and C1–4. In these reactions, A1–4 were formed through
1,3-dipolar cycloadditions of the uorinated azomethine ylide
and the other coupling partners. While N-heterocyclic skeletons
uorinated b- or g-positions relative to the nitrogen atom have
been studied in medicinal chemistry, analogues that contain
uorine at the a-position are underexplored, presumably due to
a lack of synthetic methods to construct such structures. Based
on the results of the computational screening, the predicted
reaction mode was investigated experimentally.

To realize a three-component assembly of a C]N bond,
a C]O bond, and diuorocarbene as the model reaction,
available organic substrates were investigated instead of the
unsaturated compounds used in the computational screening
due to their gaseous and polymerizable characteristics, which
made it difficult to control their amounts precisely in the
experiments (Fig. 13a). Accordingly, the reactions were con-
ducted with N-Boc (where Boc is tert-butyl carbamate) or N-
phenyl imine derived from benzaldehyde, which have been
widely used in organic synthesis, and benzaldehyde as the
sources of the C]N and C]O bonds, respectively, using
TMSCF2Br and TBAT to generate diuorocarbene in situ.
However, the reaction did not provide the desired products
because the undesired dimerization of diuorocarbene (DG‡ =

1.0 kcal mol−1) has a lower barrier than that of the formation of
iminium ylide (DG‡ = 6.5 kcal mol−1 or 4.2 kcal mol−1), and
thus would proceed preferentially, as was indicated in addi-
tional DFT calculations. Further calculations also showed that
11612 | Chem. Sci., 2023, 14, 11601–11616
the ylide formation barriers for pyridine and its derivative
bearing an electron-withdrawing ester group are comparable to
that of the undesired reaction (DG‡ = 1.0 kcal mol−1 and 1.3
kcal mol−1, respectively). Accordingly, the three-component
reaction of pyridine and benzaldehyde leads to the formation
of the desired cyclic compound involving the dearomatization
of the pyridine ring. However, the product could not be isolated
due to its instability, whereas the reaction with the pyridine
derivative bearing the electron-withdrawing ester group
provided the isolable product in 75% yield.

The other computationally predicted reactions were also
investigated experimentally (Fig. 13b). For the predicted reac-
tions of two molecules of methanimine and diuorocarbene to
form A2, the reaction with the pyridine derivative and N-Boc
imine successfully proceeded to give the uorinated imidazo-
lidine derivatives in 45% yield. Similarly, the predicted reac-
tions of methanimine, ethylene, and diuorocarbene to form A3
could also be realized by employing the pyridine derivative and
acrylonitrile, furnishing the uorinated indolizine products in
65% yield. On the other hand, while the three-component
reaction of methanimine, acetylene, and diuorocarbene was
expected to provide A4 based on the computational screening,
the reaction of the pyridine derivative and diethyl acetylenedi-
carboxylate furnished the uorinated cyclic product in aromatic
form, which was presumably obtained through the elimination
of hydrogen uoride driven by aromatization aer the predicted
1,3-dipolar cycloaddition. The developed three-component
reaction can employ a wide range of coupling partners
© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 13 Experimental realization based on computationally predicted three-component reactions. (a) Realization of the predicted reaction with
the support of additional DFT calculations at the uB97X-D/Def2-SVP/CPCM(THF) level. (b) Further experimental demonstrations.

Perspective Chemical Science
including aldehydes, ketones, alkenes, and alkynes, as well as
pyridines that bear a variety of functional groups. This study
showcases the power of computational screening and the
automated reaction path search method for the development of
new chemical reactions.

5. Challenges

The studies discussed in this perspective highlight the utility of
quantum chemical calculations for the prediction of new reac-
tions in the eld of synthetic methodology development, which
goes beyond the conventional use of such calculations in
mechanistic studies of established reactions. However, chal-
lenges remain especially with respect to accurately predicting
reactions and ensuring consistency between calculated results
and experimental observations (vide infra).

(a) In mechanistic studies, the choice of calculation level can
be guided by experimental results, which may signicantly
inuence the computational outcome. However, for the
prediction of unknown reactions, there is currently no universal
method to determine the appropriate calculation level. This
becomes particularly problematic when predicting reaction
© 2023 The Author(s). Published by the Royal Society of Chemistry
selectivity, especially when there are small energy differences
among competing reaction pathways, such as in stereoselective
reactions with chiral catalysts or site-selective reactions with
multiple reactive sites. This challenge may be addressed by
further developing computational methods that can estimate
reaction pathways with sufficient accuracy within a reasonable
calculation time.

(b) Quantum chemical calculations hardly consider physical
properties such as solubility or stability of the calculated
molecules in the reaction medium. Even when calculations
propose new reactions or catalysts, these factors may prevent
their experimental success. Currently, empiricism still plays
a pivotal role in addressing these concerns, while the emerging
chemoinformatics techniques may offer promising avenues to
effectively overcome this challenge.134

(c) The selection of the solvent is oen critical to reaction
outcomes, albeit the details of the solvent effects are not
comprehensively understood. In particular, the participation of
solvent molecules in the reaction mechanism poses challenges
for computational modeling, as it raises questions regarding
the optimal number and location of solvent molecules for the
accurate prediction of reactions. Advancements in computing
Chem. Sci., 2023, 14, 11601–11616 | 11613
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power and computational methods may provide appropriate
solutions to this problem.

(d) While the algorithm for the automated reaction path
search is effective in exploring potential chemical reaction
pathways and predicting reaction outcomes by considering
competitive pathways, it does not account for certain reactions
that involve molecules that are excluded from the calculations.
For example, the dimerization or polymerization of reactive
species such as carbenes or radicals is not considered unless
two or more identical structures are included in the initial
components. Additionally, a calculation may miss a pathway
involving a hidden catalyst that is not stoichiometrically
involved in a reaction equation unless it is explicitly considered.
A simple example is keto–enol tautomerisation, where the
intramolecular 1,3-hydrogen shi is a thermally forbidden
process, resulting in unreasonable barriers unless a molecule
involved in proton transfer is explicitly considered.135 It is
important to keep these aspects in mind when analysing the
results of the calculations.

6. Conclusions and outlook

Quantum chemical calculations have become an indispensable
tool to carry out research in organic chemistry. Currently, their
primary role is to serve in mechanistic studies of established
reaction processes. However, as shown in this perspective,
quantum chemical calculations have considerable potential to
further guide research directions, which would allow a more
systematic experimentation and thus accelerate research and
diminish associated costs. Although addressing the aforemen-
tioned issues is essential for future progress, it is obvious that
the evolution of computers and computational methods is
remarkably rapid, and can be expected to greatly expand the use
of computational reaction prediction in the future. Further-
more, the eld of chemistry is currently witnessing the inte-
gration of machine learning and articial intelligence
technology, in which data-driven strategies for the prediction of
reaction performance have been extensively explored using
quantum chemical calculations as well. Consequently, the
continued use of quantum chemical calculations as a predictive
tool will undoubtedly contribute to the development of future
synthetic methodologies.
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