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Abstract
Protein function is controlled by the cellular proteostasis network. Proteostasis is energetically

costly and those costs must be balanced with the energy needs of other physiological func-

tions. Hypertonic stress causes widespread protein damage inC. elegans. Suppression and
management of protein damage is essential for optimal survival under hypertonic conditions.

ASH chemosensory neurons allowC. elegans to detect and avoid strongly hypertonic envi-

ronments. We demonstrate that mutations in osm-9 and osm-12 that disrupt ASHmediated

hypertonic avoidance behavior or genetic ablation of ASH neurons are associated with

enhanced survival during hypertonic stress. Improved survival is not due to altered systemic

volume homeostasis or organic osmolyte accumulation. Instead, we find that osm-9(ok1677)
mutant and osm-9(RNAi)worms exhibit reductions in hypertonicity induced protein damage in

non-neuronal cells suggesting that enhanced proteostasis capacity may account for improved

hypertonic stress resistance in worms with defects in osmotic avoidance behavior. RNA-seq

analysis revealed that genes that play roles in managing protein damage are upregulated in

osm-9(ok1677)worms. Our findings are consistent with a growing body of work demonstrat-

ing that intercellular communication between neuronal and non-neuronal cells plays a critical

role in integrating cellular stress resistance with other organismal physiological demands and

associated energy costs.

Introduction
Cellular life requires precise control of protein structure and function, which are determined
by protein conformation, concentration, assembly and localization. The homeostatic mecha-
nisms that maintain protein function are collectively termed proteostasis. The proteostasis net-
work is evolutionarily conserved and comprises the tightly integrated and regulated activities
of gene transcription, RNA metabolism and protein synthesis, folding, assembly, trafficking,
disassembly, repair and degradation [1–3].
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Proteostasis is under constant challenge. Protein structure is inherently unstable [4,5] and
readily disrupted by gene mutations and numerous environmental stressors. Random errors in
cellular processes such as DNA replication, transcription and protein translation also disrupt
protein structure. A poorly understood decline in the capacity of cellular proteostasis networks
that repair and degrade damaged proteins is thought to underlie pathophysiology associated
with senescence [6,7].

Proteostasis is energetically costly and those costs must be balanced with the energy needs
of other cellular and organismal functions as well as with the requirement of the organism to
respond to environmental change. A fundamental and emerging question is how do organisms
ensure optimal survival by partitioning a finite energy budget to meet the demands of proteos-
tasis and other essential physiological processes including reproduction? Several recent studies
in C. elegans have pointed to a critical role for the nervous system and communication between
different tissue types in coordinating organismal proteostasis needs. For example, Morimoto
and co-workers have demonstrated that the heat shock response of non-neuronal cells is mod-
ulated by inhibitory inputs from AFD thermosensory neurons as well as neural circuits that
respond to metabolic status and nutrient availability [8,9]. Activation of the endoplasmic retic-
ulum (ER) unfolded protein response (UPR) in neurons activates the UPR in the intestine via a
neurosecretory process that in turn increases organismal stress resistance and longevity [10].
Inhibition of protein translation or degradation in non-neuronal cells alters C. elegans behav-
ioral responses that are controlled by chemosensory neurons [11].

The proteostasis network plays a critical role in ensuring optimal survival of C. elegans
under dehydrating conditions. When exposed to hypertonic stress, C. elegans rapidly loses
water and becomes paralyzed. Water loss is followed by systemic volume recovery and accu-
mulation of the organic osmolyte glycerol [12]. Dehydration causes rapid and widespread pro-
tein aggregation and misfolding [13,14]. Stress induced protein damage is minimized by genes
that function in protein degradation [13] and by reductions in protein synthesis [15,16].
Hypertonicity induced inhibition of translation also serves as a signal that activates glycerol
accumulation pathways [17,18] and possibly other mechanisms that confer increased hyper-
tonic stress resistance.

Given the importance of the proteostasis network to the survival of C. elegans in hypertonic
environments, we characterized hypertonic stress resistance in worm strains with defects in
osmotic avoidance behavior. C. elegans avoids strongly hypertonic solutions. This avoidance
behavior is mediated by ASH chemosensory neurons [19,20]. We demonstrate that disruption
of osmotic avoidance behavior via gene mutations or genetic ablation of ASH neurons is associ-
ated with enhanced survival in hypertonic environments. Enhanced survival is not due to
altered systemic volume regulation or glycerol accumulation and instead may be due to
enhanced proteostasis capacity.

Materials and Methods

C. elegans strains
The following strains were obtained from the Caenorhabditis Genetics Center (University of
Minnesota, Minneapolis, MN, USA): wild-type N2 Bristol, VC1262 osm-9(ok1677), MT3645
osm-12(n1606), AM140 rmIs132[Punc-54::Q35::YFP], SD551[let-60(ga89)], NL790 gpa-4
(pk381), PY7505 oyIs84[gpa-4p::TU#813 + gcy-27p::TU#814 + gcy-27p::GFP + unc-122p::
dsRed], TU3311 uIs60[Punc-119::YFP + Punc-119::sid-1], and Is[sra-6p::mCasp]. VC1262 and
AM140 strains and TU3311 and SD551 strains were crossed to generate osm-9(ok1677);
rmIs132[Punc-54::Q35::YFP] and let-60(ga89);uIs60[Punc-119::YFP + Punc-119::sid-1] worms,
respectively. F2 progeny were selected for YFP expression and the presence of the osm-9
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(ok1677) or let-60(ga89) alleles were verified by PCR. Is[sra-6p::mCasp] [21] worms were a gen-
erous gift of Dr. Kazushi Yoshida. Standard osmotic avoidance assays [22] were carried out
blinded to verify strains predicted or shown previously to be defective in osmotic avoidance
behavior. Unless stated otherwise, worms were cultured at 20°C on nematode growth media
(NGM) plates using standard methods [23]. Hypertonic agar plates were generated by adding
NaCl to standard nematode growth medium.

Fluorescent protein aggregate measurement
The number of body wall muscle cell Q35::YFP aggregates were quantified manually in blinded
experiments using a Zeiss Stemi SV11 microscope (Chester, VA). Single aggregate volume
measurements and fluorescence recovery after photobleaching (FRAP) analysis were carried
using confocal microscopy as described previously [14].

RNA interference. RNA interference (RNAi) was performed by feeding worms from the L1
larval stage with bacteria expressing a nonspecific scrambled dsRNA or dsRNA specific to osm-
9. Late stage L4 RNAi worms were transferred to control or high NaCl growth plates seeded
with dsRNA expressing bacteria.

let-60(ga89)mutant phenotype assay
Temperature sensitive let-60(ga89)mutant worms were maintained at the permissive tempera-
ture of 16°C. Defective egg hatching or larval arrest phenotypes were quantified by transferring
1-day old gravid adults to 300 mMNaCl feeding plates and then removing them after 24 h.
Eggs were scored for failure to hatch or develop past the L1 larval stage.

Survival assays
Synchronized late L4 worms were exposed to various stressors and survival was determined by
prodding animals with a platinum wire. Worms were considered to be dead if they did not
respond to repeated prodding. All survival studies were done blinded.

Lifespan analysis
Synchronized L4 larvae were transferred to 51mMNaCl agar plates containing 50 μg/ml
5-fluorodeoxyuracil (FUDR; Sigma-Aldrich, St. Louis, MO). Animals were transferred onto
fresh plates containing FUDR every 2 days for the first week, then every 4–5 days thereafter.
Survival was scored daily for touch provoked movement.

35S-methionine labeling of total protein
Incorporation of 35S-methionine into total protein was used to assess rates of protein synthesis
and degradation. Radiolabeling was carried out using methods similar to those described by
others [24]. Briefly, synchronized L4 worms were fed 35S-methionine labeled OP50 bacteria for
4 h, washed and incubated with unlabeled OP50 for 1 h to purge radioactive intestinal bacteria,
and then washed thoroughly with NGM buffer. Washed worms were flash frozen in liquid
nitrogen and stored at -80°C before extraction. Protein was extracted from thawed samples by
trichloroacetic acid-ethanol protein precipitation. Total protein concentration and radioactiv-
ity incorporation were measured by BCA assay (Pierce Biotechnology) and liquid scintillation
counting, respectively.
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RNA-sequencing and gene expression analysis
N2 and osm-9(ok1677) worms were carefully staged for gene expression analysis. Staging was
carried out using well established methods [25] and took into account the slight developmental
delay we observed in osm-9(ok1677) worms. Briefly, bleached eggs were placed on clean NGM
plates to synchronize L1 stage larvae. After washing, L1 larvae were transferred to NGM plates
seeded with OP50 and grown at 20°C. Cultures were visually inspected frequently during the
staging process. Late stage L4 larvae were defined by the appearance of a white crescent shape
that surrounds the prospective vulva. To avoid gene expression changes that might be associ-
ated with the L4/adult molt, animals with white crescents were transferred to experimental
conditions while they were still moving and feeding and had not yet entered the quiescent
period that occurs prior to molting [26].

L4 stage N2 and osm-9(ok1677) worms were washed and transferred to control (51mM
NaCl) and hypertonic stress (200mM NaCl) agar plates for 6 h. Two to four independent
experiments were conducted for each condition. After the exposure period, plates were visually
inspected. No evidence of molting or development of worms into gravid adults was detected.
Worms were rinsed off plates, washed 4 times, pelleted, and snap frozen for storage at -80°C
until processing. Total RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA). RNA quality
was assessed by spectrophotometry and by using an RNA 6000 Nano Kit and Bioanalyzer 2100
(Agilent, Santa Clara, CA).

RNA-sequencing was carried out by Ocean Ridge Biosciences (Palm Beach Gardens, FL).
llumina paired-end and barcoded TrueSeq mRNA sequencing libraries were prepared from
RNA samples with an RNA Integrity Numer (RIN) of�8.0, pooled and sequenced for 76 cycles
on two Illumina HiSeq2500 flow cell lanes (Illumina, Inc., San Diego, CA). Following diagnos-
tic analyses of the 532,462,712 sequence reads using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/), sequences were aligned to the WS235 version of the C. ele-
gans genome assembly using Tophat version 1.4.1 [27] and mapped to Ensembl (version 71)
[28] annotated genes using Cufflinks version 2.0.1 [29]. Differentially expressed genes were
determined using read counts per gene and a P-value threshold of�0.05 with edgeR version
3.2.4 [30] for each pairwise comparison among sample groups. Functional annotation for
genes was obtained using WormBase [31] and Ensembl BioMart [32]. Enrichment analysis of
DAF-16 and SKN-1 identified by Tepper et al. (33) and Niu et al. [34] was conducted using
Fisher’s Exact Test in R 3.2.0. RNA-Seq data are available at the NCBI Gene Expression Omni-
bus (http://www. ncbi.nlm.nih.gov/geo/) under accession GSE73589 and at the NCBI Short
Read Archive (http://www.ncbi.nlm.nih.gov/sra) under accession SRP064324.

Statistical analysis
All data are presented as means ± S.E. Statistical significance was determined using Student’s
two tailed t-test when two means were compared or ANOVA with Tukey post hoc test when
comparing multiple means. P values of�0.05 were taken to indicate statistical significance.

Results
Mutant worms with defective osmotic avoidance behavior are termed Osm for “osmotic avoid-
ance abnormal”. Ten osm genes have been identified. Loss of osm-7, osm-8 and osm-11 function
to activate gpdh-1 expression and induce constitutive glycerol accumulation [17,35–37]. All
other osm genes are required for the normal function or development of chemosensory neu-
rons. osm-9 and osm-12 encode a TRPV cation channel [20] and a protein required for the bio-
genesis of sensory neuron cilia [38], respectively. Both genes are expressed in ASH
osmosensory neurons as well as other chemosensory neurons [39].

Osmotic Avoidance and Hypertonic Stress Resistance

PLOS ONE | DOI:10.1371/journal.pone.0154156 April 25, 2016 4 / 20

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www/
http://ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/sra


To determine whether defects in osmotic avoidance behavior impact hypertonic stress resis-
tance, we initially examined the ability of wild type N2 and the osm-9(ky10)mutant to survive
a 24 h exposure to high NaCl growth plates. The ky10 allele is a widely studied loss-of-function
mutation that disrupts a variety of chemosensory behaviors including avoidance of hypertonic
environments [20]. As shown in Fig 1A, osm-9(ky10)mutants had significantly (P<0.05)
greater survival at 400, 500 and 600 mMNaCl compared to wild type animals.

Fig 1. Effect of osm-9 and osm-12mutations and genetic ablation of ASH osmosensory neurons on survival during hypertonic stress. (A) Survival
of wild type worms and osm-9(ky10) loss-of-function mutants exposed to different concentrations of NaCl for 24 h. Values are means ± S.E. of four
independent and blinded experiments. *P<0.05 and **P<0.001 compared to wild type animals. (B) Survival of wild type worms and osm-9(ok1677) and osm-
12(n1606) loss-of-function mutants exposed to different concentrations of NaCl for 24 h. Values are means ± S.E. of four independent experiments. *P<0.05
for both osm-9(ok1677) and osm-12(n1606)mutants compared to wild type animals. (C) Survival of wild type and ASH ablated (i.e., Is[sra-6p::mCasp1]
transgenic strain) worms exposed to 500 or 600 mMNaCl for 24 h. Values are means ± S.E. of 6–12 independent experiments. *P<0.002 and **P<0.02
compared to wild type worms. (D) Survival of wild type, gpa-4(pk381)mutants and ASI ablated (i.e., oyIs84[gpa-4p::TU#813 + gcy-27p::TU#814 + gcy-27p::
GFP + unc-122p::dsRed] transgenic strain) worms exposed to 500 or 600 mMNaCl for 24 h. Values are means ± S.E. of 8–9 experiments. *<P<0.05
compared to wild type and **P<0.001 compared to ASI ablation.

doi:10.1371/journal.pone.0154156.g001
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We also examined hypertonic stress resistance of osm-9(ok1677) and osm-12(n1606)
mutants. osm-9(ok1677) is a deletion mutant that can be followed in crosses using PCR. osm-9
(ok1677) worms developed and moved somewhat more slowly than osm-9(ky10) worms. How-
ever, all three genotypes exhibited similar defects in osmotic avoidance behavior (Table 1).
Compared to wild type worms, both osm-9(ok1677) and osm-12(n1606) worms showed signifi-
cantly (P<0.05) higher survival at 400 and 500 mMNaCl (Fig 1B).

Acclimation of C. elegans to relatively low levels of hypertonic stress increases survival
under more extreme conditions. Increased survival is due to reduced water loss that results
from organic solute accumulation and to enhanced proteostasis capacity [12–15]. We accli-
mated wild type, osm-9(ok1677) and osm-12(n1606) worms beginning at the L1 larval stage to
200 mMNaCl and then assessed survival in late L4 and young adult animals exposed to
increasing NaCl levels. As expected, acclimation improved hypertonic stress resistance, but
enhanced resistance was similar in wild type and mutant worms (data not shown).

Yoshida et al. [21] recently described a transgenic worm strain in which ASH neurons are
ablated by expression of mouse caspase 1 driven by the promoter sra-6. sra-6 is expressed
highly in ASH neurons and weakly in ASI sensory and PVQ interneurons [39]. The Is[sra-6p::
mCasp] transgenic has defects in avoidance of noxious chemicals [21] and also exhibits defects
in avoidance of hypertonic environments similar to osm-9(ky10), osm-9(ok1677) and osm-12
(n1606) worms (Table 1).

We tested the effect of hypertonic stress on survival of wild type worms and the Is[sra-6p::
mCasp] transgenic strain. The transgenic strain showed significantly (P<0.02) increased sur-
vival when exposed to 500 or 600 mMNaCl for 24 h (Fig 1C).

osm-9, osm-12 and sra-6 are expressed in ASH as well as other neuron types [39]. While not
definitive, the only cell types in which expression of these three genes has been shown to over-
lap are ASH and ASI chemosensory neurons [39]. It is thus conceivable that the enhanced sur-
vival of osmmutants and the ASH ablation strain is due to defects in ASH and/or ASI neuron
function. To assess the role of ASI neurons in hypertonic stress resistance, we quantified sur-
vival of gpa-4(pk381) loss-of-function mutants and the PY7505 transgenic strain in 500 and
600 mMNaCl. gpa-4 encodes a G-protein alpha subunit and has been reported to be expressed
selectively in ASI neurons [40]. In the PY7505 strain, the ASI neurons are ablated by transgenic
caspase expression [41]. At 500 mMNaCl, ASI ablation worms showed significantly (P<0.05)
reduced survival compared to either wild type N2 worms or gpa-4(pk381)mutants (Fig 1D).
No significant (P>0.2) differences in survival between strains were observed at 600 mMNaCl
(Fig 1D). Taken together, data in Fig 1 suggest that loss of ASH neuron functions required for
avoidance of hypertonic environments is associated with enhanced hypertonic stress
resistance.

Table 1. Osmotic avoidance behavior in wild type and ASH ablation worms and osmmutants.

Genotype Fraction with defective osmotic avoidance

Wild type 0.09 ± 0.03 (13)*

osm-9(ky10) 0.80 ± 0.10 (7)

osm-9(ok1677) 0.67 ± 0.07 (7)

Is[sra-6p::mCasp] 0.78 ± 0.03 (6)

osm-12(n1606) 0.60 ± 0.05 (4)

Values are means ± S.E. (n).

*P<0.001 compared to osm mutants and ASH ablation strain. Osmotic avoidance was not significantly

(P>0.05) different in osm mutants and ASH ablation worms.

doi:10.1371/journal.pone.0154156.t001
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Cells and organisms lose water when exposed to hypertonic conditions. Survival in hyper-
tonic environments is dependent on three processes: 1) recovery of cell and systemic fluid vol-
ume via uptake of inorganic ions and water, 2) replacement of accumulated inorganic ions
with small, non-perturbing solutes termed organic osmolytes, and 3) repair and/or removal of
cellular and molecular damage induced by hypertonic stress. The enhanced osmotolerance of
ASH neuron mutants could be due to enhanced activity of any combination of these processes.
We therefore assessed the role of each of each pathway in the improved osmotolerance of osm-
9(ok1677)mutants.

When exposed to hypertonic conditions, C. elegans rapidly loses water and becomes para-
lyzed. However, over a period of a few hours, systemic volume and normal motility is recov-
ered. As shown in Fig 2A, N2 worms and osm-9(ok1677) and osm-12(n1606)mutants exhibit
similar degrees of shrinkage and rates of volume recovery when exposed to agar plates contain-
ing 200 mMNaCl.

Fig 2. Effect of loss of ASH osmosensory neuron function on hypertonic stress induced whole animal water loss and volume recovery. (A) Whole
worm volume changes. Wild type worms and osm-9(ok1677) and osm-12(n1606) loss-of-function mutants were transferred to agar plates containing 200 mM
NaCl at time 0. Values are means ± S.E. (n = 8). gpdh-1mRNA expression (B) and whole animal glycerol levels (C) in wild type and osm-9(ok1677) and osm-
12(n1606)worms. Values are means ± S.E. (n = 3). *P<0.002 and **P<0.007 compared to wild type worms. (D) Time course changes in gpdh-1 expression.
Wild type worms and osm-9(ok1677) and osm-12(n1606) loss-of-function mutants were transferred to agar plates containing 200 mMNaCl at time 0. Values
are means ± S.E. (n = 3–5). *P<0.01 compared to osm-9(ok1677) and osm-12(n1606)mutants.

doi:10.1371/journal.pone.0154156.g002
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Increased transcription of gpdh-1 catalyzes constitutive accumulation of the organic osmo-
lyte glycerol in worms harboring loss-of-function mutations in certain osm genes [17,35–37].
Increased glycerol levels will reduce water loss, which in turn reduces cellular and molecular
damage and increases survival under hypertonic conditions. To directly assess the role glycerol
accumulation plays in the enhanced osmotolerance of osm-9(ok1677) and osm-12(n1606)
mutants, we quantified gpdh-1 expression and whole animal glycerol levels under control con-
ditions (51mM NaCl). As shown in Fig 2B, gpdh-1mRNA levels were not significantly (P>0.7)
different in N2 and osm-9(ok1677)mutant. In osm-12(n1606)mutants, gpdh-1mRNA levels
were significantly (P<0.002) reduced compared to wild type worms. Glycerol levels (Fig 2C)
mirrored gpdh-1 expression and were not significantly (P>0.2) different in osm-9(ok1677)
mutants. In osm-12(n1606)mutants, glycerol levels were reduced significantly (P<0.007) com-
pared to wild type worms.

GPDH-1 catalyzes the rate limiting step in glycerol accumulation during hypertonic stress
[17]. The similar rates of volume recovery between wild type, osm-9(ok1677) and osm-12
(n1606) animals shown in Fig 2A indicate that enhanced survival of osmmutants is not due to
increased gpdh-1 expression and increased glycerol accumulation. To address this issue
directly, we quantified temporal changes in gpdh-1 expression during exposure of worms to
200 mMNaCl. gpdh-1 expression increases rapidly during hypertonic stress and then declines
to new steady state levels [18]. As shown in Fig 2D, gpdh-1 expression showed similar rates of
increase and steady state levels in wild type and osmmutants. However, the decline in gpdh-1
expression observed 2 h after hypertonic stress was significantly (P<0.01) more rapid in osm-9
(ok1677) and osm-12(n1606) animals. We conclude that enhanced volume and glycerol
homeostasis do not contribute to increased short term hypertonic stress resistance in worms
with defects in osmotic avoidance behavior.

In a recent genome-wide RNAi screen, we identified 40 genes whose function is essential for
survival of C. elegans in hypertonic environments. Loss of these genes results in a hypertonic
sensitive or Hos phenoytype. Twenty hos genes play central roles in trafficking and destroying
damaged proteins [13]. We subsequently demonstrated that hypertonic stress causes rapid,
diverse and widespread protein damage [13–16]. Worms acclimated to mild hypertonic stress
show enhanced survival and greatly reduced protein damage during exposure to more extreme
hypertonicity [13–15]. Experimental maneuvers that increase protein damage reduce survival
under hypertonic conditions [13,16]. Together, these studies indicate that detection and repair
and/or destruction of damaged proteins is required for optimal survival during water loss, and
suggest that enhanced proteostasis capacity may account for the increased osmotolerance of
osm-9(ok1677) and osm-12(n1606)mutants.

To assess whether proteostasis capacity is altered in worm strains with defects in hypertonic
avoidance behavior, we crossed osm-9(ok1677)mutant worms with a worm strain expressing
polyglutamine (Q35) containing yellow fluorescent (YFP) protein in their body wall muscle
cells. As shown in Fig 3A, wild type N2 and Q35::YFP worms showed similar survival when
exposed to 500 or 600 mMNaCl. In contrast, survival was strongly enhanced by crossing osm-
9(ok1677) into the Q35 strain, a finding consistent with results shown in Fig 1.

Q35::YFP is normally fully soluble in the muscles cells of young worms, but undergoes
rapid aggregation when the animals are exposed to hypertonic media [13–15]. We quantified
Q35::YFP aggregation in osm-9(ok1677)mutants exposed to 400 mMNaCl for 24 h or exposed
to 500 mMNaCl for 1 h followed by a 3 h after recovery on control medium. As shown in Fig
3B, Q35::YFP aggregation was reduced 40–50% (P<0.005) in osm-9(ok1677)mutants. Total
Q35:YFP fluorescence was not significantly (P>0.9) different in wild type versus osm-9
(ok1677)mutants (total YFP fluorescence expressed as arbitrary units was 465 ± 41 and
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469 ± 33 in wild type and osm-9(ok1677) worms, respectively; n = 11) demonstrating that dif-
ferences in aggregation were not due to differences in Q35:YFP expression levels.

We also characterized the functional properties of the Q35::YFP aggregates. Aggregate vol-
ume increases rapidly when worms are exposed to hypertonic stress [14]. As shown in Fig 3C,
aggregate growth was inhibited ~50% (P<0.0004) in osm-9(ok1677)mutants. However, the
osm-9(ok1677)mutation had no effect on the solubility of aggregated Q35::YFP proteins. The
fluorescence of regions within aggregates did not recover after photobleaching demonstrating
that the aggregated proteins are insoluble (Fig 3D).

Finally, we quantified aging induced protein aggregation. Q35::YFP undergoes a slow, pro-
gressive aggregation as C. elegans ages [42]. As shown in Fig 3E, the osm-9(ok1677)mutation
had no effect on the accumulation of Q35::YFP aggregates in aging worms. Taken together,
data in Fig 3 demonstrate that hypertonicity induced Q35::YFP aggregation is reduced in osm-
9(ok1677)mutant worms.

Temperature sensitive (ts) mutations give rise to proteins that fold and function correctly at
low or ‘permissive’ temperatures [43–45]. let-60(ga89) encodes a ts mutant of ras GTPase. We
have shown previously that hypertonic stress causes apparent misfolding of the let-60(ga89)
encoded protein under permissive temperature conditions (16°C) and gives rise to an egg
hatching and larval arrest phenotype [14,16].

To determine whether disruption of genes that control hypertonic avoidance behavior mod-
ulates hypertonic stress induced protein misfolding, we examined the effect of loss of osm-9
function on the let-60(ga89)mutant phenotype. osm-9 and let-60 are both located on chromo-
some IV and we were unable to successfully cross worm strains carrying mutant alleles of the
two genes. We therefore utilized an RNA interference (RNAi) approach. let-60(ga89)mutants
were crossed with the worm strain TU3311 uIs60[Punc-119::yfp + Punc-119::sid-1], which
exhibits increased sensitivity of neurons to RNAi [46]. let-60(ga89);uIs60[Punc-119::yfp +
Punc-119::sid-1] worms were fed bacteria expressing scrambled (control) or osm-9 dsRNA. As
expected, exposure of worms fed scrambled dsRNA at 16°C to 300 mMNaCl caused a striking
and significant (P<0.006) increase in egg hatching defects and larval arrest. Silencing of osm-9
function by RNAi reduced the expression of the mutant phenotype by ~70% (P<0.005) (Fig 4).

Acclimation to hypertonic stress increases lifespan and resistance to other environmental
stressors [47]. Given the improved hypertonic stress resistance and proteostasis capacity of
osm-9(ok1677)mutant worms, we therefore also characterized the lifespan of this strain and its
resistance to heat, heavy metal and oxidative stress. Median and maximum lifespan were not
significantly (P>0.3) different in wild type and osm-9(ok1677)mutants (Fig 5A). The osm-9
(ok1677)mutant exhibited sensitivity to heat shock similar to that of wild type animals (Fig 5B)
and increased sensitivity to the heavy metal cadmium (Fig 5C). Resistance to high concentra-
tions of the quinone juglone was significantly (P<0.04) increased in osm-9(ok1677) worms

Fig 3. Hypertonic stress induced aggregation of Q35::YFP in body wall muscle cells of osm-9(ok1677)mutant worms. (A) Survival of wild type N2,
Q35::YFP and Q35;osm-9(ok1677)worms exposed to 500 or 600 mMNaCl for 24 h. Values are means ± S.E. of 6 experiments. *P<0.001 and **P<0.01
compared to wild type N2 and Q35 worms. (B) Hypertonic stress induced Q35::YFP aggregation in wild type Q35 worms andQ35;osm-9(ok1677)mutants.
Values are means ± S.E. of 4 experiments with a total of 32–78 worms. The number of Q35::YFP aggregates was quantified in worms exposed to 400 mM
NaCl for 24 hour or 500 mMNaCl for 1 h followed by 3 h recovery on control medium. Values are means ± S.E. (n = 3). *P<0.005 and **P<0.001 compared
to wild type Q35 worms. (C) Q35::YFP volume in wild type Q35 worms andQ35;osm-9(ok1677)mutants. Worms were exposed to 500 mMNaCl for 1 h and
then allowed to recover on control medium before aggregate volumes were quantified. Values are means ± S.E. (n = 20 aggregates in 5–6 worms).
*P<0.0004 compared to wild type Q35 worms. (D) Time course of bleaching and fluorescence recovery of Q35::YFP aggregates inQ35;osm-9(ok1677)
mutant worms. Aggregates were induced by exposing worms to 500 mMNaCl for 1 h. FRAP analysis was performed 3 h after worms were returned to 51 mM
NaCl medium. Values are means ± S.E. (n = 7 aggregates in 4 worms). (E) Time course of aging induced Q35::YFP aggregation in wild type Q35 worms and
Q35;osm-9(ok1677)mutants. Values are means ± S.E. (n = 3).

doi:10.1371/journal.pone.0154156.g003
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(Fig 5D). Quinones like juglone generate reactive oxygen species and form adducts with diverse
macromolecules [48].

The enhanced proteostasis capacity of osm-9(ok1677)mutants could result from a number
of different physiological changes. When exposed to hypertonic stress, protein synthesis is rap-
idly reduced in C. elegans and this reduction in translation functions in part to minimize pro-
tein damage [15,16,18]. More extensive reductions in translation could reduce protein damage
in osm-9(ok1677)mutants. However, reductions in rates of translation were not significantly
different (P>0.7) in wild type and osm-9(ok1677) worms exposed for 2 h to 200 mMNaCl (Fig
6A). Net rates of total protein degradation, measured as the decrease in 35S-methionine label-
ing following a 6 h exposure to 200 mMNaCl in the presence of 500 μg/ml cycloheximide,
were also not significantly (P>0.7) different in the two groups of animals (Fig 6B).

The improved proteostasis capacity of the osm-9(ok1677) worm strain could be due to
altered expression of genes encoding components of the proteostasis network. To begin testing
this possibility, we performed RNA-sequencing gene expression analyses on wild type and
osm-9(ok1677) worms under control and hypertonic stress conditions. In unstressed osm-9
(ok1677) worms we found significant (P<0.05) upregulation of genes that have well defined or
likely roles in protein degradation, synthesis and folding as well as genes with RNAi pheno-
types of increased protein aggregation, altered sensitivity to protein aggregation and/or
decreased hypertonic stress resistance. For example, in control osm-9(ok1677) worms we iden-
tified 23 upregulated (1.4- to 3.2-fold) genes that play known or presumptive roles in protein
degradation including proteases, proteins associated with lysosome function, E3 ubiquitin
ligases and E2 ubiquitin-conjugating enzymes (Table 2). RNAi silencing of one of these genes,
vha-3, a vacuolar proton ATPase subunit likely required for lysosome function, results in
increased protein aggregation during hypertonic stress and decreased hypertonic stress resis-
tance [13]. Knockdown of C17H11.6, which encodes a predicted E3 ubiquitin ligase, increases
sensitivity to protein aggregation-induced paralysis [49].

Fig 4. Effect of RNAi induced loss of osm-9 function on let-60(ga89) induced egg hatching defects
and larval arrest. let-60(ga89) encodes a ts mutant of ras GTPase. The mutant phenotype can be induced at
permissive temperatures (16°C) by exposing worms to 300 mMNaCl [14,16]). let-60(ga89)mutants were
crossed with uIs60[Punc-119::yfp + Punc-119::sid-1] worms to increase the sensitivity of neurons to RNAi
(46). let-60(ga89);uIs60[Punc-119::yfp + Punc-119::sid-1] worms were fed bacteria expressing scrambled
(control) or osm-9 dsRNA and maintained at 16°C on agar plates containing either 51 or 300 mMNaCl.
Values are means ± S.E. (n = 3–5 experiments with 100–300 eggs). *P<0.006 compared to control worms
exposed to 51 mMNaCl. **P<0.005 compared to control worms exposed to 300 mMNaCl.

doi:10.1371/journal.pone.0154156.g004
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Twenty-two genes with diverse functions that are not associated with proteostasis in obvi-
ous ways were upregulated 1.5- to 9.9-fold in control osm-9(ok1677) worms (Table 2). RNAi
knockdown of these genes results in increased protein aggregation, reduced resistance to
hypertonic stress and/or changes in sensitivity to protein aggregation-induced paralysis.

osm-9(ok1677) worms placed under hypertonic stress also exhibited significant (P<0.05)
differential upregulation of genes associated with proteostasis (Table 3). Eight of these genes
have RNAi phenoptypes of increased protein aggregation, altered sensitivity to protein aggre-
gation and/or decreased hypertonic stress resistance.

The transcription factors DAF-16 and SKN-1 play important roles in regulating stress resis-
tance, longevity and proteostasis [54–57]. Target genes for DAF-16 have been identified by
Tepper et al. [33] using chromatin immunoprecipitation sequencing (ChIP-seq) and other
functional genomic datasets. The modENCODE project [58] has utilized ChIP-seq to identify
SKN-1 regulated genes [34] (http://modencode.org). As shown in Tables 2 and 3, 48% and

Fig 5. Lifespan and (A) and resistance to heat shock (B), cadmium (C) and oxidative stress (D) in osm-9(ok1677)worms.Median lifespan (A) was 21
days for wild type and osm-9(ok1677)worms (n = 100 worms for both groups). Values in B, C and D are means ± S.E. (n = 5). *P<0.007 and **P<0.04
compared to wild type worms.

doi:10.1371/journal.pone.0154156.g005
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29%, respectively, of the genes upregulated in osm-9(ok1677) worms have binding sites for
these two transcription factors. DAF-16 and SKN-1 targets were enriched significantly
(P<0.01) in the upregulated genes identified in osm-9(ok1677) worms under control condi-
tions (Table 2). Twenty-six of the 53 (i.e., 49%) upregulated genes are predicted DAF-16 and
SKN-1 targets compared to 5,886 predicted target genes in the 17,737 (i.e., 33%) genes
expressed in wild type and osm-9(ok1677) worms.

Discussion
ASH chemosensory neurons mediate avoidance behavior to hypertonic solutions as well as
other noxious chemical and mechanical stimuli [59]. Animals harboring mutations that disrupt
hypertonic avoidance behavior (Fig 1 and Fig 3A) or in which ASH neurons have been ablated
(Fig 1) exhibit improved survival during hypertonic stress. osm-9, osm-12 and sra-6, which
drives ASH ablation [21], are expressed in ASH as well as other neuron types [39]. The only
cell types in which expression of these three genes has been shown to overlap are ASH and ASI
chemosensory neurons [39]. ASI neurons function in dauer formation, chemotaxis and naviga-
tion [59]. However, genetic ablation of ASI or loss-of-function mutation of a gene required for
ASI function had no effect on survival on hypertonic environments (Fig 1D). Therefore, we
propose that loss of ASH neuron functions required for avoidance of hypertonic environments
enhances basal hypertonic stress resistance.

Enhanced hypertonic stress resistance in animals with defective ASH neuron function is not
due to alterations in systemic volume regulation or glycerol metabolism (Fig 2). These conclu-
sions are consistent with our earlier findings demonstrating that dramatic reductions in glyc-
erol accumulation do not reduce short term survival during hypertonic stress [17]. As we have
shown previously, proteostasis capacity is a critical limiting factor for survival during hyper-
tonic stress [13]. Consistent with this, we found that osm-9(ok1677)mutant and osm-9(RNAi)
worms exhibit reduced protein damage during hypertonic stress (Figs 3 and 4).

Improved proteostasis during hypertonic stress in osm-9(ok1677)mutant worms may be
due in part to the upregulation of genes that play known or likely roles in protein synthesis,
folding and degradation (Tables 2 and 3). RNAi phenotypes of various upregulated genes such

Fig 6. Protein synthesis (A) and degradation (B) in osm-9(ok1677)worms. Values are means ± S.D. (n = 2 independent experiments).

doi:10.1371/journal.pone.0154156.g006
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Table 2. Putative proteostasis genes differentially upregulated in osm-9(ok1677)worms under control conditions.

Sequence
name

Gene Brief description and RNAi phenotypes osm-9(ok1677) vs.
WT fold change

modENCODE
ChIP-Seq Peaks

Protein degradation

C05E4.1 srp-2 Serpin serine protease inhibitor 3.2

C02B4.1 adt-1 Metalloproteinase 2.9

R11A5.7 suro-1 Peptidase 2.8 DAF-16

F44B9.1 dpf-6 Peptidase 2.3

C52E4.1 cpr-1 Cathepsin B-like cysteine protease 2.1

F41E6.6 tag-196 Protease 2.0 DAF-16

Y43F4A.1 Y43F4A.1 Peptidase 1.9

C04A11.4 adm-2 Metalloproteinase 1.9 SKN-1, DAF-16

ZK20.6 nep-1 Metalloproteinase 1.9 DAF-16

LLC1.1 tra-3 Calpain type protease; lysosome function 1.8

T24A11.3 toh-1 Metalloproteinase 1.8 SKN-1, DAF-16

ZK970.1 nep-26 Metalloproteinase 1.8

Y39A3CL.5 clp-4 Calpain type protease 1.7 DAF-16

F11A6.1 kpc-1 Protease 1.7 SKN-1, DAF-16

Y60A3A.1 unc-51 Serine/threonine kinase; autophagy 1.5

K11D2.2 asah-1 Acid ceramidase; lysosome function 2.5

T14F9.3 hex-1 Beta-hexosaminidase; lysosome function 1.5

Y38F2AL.4 vha-3 Vacuolar proton ATPase subunit; lysosome function; increased protein
aggregation and increased sensitivity to hypertonic stress [13]

1.5

Y37E11AR.2 siah-1 E3 ubiquitin ligase 3.3 SKN-1

Y67D8C.5 eel-1 E3 ubiquitin ligase 2.2 DAF-16

C17H11.6 C17H11.6 E3 ubiquitin-protein ligase; hypersensitive to protein aggregation-induced
paralysis [49]

1.6

C35B1.1 ubc-1 E2 ubiquitin-conjugating enzyme 1.5

Y71G12B.15 ubc-3 E2 ubiquitin-conjugating enzyme 1.4 SKN-1, DAF-16

Protein synthesis

R10E4.2 sup-26 mRNA binding protein; regulation of translation 2.7

Y57A10A.30 ife-5 Translation initiation 2.2 DAF-16

R03G5.1 eef-1A.2 Protein elongation; increased protein aggregation [50] 1.7 DAF-16

Protein folding

C50F2.6 fkb-5 Peptidyl-prolyl cis-trans isomerase (FK506-binding protein family) 3.1 DAF-16

ZC455.10 fkb-4 Peptidyl-prolyl cis-trans isomerase (FK506-binding protein family) 3.0

Y18D10A.25 fkb-8 Peptidyl-prolyl cis-trans isomerase (FK506-binding protein family) 2.9

C05C8.3 fkb-3 Peptidyl-prolyl cis-trans isomerase (FK506-binding protein family) 2.2 DAF-16

F42G9.2 cyn-6 Cyclophilin type peptidyl-prolyl cis-trans isomerase 1.9 DAF-16

Protein aggregation and increased sensitivity to hypertonic stress RNAi phenotypes

C44H4.2 let-4 Extracellular leucine-rich repeat protein; increased protein aggregation
[50]

9.9

ZC373.7 col-176 Collagen; increased protein aggregation [51] 9.9

T23F2.1 bus-8 Glycosyltransferase; increased protein aggregation [50] 5.8

F47F6.1 lin-42 PAS domain-containing protein; increased protein aggregation [51] 5.5 SKN-1

C42D8.5 acn-1 ACE-like protein; increased protein aggregation [50] 5.4

ZK783.1 fbn-1 Protein homologous to fibrillin; increased sensitivity to hypertonic stress
[13]

4.5 DAF-16

H04M03.4 glf-1 UDP-galactopyranose mutase; increased protein aggregation; increased
sensitivity to hypertonic stress [13]

4.5 DAF-16

(Continued)
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as the vacuolar proton ATPase vha-3, the E3 ubiquitin-protein ligase C17H11.6 and the
eukaryotic translation elongation factor eef-1A.2 include increased protein aggregation,
increased sensitivity to hypertonic stress and increased sensitivity to protein aggregation-
induced paralysis [13,49,50].

Several studies have shown that diverse proteins with no known role in proteostasis slow or
prevent protein aggregation [60–64]. Many genes upregulated in osm-9(ok1677) worms also
have no known proteostasis function, but protein aggregation is increased by RNAi knock-
down of their activity. Two of these genes showed particularly striking upregulation. Expres-
sion of col-176 and let-4 was increased compared to wild type animals 9.9- and 3.6-fold and
9.9- and 5.4-fold under control and hypertonic stress conditions, respectively (Table 2 and 3).

col-176 encodes a cuticle collagen. RNAi silencing of this gene increases aggregation of mis-
folding-prone mutant human SOD1 protein [51]. Several in vitro studies have shown that col-
lagen interacts with aggregation prone proteins and slows the growth of toxic amyloid fibrils
[60–62]. Increased expression of col-176 could minimize hypertonic stress induced protein
damage by similar mechanisms. In addition, various collagens have been shown previously to
play an important role in osmotic stress signaling in C. elegans [17,37]. Remodeling of the
extracellular matrix by increased expression of col-176may alter signaling processes that
directly or indirectly regulate proteostasis mechanisms activated in response to hypertonic
stress.

let-4 encodes a leucine-rich repeat protein expressed on the apical surface of epidermal and
epithelial cells [65]. Knockdown of let-4 increases Q35::YFP aggregation [50]. RNAi screening
in mammalian neuronal cells identified a leucine-rich repeat protein that regulates mutant
huntingtin protein aggregation [66]. The leucine-rich repeat is a protein motif that mediates
protein-protein interactions and thus plays important roles in diverse cellular processes [67].
Proteins containing leucine-rich repeat motifs function in protein degradation [68,69] and
have been implicated in protein aggregation and impaired autophagy associated with Parkin-
son’s Disease [70].

Table 2. (Continued)

Sequence
name

Gene Brief description and RNAi phenotypes osm-9(ok1677) vs.
WT fold change

modENCODE
ChIP-Seq Peaks

W08F4.6 mlt-8 Novel protein required for molting; increased protein aggregation [50] 4.4 DAF-16

Y11D7A.9 Y11D7A.9 Unknown; increased sensitivity to hypertonic stress [13] 4.1

W05G11.3 col-88 Collagen; increased sensitivity to hypertonic stress [13] 3.1

F58A4.11 gei-13 BED finger domain-containing protein; increased protein aggregation [50] 2.8

C01F1.3 C01F1.3 Nucleotide-sugar metabolism; increased protein aggregation [50] 2.78

M03F4.6 M03F4.6 Unknown; increased protein aggregation [50] 2.8 DAF-16

T19B10.2 T19B10.2 Unknown; increased protein aggregation; increased sensitivity to
hypertonic stress [13]

2.7 DAF-16

W06F12.1 lit-1 Serine/threonine kinase; increased protein aggregation [50] 2.2 SKN-1

Y110A2AL.8 ptc-3 Patched protein homolog; increased protein aggregation [50] 2.0

C02F5.7 C02F5.7 F-box motif-containing protein; resistant to protein aggregation-induced
paralysis [49]

2.0 SKN-1

W04H10.3 nhl-3 NHL domain-containing protein; increased protein aggregation [52] 1.9 SKN-1

W07E11.1 W07E11.1 Glutamate metabolism; increased protein aggregation [52] 1.8

ZK1236.3 sor-1 Unknown; increased protein aggregation [50] 1.7

ZK54.2 tps-1 Trehalose 6-phosphate synthase; increased protein aggregation;
increased sensitivity to hypertonic stress [52,53]

1.6 DAF-16

M110.5 dab-1 Disabled protein homolog; increased protein aggregation [50] 1.5 DAF-16

doi:10.1371/journal.pone.0154156.t002
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In C. elegans, let-4 likely plays an important role in maintaining epithelial integrity [65]. Dis-
ruption of epithelial barrier function is expected to disrupt salt and water homeostasis, which
in turn could lead to increased protein aggregation. Increased let-4 expression in osm-9
(ok1677) worms may improve epithelial barrier function under hypertonic conditions. While
speculative, it is also possible that leucine-rich repeat proteins like collagens may preferentially
bind with denatured proteins and slow aggregate formation.

It should be stressed here that while RNAseq has been shown to be an accurate tool for
assessing differential gene expression [71–73], additional studies will be needed confirm the
results shown in Tables 2 and 3. Furthermore, it is conceivable that the changes in gene expres-
sion and reduced protein damage observed in osm-9(ok1677)mutant worms may be unique to
this strain and not to loss of osm-9 function per se. Therefore, it will also be important to deter-
mine if other worm strains with defective ASH neuron function show similar differences in
gene expression and proteostasis capacity. If our findings are confirmed, it will be necessary to
determine the cellular locations of altered gene expression and the mechanisms by which dif-
ferentially expressed genes confer increased hypertonic stress resistance.

An animal’s nervous system plays a critical role in detecting its complex and constantly
changing external environment and integrating those environmental cues to coordinately regu-
late multiple physiological processes. Because of its relatively simple nervous system and
genetic and molecular tractability, C. elegans has begun to provide insights into the underlying
molecular mechanisms. For example, Prahlad and Morimoto [9] have shown that calcium

Table 3. Putative proteostasis genes differentially upregulated in osm-9(ok1677)worms following a 6 h exposure to 200 mMNaCl.

Sequence
name

Gene Brief description and RNAi phenotypes osm-9(ok1677) vs.
WT fold change

modENCODE
ChIP-Seq Peaks

Protein degradation

H19M22.3 H19M22.3 Metalloproteinase 3.7

F44B9.1 dpf-6 Peptidase 3.5

F41E6.6 tag-196 Cathepsin-like cysteine protease 2.0 DAF-16

LLC1.1 tra-3 Calpain type protease; lysosome function 1.8

D2030.2 D2030.2 Clp protease 1.5 DAF-16

K11D2.2 asah-1 Acid ceramidase; lysosome function 2.3

F27E5.1 F27E5.1 Acid ceramidase; lysosome function 1.5

Y38F2AL.4 vha-3 Vacuolar proton ATPase subunit; lysosome function; increased protein
aggregation and increased sensitivity to hypertonic stress [13]

1.6

Y37E11AR.2 siah-1 E3 ubiquitin ligase 2.8 SKN-1

Protein folding

Y18D10A.25 fkb-8 Peptidyl-prolyl cis-trans isomerase (FK506-binding protein family) 2.0

Protein aggregation and increased sensitivity to hypertonic stress RNAi phenotypes

ZC373.7 col-176 Collagen; increased protein aggregation [51] 5.4

C44H4.2 let-4 Extracellular leucine-rich repeat protein; increased protein aggregation
[50]

3.6

F52B11.3 noah-2 PAN and ZP domain containing protein; increased protein aggregation
[50]

2.7

ZK783.1 fbn-1 Protein homologous to fibrillin; increased sensitivity to hypertonic stress
[13]

2.4 DAF-16

C01F1.3 C01F1.3 Nucleotide-sugar metabolism; increased protein aggregation [13] 2.2

C02F5.7 C02F5.7 F-box motif-containing protein; resistant to protein aggregation-induced
paralysis [49]

1.9 SKN-1

W07E11.1 W07E11.1 Glutamate metabolism; increased protein aggregation [49] 1.6

doi:10.1371/journal.pone.0154156.t003
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activated dense core vesicle neurosecretion from C. elegans thermosensory neurons normally
suppresses heat shock transcription factor 1 (HSF-1) dependent chaperone expression in mus-
cle and intestinal cells. Signaling from ASH as well as ASI sensory neurons negatively regulates
the innate immune response by MAP kinase dependent inhibition of the expression of genes
that are part of the noncanonical unfolded protein response pathway [74]. In a similar fashion,
osmosensory signaling from ASH neurons could regulate osmoprotective gene expression in
non-neuronal cells. However, additional studies will be needed to more thoroughly test this
possibility.

In summary, we have demonstrated that defects in ASH mediated hypertonic avoidance
behavior are associated with enhanced hypertonic stress resistance and improved proteostasis.
Our findings are consistent with a growing body of work demonstrating that intercellular com-
munication between neuronal and non-neuronal cells plays a critical role in integrating cellular
stress responses with other organismal physiological demands and associated energy costs.
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