
Timely detection of an inhalational anthrax outbreak is
critical for clinical and public health management.
Syndromic surveillance has received considerable invest-
ment, but little is known about how it will perform relative to
routine clinical case finding for detection of an inhalational
anthrax outbreak. We conducted a simulation study to com-
pare clinical case finding with syndromic surveillance for
detection of an outbreak of inhalational anthrax. After sim-
ulated release of 1 kg of anthrax spores, the proportion of
outbreaks detected first by syndromic surveillance was
0.59 at a specificity of 0.9 and 0.28 at a specificity of 0.975.
The mean detection benefit of syndromic surveillance was
1.0 day at a specificity of 0.9 and 0.32 days at a specificity
of 0.975. When syndromic surveillance was sufficiently
sensitive to detect a substantial proportion of outbreaks
before clinical case finding, it generated frequent false
alarms.

In the early stage of an inhalational anthrax outbreak, a 1-
day delay in the initiation of chemoprophylaxis and

treatment of exposed persons can result in thousands of
additional deaths and millions of dollars of additional
expenditures (1,2). Thus, timely detection of an inhalation-
al anthrax outbreak is critical. Rapid detection is also
important for disease outbreaks that result from other
bioterrorism agents and from emerging infectious diseases,
such as severe acute respiratory syndrome or avian
influenza (3).

To detect an epidemic such as inhalational anthrax,
which is nonendemic and results in severe symptoms, pub-
lic health authorities have relied traditionally on identifica-
tion and rapid reporting of the sentinel clinical case.
However, because the perceived likelihood of a bioterror-
ism attack has increased, public health authorities have

sought novel approaches for rapid outbreak detection. One
approach that has received considerable economic invest-
ment over the past 5 years is syndromic surveillance. This
approach follows prediagnostic data sources in an attempt
to detect an increase in the prevalence of nonspecific
symptoms. For example, the BioSense system (4), devel-
oped by the Centers for Disease Control and Prevention
(CDC) at a cost of >$75 million (5), follows records of
outpatient visits, pharmaceutical prescriptions, and labora-
tory orders in an attempt to detect disease outbreaks rapid-
ly. Hundreds of similar systems are maintained or are
under development by various groups around the world
(6). Other examples include systems operated by the
Department of Homeland Security (5) and academic cen-
ters in partnership with state or county public health
departments (7–9).

In addition to supporting outbreak detection, these syn-
dromic surveillance systems provide situational awareness
for public health authorities and may serve other purposes.
Nevertheless, a major justification for these systems is out-
break detection. Despite substantial investment in syn-
dromic surveillance and calls for further research from
groups such as the Institute of Medicine (3), little evidence
exists to suggest how syndromic surveillance will perform
relative to clinical case finding for detection of an inhala-
tional anthrax outbreak (10). The reason for this lack of
evidence is that data from real outbreaks are not available
to evaluate the performance of syndromic surveillance
alone or in comparison to clinical case finding. Moreover,
even if data were available from a large-scale outbreak,
those data would allow only an evaluation of performance
in 1 specific setting. CDC recently endorsed the use of
simulated outbreaks to address the dearth of outbreak data
(11), but existing simulation studies have not compared
detection through clinical case finding with syndromic sur-
veillance (12–14). Our aim was to develop a model for
simulating use of healthcare services after a large-scale
exposure to aerosol anthrax spores and then to use this
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model to estimate the detection benefit of syndromic sur-
veillance compared with clinical case finding.

Methods

Study Design
We developed a model to simulate the dispersion of

released anthrax spores; the infection of exposed persons;
the progression of disease in infected persons; and symp-
tomatic persons’ use of the healthcare system, including
blood culture testing in clinical settings. Using the simula-
tion model, we generated outbreak signals and time until
the first clinical diagnosis for 3 amounts of spores
released. To incorporate into the model the uncertainty in
parameter values, we used a Latin hypercube sampling
design, which allows many parameter values to vary
simultaneously (15). The 3,000 simulated signals generat-
ed with this sampling strategy were superimposed in turn
onto baseline administrative records of ambulatory health-
care visits in the Norfolk, Virginia, area. These records are
generated daily and similar types of records are used wide-
ly for syndromic surveillance (4,7,9). We assessed the use-
fulness of syndromic surveillance by modeling the
healthcare system use that would occur after an anthrax
attack and superimposing this use onto actual administra-
tive data over 1-year period. Finally, we assessed, over a
range of specificity, the sensitivity and timeliness of syn-
dromic surveillance and the detection benefit of syndromic
surveillance compared with clinical case finding for each
simulated outbreak. We summarize our methods in the
remainder of this section and refer readers to the online
Technical Appendix (available from http://www.cdc.gov/
ncidod/EID/vol12no12/06-0331_app.htm) for additional
details.

Simulation Model
The simulation model builds on our previous work

(16–18) and is composed of 4 components: dispersion,
infection, disease, and healthcare system use. The disper-
sion model simulates the number of anthrax spores a per-
son would inhale at locations throughout the region after
release of aerosolized spores. We used the Hazard
Prediction and Assessment Capability (HPAC) software
developed by the Defense Threat Reduction Agency to
simulate the dispersion of spores (19). The HPAC model
accounts for factors such as atmospheric conditions and
terrain. We simulated a point release of 3 amounts of
anthrax spores: 1 kg, 0.1 kg, and 0.01 kg (Figure 1A).

The infection model simulates the number of persons
infected, according to residential address and dispersion of
spores (Figure 1B). The probability of infection given expo-
sure to an amount of spores was modeled by using a probit
regression model. The disease model uses a semi-Markov
process to simulate the progression of infected persons
through 3 discrete states of disease. Each infected person
began in the incubation state and then progressed through
the prodromal state and the fulminant state. The time in
each state was sampled from a log normal distribution.

The healthcare use model uses a semi-Markov process
to simulate the probability and timing of a symptomatic
person seeking care and submission of blood for culture
and culture results when care is sought. For persons in the
prodromal or fulminant state of disease who sought care,
the instantaneous probability of seeking care increased lin-
early over the duration of the state. For patients whose
blood samples were cultured, the testing process was mod-
eled as the transition through 2 discrete states: growth and
isolation. The time spent in each of these states was mod-
eled by using an exponential distribution.
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Figure 1. Maps showing output from dispersion (A) and infection (B) components of the simulation model. The dispersion component
simulates geographic distribution of anthrax spores after an aerosol release. The infection component simulates infection of persons
exposed to spores. 



Data for Simulation Model
The infection model used an infection function corre-

sponding to the data reported by Glassman (20). This is a
probit model with a 50% lethal dose (LD50) of 8,600 spores
and a slope of 0.67. Uncertainty exists about the values for
many of the parameters in the disease and healthcare use
models. To incorporate this uncertainty into our estimates,
we used a Latin hypercube sampling approach to sample
parameter values for random variables in our simulation
model (15). This approach requires specifying equal prob-
ability bins for parameter values. We specified 3 bins for
each parameter value, a narrow bin around the most likely
estimate, and wider bins on either side of the estimate.
Table 1 shows the bins we used for each parameter value,
the probability distribution that each value parameterizes,
and the sources that we used to define the bins.

We used previous work modeling anthrax for the distri-
bution of time periods in each disease state (2,21,22). For
the probability of seeking care while in the prodromal dis-
ease state, cross-sectional surveys indicate that 14%–30%
of persons visit a physician at some point during an
episode of upper respiratory tract illness (23,24). For the
fulminant disease state, we estimated the probability of
seeking care before death as 90%–95%, given the severity
of the symptoms in that state.

After a person made a healthcare visit, we simulated the
syndrome assigned to the person by using probabilities that
reflect the distribution of clinical presentations for inhala-
tional anthrax reported in the literature (25,26). Because
we considered only respiratory syndromes for surveil-
lance, we varied directly only the probability of being
assigned a respiratory syndrome to persons in the prodro-
mal disease state.

For visits from persons in either symptomatic disease
state, the estimate of sensitivity from published studies of
blood culture testing was 0.8–0.9 (27). For a visit in the
prodromal state, we estimated the probability of a physi-
cian ordering a blood culture as 0.01–0.015 on the basis of
data from the National Ambulatory Medical Care Survey
(28). For a visit in the fulminant state of disease, we esti-
mated the probability of a blood culture test as 0.9–0.95.
After gram-positive rods grew in the blood culture, we
estimated the probability of isolating the organism to be
0.8–0.9 (29). We modeled the time until growth and isola-
tion as exponential (25,30).

Baseline Data and Release Scenarios
We used records of ambulatory visits in the Norfolk,

Virginia, region acquired from the TRICARE health main-
tenance organization as a baseline onto which we superim-
posed simulated outbreak records. The data covered the
period 2001–2003, and the simulation region included 17
clinical facilities within an ≈160-km × 200-km area that
encompasses 158 ZIP codes from 2 states. Over the 3 years
of available data, 427,634 persons made >5 million visits.
We classified the records into syndromes by using the
International Classification of Diseases, 9th Revision,
Clinical Modification (ICD-9-CM) to syndrome mapping
defined by the ESSENCE system (7) and used only
351,749 records for which persons were classified as hav-
ing a respiratory syndrome. The Human Subjects Panel at
the Stanford School of Medicine approved the use of these
data for this study. We examined 3 scenarios defined by the
amount of spores released: 1 kg, 0.1 kg, and 0.01 kg. For
each scenario, we performed 1,000 simulations.
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Outbreak Detection
The time to outbreak detection through clinical case

finding for a simulated outbreak was calculated for each
simulated outbreak as the time between exposure to spores
and the first positive blood culture. To calculate time to
outbreak detection through syndromic surveillance, we
superimposed the simulated records for respiratory syn-
drome visits onto the authentic baseline data, beginning on
a randomly selected date in 2003, and then applied the out-
break detection algorithm to the combined baseline and
simulated data. The outbreak detection algorithm used a
time-series model (31) to generate daily 1-step-ahead fore-
casts for the total number of respiratory syndrome visits
(13) and then applied a cumulative sum (32) to the forecast
residual. To vary the specificity of the detection algorithm,
we varied the decision threshold of the cumulative sum.

Evaluation Metrics
To evaluate outbreak detection through syndromic sur-

veillance, we calculated sensitivity, specificity, and timeli-
ness at a range of decision thresholds. Timeliness is the
duration between the release of anthrax spores and the first
report of an outbreak. We also computed the detection ben-
efit of syndromic surveillance relative to clinical case find-
ing, and the proportion of runs with a detection benefit >0.
Detection benefit is the potential time saved in detection
from using syndromic surveillance compared with clinical
case finding. The benefit is calculated as the difference in
the timeliness between syndromic surveillance and clinical
case finding in those simulations in which detection
occurred first by syndromic surveillance. When an out-
break was not detected by syndromic surveillance, the
detection benefit was 0. For a given release scenario, each
of the 1,000 simulations integrated both randomness in the
component model outputs as well as uncertainty in compo-
nent model parameters. Each of the 1,000 simulations is a
sample from the integrated distribution of possible out-
comes. To indicate the spread of the integrated uncertainty
distribution, we calculated the upper and lower deciles
from the 1,000 simulations. For plots, we calculated 95%
confidence intervals, which reflect finiteness of the simu-
lation.

Results

Detection Performance of Clinical Case Finding
Because all outbreaks were ultimately detected by clin-

ical case finding through routine blood culture, the sensi-
tivity of this approach was 1.0 for the scenarios
considered. Clinical case finding detected outbreaks from
an average of 3.7 days to 4.1 days after release, with larg-
er amounts of spores detected before smaller amounts
(Table 2). Results from analyses of additional release sce-

narios (data not shown) suggested that the influence of
amount released on time to detection was mediated, in
part, through the number infected. Mean timeliness across
the scenarios examined was associated with the mean
number infected (Pearson’s r −0.94, 95% confidence
interval −0.98 to −0.79), and an increase of 10,000 infect-
ed persons resulted in a decrease in the time until detection
of ≈4 hours.

Detection Performance of Syndromic Surveillance
The sensitivity and timeliness of syndromic surveil-

lance were influenced by the release amount and by speci-
ficity. Table 3 shows this relationship over the release
scenarios examined and 2 levels of specificity. At a speci-
ficity of 0.90, a 1-kg release was detected in 100% of our
simulations (sensitivity 1.0) at a mean detection time of
3.1 days. For a release that was much smaller, 0.01 kg, sen-
sitivity was 0.94, and the mean detection time increased to
3.6 days. Although the sensitivity of syndromic surveil-
lance was high when we set specificity to 0.90, this speci-
ficity resulted in a false alarm (false-positive detection) ≈1
every 10 days. By increasing specificity to 0.975, we
reduced the false alarm rate to ≈1 every 40 days (Table 3).
However, with increased specificity, the sensitivity of syn-
dromic surveillance decreased (from 0.98 to 0.82 depend-
ing on the size of the release) and the mean time until
detection lengthened to 4.3 days for a 1-kg release and to
5.1 days for a 0.01-kg release (Table 3).

Results from analyses of additional release scenarios
(data not shown) indicated that the trends in sensitivity and
timeliness across release amount were mediated to some
extent by the number infected. Sensitivity was a nonlinear
function of the number of persons infected, with sensitivi-
ty increasing more quickly when fewer persons were
infected. At a specificity of 0.975, an increase of 10,000
infected persons resulted in a decrease in time to detection
of ≈6 hours.

Detection Benefit of Syndromic Surveillance
Compared with Clinical Case Finding

The detection benefit of syndromic surveillance com-
pared with clinical case finding was influenced by speci-
ficity and the release amount. Table 3 shows this
relationship for the release amounts examined and 2 levels

Detecting an Inhalational Anthrax Outbreak

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 12, December 2006 1945



of specificity. When the specificity was 0.9, syndromic
surveillance detected from 51% to 59% of outbreaks
before clinical case finding, and the mean detection bene-
fit was 1.0–1.1 days, but this specificity resulted in a false
alarm every 10 days. At a specificity of 0.975, which
reduced false alarms to 1 every 40 days, syndromic sur-
veillance detected 19%–28% of outbreaks before clinical
case finding and the mean detection benefit was 0.32–0.33
days, or ≈8 hours. Figure 2 shows that for the 0.01-kg and
1-kg release scenarios (results for the 0.1-kg release are
similar, but are not shown), the proportion of outbreaks
detected first by syndromic surveillance and the mean
detection benefit of surveillance each increased as speci-
ficity decreased. Figure 2 also shows that the release
amount had a strong effect on the proportion of outbreaks
detected first by syndromic surveillance but that it did not
have a strong effect on the mean detection benefit.

At a set specificity, syndromic surveillance tended to
detect a higher proportion of outbreaks before clinical case
finding with increasing release amount. The mean detec-
tion benefit, in contrast, tended to decrease when the
amount of spores released increased. This decrease in
average detection benefit occurred because even though
syndromic surveillance detected more outbreaks before
clinical case finding as the release amount increased, the
detection benefit for the additional outbreaks was small,
and the average detection benefit thus decreased.

Discussion
When we compared the performance of clinical case

finding with that of syndromic surveillance for detecting
an inhalational anthrax outbreak, we found that clinical
case finding detected outbreaks on average 3.7–4.6 days
after release of spores. The ability of syndromic surveil-
lance to detect an outbreak before clinical case finding was
influenced by both specificity and release size, with speci-
ficity being the predominant factor. Our results suggest
that syndromic surveillance could detect an inhalational
anthrax outbreak before clinical case finding. However, we
regularly observed a detection benefit only when syn-
dromic surveillance operated at a specificity in the range of
0.9, which corresponds to 1 false alarm every 10 days.
When operating at this relatively low specificity with a

concomitant high sensitivity, syndromic surveillance
detected outbreaks, on average, 1 day before clinical case
finding did.

One of the most useful findings of our study was the
tradeoff between sensitivity and specificity of syndromic
surveillance. To reduce the false alarm rate, specificity
must be high. However, as specificity increased in our
study, the sensitivity of syndromic surveillance decreased,
and the proportion of outbreaks that was detected first by
syndromic surveillance decreased more substantially. If
the response to a result from syndromic surveillance is
resource intensive and includes follow-up investigations in
multiple healthcare settings, then a false alarm rate of 1
every 10 days may be too high for such a system to be use-
ful. Alternatively, if public health personnel can rule out
false-positive results with minimal investment, then a
higher rate of false alarms may be acceptable.

The detection benefit of syndromic surveillance might
be an important lead, depending on the action triggered by
a surveillance alarm. Because many clinical and public
health departments have defined protocols for actions after
clinical confirmation of an inhalational anthrax case (33),
the action after detection of a clinical case is fairly well
defined in many jurisdictions. In contrast, the appropriate
action after a result from syndromic surveillance system is
not well-defined (34). For example, some public health
departments routinely wait 1 day for a second alarm before
taking action (35). This strategy could eliminate the poten-
tial detection benefit of syndromic surveillance. Another
concern is the relatively low specificity at which syn-
dromic surveillance must operate to consistently result in a
detection benefit. A system producing this many false
alarms may result in excessive costs, and users may mini-
mize the importance of these results.

To be useful, however, syndromic surveillance does not
necessarily have to detect all outbreaks, or even most out-
breaks, before a clinician detects the first case. The addi-
tional lead in detection offered by syndromic surveillance
in some outbreaks may result in enough benefit to support
the use of syndromic surveillance. Syndromic surveillance
may also be useful for applications other than detecting an
outbreak caused by bioterrorism; e.g., for detecting other
types of disease outbreaks (36), for ruling out the existence

RESEARCH

1946 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 12, December 2006



of an outbreak, or for evaluating the effect of a public
health intervention. Assessment of the question of the util-
ity of syndromic surveillance in general would require
consideration of a broader range of costs and benefits than
we included in our study.

Our methods are an advance over those used in previ-
ous studies because we were able to examine rigorously,
within a single modeling framework, the ability of clinical
case finding and syndromic surveillance to detect anthrax
outbreaks. The nature of our model allowed us to vary
some outbreak characteristics directly (e.g., release
amount) and to incorporate the uncertainty in parameter
values into our final estimates of detection performance
and detection benefit. Although our sampling approach did
allow us to vary many parameter values simultaneously, it
did not clarify how the results vary in relation to changes
in the value of a single parameter. Our estimate of detec-
tion performance through syndromic surveillance is com-
parable to estimates observed through studies that used
simulation models (12,37), but those studies did not allow
direct comparison of detection through syndromic surveil-
lance with detection through clinical case finding. Our
estimate of the time until detection through clinical case
finding is longer than the estimate used by the authors of a
study aimed at modeling response strategies to an anthrax
outbreak (2), but those authors did not provide a clear
rationale for the value they chose. An initial presumptive
diagnosis may occur earlier than the first positive blood
culture result (e.g., through clinical symptoms and chest

radiographs), but a decision for large-scale intervention
would likely not be made until at least after the first defin-
itive diagnosis was made.

In our study, we considered 1 approach to syndromic
surveillance for an outbreak resulting from 1 type of
organism, and we considered clinical case finding through
1 type of routinely applied diagnostic test. There are many
different approaches to syndromic surveillance; e.g., dif-
ferent types of data and different detection algorithms.
Although different approaches to surveillance might pro-
duce different results, the choice of the infectious organism
is likely to have a greater effect on results. Anthrax is rel-
atively unique among bioterrorism agents in that a routine-
ly used diagnostic test (i.e., blood culture) will identify the
organism definitively. The benefit of syndromic surveil-
lance relative to clinical case finding may therefore be
greater for outbreaks caused by other organisms, and an
anthrax outbreak may be a worst-case scenario for syn-
dromic surveillance.

Syndromic surveillance detected an inhalation anthrax
outbreak before the first clinical case was diagnosed in as
many as half of simulated outbreaks. However, the poten-
tial detection benefit of syndromic surveillance compared
with clinical case finding depended critically on the speci-
ficity and sensitivity at which a surveillance system oper-
ated and on the size of the outbreak. When syndromic
surveillance was sufficiently sensitive to detect a substan-
tial proportion of outbreaks, it generated frequent false
alarms. Public health authorities should be aware that the
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Figure 2. Proportion of inhalational anthrax outbreaks detected by  syndromic surveillance before clinical case finding (A) and mean
detection benefit of syndromic surveillance compared with clinical case finding as a function of specificity (and false-alarm rate)(B)  for 3
release scenarios. CI, confidence interval.

A B



potential detection benefit of syndromic surveillance com-
pared with clinical case finding is influenced strongly by
the specificity at which a surveillance system operates. To
help detect outbreaks more rapidly, future research should
examine the cost-effectiveness of syndromic surveillance
and explore approaches to linking syndromic surveillance
and clinical case finding more closely.
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