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Abstract

Antitumor immunity relies on the ability of T cells to recognize and kill tumor targets. γδ T 

cells are a specialized subset of T cells that predominantly localizes to non-lymphoid tissue such 

as the skin, gut, and lung where they are actively involved in tumor immunosurveillance. γδ T 

cells respond to self-stress ligands that are increased on many tumor cells, and these interactions 

provide costimulatory signals that promote their activation and cytotoxicity. This review will cover 

costimulatory molecules that are known to be critical for the function of γδ T cells with a specific 

focus on mouse dendritic epidermal T cells (DETC). DETC are a prototypic tissue-resident γδ T 

cell population with known roles in antitumor immunity and are therefore useful for identifying 

mechanisms that may control activation of other γδ T cell subsets within non-lymphoid tissues. 

This review concludes with a brief discussion on how γδ T cell costimulatory molecules can be 

targeted for improved cancer immunotherapy.
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Introduction

γδ T cells are a unique lymphocyte population that has important roles in tissue 

homeostasis, infection, and cancer. Although γδ T cells are a minor population within 

lymphoid tissues (typically 1–5% of T cells in peripheral blood), they are present in larger 

numbers in both mouse and human epithelial tissues (10–100% of T cells) such as the 

skin and gut [1]. Within these tissues, γδ T cells detect signals of cellular stress that 

are increased following tissue damage or malignant transformation, and upon activation, 

they produce cytokines, chemokines, and growth factors that promote tissue repair and 

eliminate developing tumors [1]. The critical role of γδ T cells in antitumor immunity is 

highlighted by the fact that mice lacking these cells T cell receptor delta-deficient (Tcrd−/−) 

are more susceptible to tumorigenesis in a variety of preclinical mouse tumor models [2–4]. 

Although some protumor roles of γδ T cells, often associated with interleukin-17 (IL-17) 

production, have been described in both mouse models and human disease, γδ T cells 

are generally associated with potent antitumor immunity [5]. For example, the presence 

of γδ T cells within solid tumors has been identified as a strong prognostic factor for 

overall survival in patients in both meta-analyses [6] and recent, individual case studies 

of solid tumors such as Merkel cell carcinoma [7], breast cancer [8], and ovarian cancer 

[9]. Similar to their αβ T cell counterparts, the antitumor functions of γδ T cells include 

direct lysis of tumor targets and secretion of inflammatory cytokines such as interferon-γ 
(IFNγ) that promote broader antitumor immunity. However, γδ T cells recognize antigens 

independent of major histocompatibility complex (MHC) presentation and detect self-stress 

molecules associated with tissue damage and malignancy, which allow them to provide 

rapid, innate-like responses within non-lymphoid tissues [5]. This unique feature of γδ T 

cells is exemplified by the ability of both mouse and human γδ T cells to lyse a broad range 

of tumor targets in vitro [10]. The study of γδ T cells is complicated by the evolutionary 

divergence of T cell receptor (TCR) genes between mouse and human (Table 1) and the 

limited understanding of bona fide γδTCR antigens, which has recently been reviewed 

elsewhere [11]. Despite these challenges, the study of γδ T cells in mice has led to the 

identification of key molecules important for their maintenance of tissue homeostasis and 

regulation of antitumor immunity that may have relevance for the treatment of human 

disease. Here, activating receptor-ligand interactions important for the activity of γδ T 

cells within non-lymphoid tissues are reviewed, with a specific focus on mouse dendritic 

epidermal T cells (DETC), and their potential roles in antitumor immunity, concluding 

with a brief discussion on how this knowledge could be leveraged for improved cancer 

immunotherapy.

DETC

DETC are a prototypic tissue-resident γδ T cell population in mouse skin that has 

critical roles in the maintenance of tissue homeostasis, wound healing, and tumor 

immunosurveillance [13]. Under homeostatic conditions in the mouse epidermis, DETC 

display a characteristic dendritic morphology that allows them to survey neighboring 

keratinocytes [14]. DETC express an invariant, canonical Vγ3+Vδ1+ TCR (Garman 

nomenclature) that recognizes an unidentified self-stress ligand [15]. Upon activation, DETC 

retract their dendrites and round up presumably to allow for migration towards signals of 
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tissue insult where they secrete inflammatory cytokines such as tumor necrosis factor-α 
(TNF-α) and IFNγ as well as growth factors such as keratinocyte growth factor-1 (KGF-1) 

[16, 17]. The critical role of DETC in the maintenance of skin tissue homeostasis is 

highlighted by the fact that mice lacking DETC are more susceptible to carcinogen-induced 

skin tumor formation and exhibit delayed wound healing [2, 14].

Like other γδ T cell populations in both mice and humans, DETC do not recognize antigens 

in the context of MHC antigen presentation and lack CD4, CD8, and CD28 co-receptors that 

are critical for the priming of αβ T cells [18]. As a result, the exact mechanisms required 

for DETC activation are less well-characterized. Investigators have sought to identify the 

key molecules important for the function of DETC. These studies have identified natural 

killer group 2D [NKG2D; encoded by killer cell lectin like receptor K1 (Klrk1)], junctional 

adhesion molecule-like protein (JAML), CD100 ([encoded by semaphorin 4D (Sema4d)], 

lymphocyte function-associated antigen 1 (LFA-1), and CD316 as activating co-receptors 

that are critical for DETC function (Figure 1). Each of these molecules has important role in 

antitumor immunity and is potential therapeutic target for improved cancer immunotherapy.

NKG2D

NKG2D is a C-type lectin-like activating receptor expressed by natural killer (NK) cells, γδ 
T cells, and CD8 T cells that are critical for the recognition and elimination of damaged, 

infected, and cancerous cells. NKG2D interacts with the stress-induced ligands Rae-1, H60, 

and mouse unique long 16 (UL16)-binding protein-like transcript (Mult-1) in mouse and 

MICA/B and UL16-binding proteins 1–6 (ULBP1–6) in humans [19]. NKG2D associates 

with the adapter protein DAP10 in humans and either DAP10 or DAP12 in mice, which 

stabilizes the receptor complex and mediates intracellular signal transduction upon NKG2D 

ligand binding. Upon NKG2D activation, DAP10 recruits a p85 phosphoinositide 3-kinase 

(PI3K) and Vav-1 signaling complex, whereas DAP12 contains a canonical immunotyrosine-

based activation motif (ITAM) that binds spleen tyrosine kinase (Syk) and Zeta-chain-

associated protein kinase 70 (ZAP70) tyrosine kinases [20].

The function of NKG2D as an activating receptor important for antitumor cytotoxicity was 

initially discovered based on the observation that human Vδ1+ T cell clones recognize 

MICA/B expressed on a wide range of epithelial tumors including lung, breast, kidney, 

prostate, and colon cancers [21, 22]. MICA was found to bind to human NK cells and 

CD8, but not CD4, T cells and was identified as a ligand for NKG2D [21]. Shortly after 

this discovery of NKG2D-MICA/B interactions in humans, similar findings were reported in 

mouse tumor models. This seminal work showed that Tcrd−/− mice were more susceptible 

to both growth of transplantable squamous cell carcinomas and formation of skin tumors 

induced by the chemical carcinogens demonstrating a key antitumor role for γδ T cells 

[2]. The authors additionally went on to show that this antitumor activity of γδ T cells 

was mediated by DETC, which killed tumor cells via NKG2D recognition of the mouse 

homologs of human MICA/B, Rae-1, and H60 [2].

Since these initial reports identifying NKG2D as a critical receptor for the antitumor activity 

of γδ T cells, many other groups have described important roles for NKG2D in γδ T 

cell biology with a number of studies focused specifically on NKG2D in the function of 
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DETC in murine skin [23–27]. Together, these studies have highlighted NKG2D recognition 

of self-stress ligands such as Rae-1 and H60 as a key component of tissue-resident γδ T 

cell activation in response to a wide variety of tissue insults. Transgenic overexpression 

of Rae-1 in the epidermis of mice was found to result in DETC activation within a 5-day 

timeframe, as measured by DETC rounding, upregulation of CD69, and downregulation of 

γδTCR expression [23]. This result indicated that DETC are actively involved in tumor 

immunosurveillance and rapidly responds to stress signals in murine skin. In addition 

to roles in antitumor immunity, an important role for NKG2D in DETC function has 

been described in the homeostatic maintenance of skin tissue [24], atopy [25], cutaneous 

wounding [26], and contact hypersensitivity [27].

Unlike classical costimulatory molecules which only function in combination with TCR 

engagement, NKG2D has been proposed to activate DETC independent of TCR signals 

[28]. In the absence of TCR signals, NKG2D binding induces PI3K-dependent signaling 

that results in the DETC lysis of target cells in vitro. In contrast, IFNγ production is driven 

more potently by Syk/ZAP70 signaling downstream of TCR engagement [29]. Similar 

TCR-independent antitumor cytotoxicity through NKG2D by human Vγ9Vδ2 T cells has 

also been described. However, depending on the tumor target, Vγ9Vδ2 T cells can kill 

tumor targets via TCR engagement alone or require co-engagement of TCR and NKG2D 

[30]. Although the relative importance of TCR versus NKG2D signaling for γδ T cell 

activation remains controversial, it is clear that NKG2D is an important regulator of γδ T 

cell cytotoxicity against a broad range of both mouse and human tumor cell lines [31].

In addition to a critical role for DETC function, NKG2D has been shown to have a 

critical role in the antitumor activity of other mouse γδ T cell subsets. Mouse lymphoid 

Vγ2+ T cells possess antitumor activity against B16 melanoma cells in vivo, which was 

associated with inhibition of B16 cell growth, but not direct cytotoxicity, in vitro. Tumor 

suppressive activity of Vγ2+ T cells was dependent on both TCR and NKG2D signals, 

which regulated their production of IFNγ. This antitumor activity of Vγ2+ T cells can be 

further enhanced by treatment with the mTOR inhibitor rapamycin in vitro, which sensitized 

cells to IL-2 signals resulting in increased expression of both NKG2D and TNF-α and 

higher cytotoxicity. Vγ2+ T cells expanded in vitro with rapamycin had improved antitumor 

activity against B16 melanoma in vivo upon adoptive cell transfer (ACT) compared with 

cells expanded with TCR and CD28 signals alone [32].

JAML

JAML (also known as AMICA1 in humans) is a member of the junctional adhesion 

molecule family, a class of molecules that facilitate tight junction assembly, regulate 

leukocyte-endothelial interactions, and have diverse roles in development, angiogenesis, 

inflammation, and cancer [33, 34]. JAML binds to the CXADR, a cell adhesion molecule 

expressed by non-hematopoietic cells including epithelial cells within the skin and gut 

tissue [35–37]. JAML-CXADR interactions have been identified as a novel costimulatory 

mechanism for the activation of DETC. Upon binding to CXADR, JAML induces a 

PI3K signaling cascade, which promotes cytokine production and proliferation by DETC. 

CXADR is expressed at low levels in mouse skin under homeostatic conditions, but 
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following cutaneous wounding, keratinocytes increase expression of CXADR allowing for 

increased JAML costimulation of DETC and their subsequent production of soluble factors 

such as KGF-1, which promote the wound repair process [37].

Based on this initial characterization of JAML-CXADR-mediated costimulation of tissue-

resident γδ T cells and the known roles of γδ T cells in antitumor immunity, the importance 

of JAML-CXADR interactions for γδ T cell responses within the tumor microenvironment 

(TME) was investigated. Mice lacking JAML protein expression (Jaml−/−) were more 

susceptible to both B16F10 melanoma tumor formation and growth, which was associated 

with decreased activity of γδ T cells. During the early stages of tumor growth, Jaml−/− 

mice had fewer numbers of IFNγ-producing γδ tumor-infiltrating lymphocytes (TIL) 

demonstrating that the γδ T cell response to B16 tumor growth is mediated, at least in part, 

by JAML-CXADR interactions. Importantly, this γδ TIL response consisted of Vγ1.1+, 

Vγ2+, and Vγ1.1−Vγ2− infiltrating subsets, but not DETC, demonstrating a broader role 

for JAML-CXADR interactions in γδ T cell biology. Unlike DETC, which constitutively 

express JAML, naive lymphoid γδ T cells did not express high levels of JAML. However, 

lymphoid γδ T cell subsets upregulated JAML upon ex vivo stimulation and within the 

TME after which JAML engagement further enhanced activation and cytokine production. 

Therefore, JAML is also an important costimulatory ligand for lymphoid γδ T cell subsets 

after initial T cell priming [38].

CXADR expression is dysregulated in many human cancers [39]. For example, loss 

of CXADR expression is associated with increased epithelial-mesenchymal transition in 

breast cancer [40] and increased gastric cancer metastasis [41]. A similar association with 

decreased CXADR expression and increased malignancy was also observed in both mouse 

and human melanoma where CXADR expression was higher in benign lesions and during 

early stages of tumor growth but was decreased upon tumor growth and progression [38]. 

Furthermore, both mouse and human melanocytes express very low levels of CXADR 

suggesting that CXADR expression is linked to melanoma tumorigenesis [38]. During the 

early stages of the disease, this pattern of CXADR expression mirrors findings in cutaneous 

wound healing where expression is low under homeostatic conditions but is increased 

following tissue damage or malignant transformation. Together, these results suggest that 

CXADR is an important stress ligand that functions as a signal to tissue-resident γδ T cells 

to mediate both tissue repair and antitumor immunity.

In contrast to impaired antitumor immunity in the absence of JAML, treatment of tumor-

bearing wild type (WT) mice with an anti-JAML agonistic antibody [37] significantly 

limited tumor growth and extended median survival. Furthermore, the anti-JAML treatment 

improved the efficacy of programmed cell death 1 (PD-1) blockade when used in 

combination. This effect of anti-JAML treatment was associated with improved markers 

of both CD8 and γδ TIL immunity in WT mice. Critically, in both Tcrd−/− mice and mice 

treated with CD8 T cell depleting antibodies, the antitumor effect of anti-JAML treatment 

was not observed [38]. These results point to a key role of JAML-mediated γδ T cells 

responses in antitumor immunity and the necessary cooperation between CD8 and γδ T 

cells, which involves JAML-CXADR interactions.
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CD100

CD100 (also known as SEMA4D) is a group IV semaphorin expressed by T cells, B cells, 

platelets, NK cells, and monocytes and binds with low affinity to CD72 on other immune 

cells and with high affinity to plexin B1/2. Semaphorins are a large family of molecules 

that interact with plexins to regulate cytoskeleton dynamics and were initially discovered to 

have critical roles in neuronal development [42]. Studies of mice lacking CD100 (Cd100−/−) 

have since demonstrated key roles for CD100 in the regulation of both humoral and cellular 

immunity [43]. These studies have shown that CD100-CD72 interactions are critical for both 

T cell priming by antigen-presenting cells (APCs) and B cell proliferation and antibody 

production [44, 45]. CD100 can function as both a membrane-bound protein on the surface 

of immune cells and as a soluble molecule either following proteolytic cleavage by matrix 

metalloproteinases (MMPs) or cell-intrinsic shedding [46, 47]. In B cells, binding of either 

membrane-bound or soluble CD100 to CD72 displaces Src homology 2 domain-containing 

protein tyrosine phosphatase 1 (SHP-1) from its intracellular immunoreceptor tyrosine-based 

inhibitory motif (ITIM) domain allowing for increased activation [45]. On the other hand, 

CD100 binding to plexin B1 on epithelial and endothelial cells results in the recruitment of 

small GTPases, which facilitate changes in cytoskeleton dynamics [48].

Plexin B2 has been identified as a novel ligand for CD100, which is expressed by skin 

epithelial cells and regulates DETC function in mice [49]. Similar to the findings on 

JAML-CXADR regulation of DETC function, it was found that plexin B2 is expressed 

by keratinocytes under homeostatic conditions, is further upregulated upon cutaneous 

wounding, and interacts with CD100 on DETC to promote their wound healing activity. 

Upon binding to plexin B2, CD100 induces extracellular signal-related kinase (ERK) 

and cofilin signaling resulting in DETC rounding and increased integrin expression [49]. 

Additionally, CD100-plexin B2 regulation of γδ T cell-mediated tissue repair is critical in 

the dextran sodium sulfate (DSS) mouse model of colitis. In this model, activation of γδ 
intraepithelial lymphocytes (IEL) in the intestine by CD100-plexin B2 binding resulted in 

the production of KGF-1, which was required to limit the severity of colitis [50]. In addition 

to pro-wound healing functions in the skin and gut, CD100-plexin B2 interactions have been 

shown to be involved in psoriasis in both patients and mouse models [51]. Importantly, in 

the mouse model of psoriasis induced by treatment with the toll-like receptor 7 (TLR7) 

agonist imiquimod (IMQ), knockdown of plexin B2 in mouse keratinocytes in vivo limited 

inflammation and epidermal infiltration by dermal γδ T cells, which are known to be a 

critical source of IL-17 and drive inflammation in this model [51]. This result, together 

with the colitis model data, suggests that CD100-plexin B2 interactions may be more 

generally important for the regulation of γδ T cell function in response to tissue damage and 

inflammation.

Although a role for CD100 in γδ T cell antitumor immunity has not been described, 

CD100 does play an important role within the TME. In mouse tumor models, both 

genetic deletion (Cd100−/−) and antibody-mediated blockade of CD100 limit tumor growth 

highlighting a pro-tumorigenic role for CD100 signaling [52]. In humans, high CD100 

expression has been associated with worse patient outcomes in colorectal [53], ovarian [54], 

sarcoma [55], and cervical [56] cancers. Because both tumor cells and immune cells can 
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express CD100 and CD100 ligands, the signaling pathways involved in their promotion of 

tumor growth are complex. CD100 is highly expressed by tumor-associated macrophage 

(TAM) and interactions with plexin B1 within the TME promote tumor angiogenesis [57]. 

Tumor cells themselves can also secrete CD100, which polarizes myeloid cells towards 

an immunosuppressive myeloid-derived suppressor cell (MDSC) phenotype [58]. This 

promotion of MDSC is limited by treatment with a blocking anti-CD100 antibody, which 

improves CD8 T cell antitumor activity and synergizes with immune checkpoint blockade 

(ICB) in mouse tumor models [59].

Although most studies have focused on the roles of CD100 in myeloid cell and B 

cell function, CD100-CD72 interactions are also critical for CD8 T cell activation and 

proliferation. CD8 T cells upregulate both CD100 and CD72 upon activation after which 

CD100-CD72 interaction drive further CD8 T cell activation. In the context of cancer, a 

recent study of patients with non-small cell lung cancer found that CD8 T cells isolated 

from bronchoalveolar lavage fluid were activated by CD100 stimulation ex vivo and that 

decreased shedding of membrane-bound CD100 from T cells and the resulting decreased 

levels of circulating soluble CD100 may impair CD8 T cell function in vivo [60]. Therefore, 

CD100 interactions may be important for antitumor T cell responses, and the extent to which 

CD100 interactions regulate CD8 or γδ T cell function within the TME deserves further 

investigation. Given the data on the critical role of CD100 in DETC function, it is possible 

that plexin B2 may function as a tumor stress signal that is important for γδ T cell tumor 

immunosurveillance and promotion of antitumor immunity. Conversely, the clear antitumor 

effects of anti-CD100 blocking antibodies could involve inhibition of tumor-promoting 

IL-17+ γδ T cell function [61]. Parsing apart these roles for CD100 on myeloid cell and T 

cell function within the TME will help inform if CD100 is a viable therapeutic target for the 

treatment of human cancers.

LFA-1

LFA-1 is an integrin heterodimer composed of CD11a and CD18 and has important roles in 

regulating T cell activation and migration. LFA-1 binds ICAM-1 allowing for prolonged T 

cell-APC interactions, increased tissue migration, and contact with target cells for cytolytic 

activity [62, 63]. LFA-1 binding also lowers the threshold required for T cell activation by 

signaling through cytohesin-1, which results in mitogen-activated protein kinase (MAPK) 

pathway activation, and through Jun activation domain-binding protein 1 (JAB-1), which 

promotes c-Jun phosphorylation. Together with TCR and CD28 signaling, these LFA-1 

driven events promote cell proliferation and IL-2 production [64]. Although most work on 

LFA-1 has focused on its role in the regulation of αβ T cell responses, LFA-1 has long been 

known to be important for γδ T cell biology. LFA-1 has been shown to be important for 

γδ T cell cytotoxic activity against human melanoma [65], ovarian [66], lymphoma [67], 

myeloma [68], pancreatic [69], and lung cancer cell lines [70]. In this context of tumor 

cell killing, LFA-1 is critical for adhesion and immune synapse formation with target cells, 

which enhances γδ T cell cytotoxicity [70]. Although direct cytotoxicity was not measured, 

LFA-1 has also been shown to be critical for the adhesion of human Vδ1+ γδ T cells to 

esophageal squamous cell carcinoma cells [71]. Separately, a study using Icam1−/− mice also 
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identified a key role for LFA-1-ICAM-1 interactions in the migration and pro-wound healing 

function of tissue-infiltrating γδ T cells upon damage to the cornea epithelium [72].

In recent work, a role for LFA-1-ICAM-1 interactions in the function of DETC in response 

to skin wounding has been identified [73]. Using an unbiased ribonucleic acid (RNA) 

sequencing-based approach, ICAM-1 was identified as a keratinocyte stress ligand that was 

significantly upregulated in both mouse and human skin upon wounding. DETC were found 

to constitutively expresses LFA-1 and could be co-stimulated in vitro with either ICAM-1-

fragment crystallizable (Fc) protein or agonist anti-LFA-1 antibodies. Importantly, ex vivo 
wound closure, a measure of DETC-mediated wound healing function independent of 

additional infiltrating immune cells, was impaired in skin tissue isolated from Icam1−/− mice 

[73]. These findings are consistent with prior studies that reported delayed wound closure 

in both skin and gut tissue in Icam1−/− mice. Upon wounding of both skin and gut tissue, 

ICAM-1 expression on epithelial cells was shown to be important for cell proliferation and 

infiltration of polymorphonuclear cells, which supported wound healing [74, 75]. Together, 

these results suggest that ICAM-1 on epithelial cells acts as a tissue stress ligand in a 

manner analogous to CXADR and plexin B2 allowing for tissue-resident γδ T cell activation 

and their maintenance of tissue homeostasis. Although LFA-1 is clearly important for γδ T 

cell lysis of tumor cells [65–70], additional characterization of LFA-1-ICAM-1 interactions 

in the regulation of γδ T cell migration, retention, and function within the TME would be 

of value. Given that LFA-1 and JAML function similarly as both adhesion and costimulatory 

molecules and studies demonstrating the antitumor activity of JAML agonism in vivo, it is 

interesting to speculate that agonist anti-LFA-1 antibodies may have a similar therapeutic 

effect for the treatment of cancer.

CD316 and heat shock proteins

CD316 is an immunoglobulin superfamily (IgSF) protein, which associates with CD9 and 

CD81 within cell membranes [76], and has also been shown to localize to T cell immune 

synapses and interact with intracellular cytoskeleton elements to regulate T cell function 

[77]. CD316 has also been characterized as an early marker of dendritic cell (DC) activation 

and was shown to bind HSPA8, which enhanced CCL21-dependent DC migration [78]. 

In recent work on the function of LFA-1 for DETC function, HSPA8 was also identified 

as a tissue stress ligand-induced by wounding of both mouse and human skin tissue [73]. 

Surface expression of HSPA8 on keratinocytes was significantly increased in wounded 

mouse skin, and in vitro costimulation of DETC with anti-CD3 and recombinant HSPA8 

significantly increased DETC proliferation, CD25 expression, and IL-2 production [73]. 

Conversely, siRNA-mediated knockdown of HSPA8 in keratinocytes resulted in decreased 

DETC activation after co-culture [73]. Additionally, DETC constitutively express CD316 

and can be co-stimulated by an agonist anti-CD316 antibody. Therefore, CD316-HSPA8 

interactions are a novel receptor-ligand pair that activates DETC in mouse skin.

Although a role for CD316-HSPA8 interactions in antitumor immunity has not been 

described, heat shock proteins (HSPs) have known roles in cancer and have previously 

been implicated in γδ T cell activation [79, 80]. HSPs are molecular chaperones that 

mediate protein folding and stability with diverse roles in response to cell stress associated 
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with tissue damage, infection, and cancer [80]. In cancer, HSPs are important regulators 

of cell proliferation, apoptosis, migration, and metastasis [80]. Inhibitors of both HSP70 

and HSP90 can inhibit the growth of a wide range of tumor cell lines in vitro and have 

shown efficacy in preclinical mouse tumor models [80, 81]. As a result, these inhibitors have 

been tested in human clinical trials but with limited success to date [81]. More recently, 

the large HSPs HSP110 and glucose-regulated protein 170 (GRP170) have been tested in 

cancer vaccine formulations with promising results in mouse tumor models. These HSPs 

effectively bind tumor antigen-derived peptides and increase APC activity and promotion 

of antigen-specific T cell responses [82, 83]. Tumor vaccines incorporating HSPs are the 

subject of ongoing human clinical trials for the treatment of a wide range of both solid and 

hematological malignancies [84].

In addition to their diverse roles in the maintenance of protein stability and function, HSPs 

have been shown to activate γδ T cells in a variety of contexts and have been suggested to 

be γδTCR antigens [79, 85]. In human, Vγ9Vδ2 γδ T cells have been shown to kill both 

Daudi B cells and primary oral tumor cells in vitro, which can be blocked with anti-Vγ9 

or anti-HSP60 antibodies [86]. HSP70 has also been implicated in γδ T cell killing of 

Eppstein Barr virus-transformed B cells [87]. Mouse lymphoid γδ T cells have been shown 

to respond to peptides derived from HSP60 in vivo [88] and full-length HSP65 protein in 
vitro [89]. Additionally, mouse gut IEL γδ T cell clones proliferate and secrete cytokines 

after co-culture with HSP71 derived from Mycobacterium tuberculosis in vitro [90]. HSP60 

has also been implicated in mouse γδ T cell killing of inflammatory macrophage during 

bacterial infection, which limits excessive inflammation [91, 92]. Together, these studies 

point to a model where HSPs act as a cellular stress signal in response to infection and 

cancer that activates γδ T cells to maintain host tissue homeostasis [79]. Despite these 

findings, the exact role of HSPs in γδ T cell biology has remained controversial given the 

ability of HSPs to bind endotoxin and studies that have shown removal of endotoxin from 

HSPs can limit γδ T cell activation in certain cases [93, 94]. However, given increased 

expression of HSPs on the surface of cancer cells compared to normal cells, it is possible 

that interactions such as CD316-HSPA8 are also important for γδ T cell function within 

tumors.

Targeting γδ T cells for cancer immunotherapy

Due to their inherent antitumor cytotoxicity and activity independent of MHC antigen 

presentation, γδ T cells are a promising target for improved cancer immunotherapy. 

To date, the clinical use of γδ T cell-based immunotherapies has revolved around 

targeting Vγ9Vδ2 T cell activation via phosphoantigen sensing. Phosphoantigens such as 

endogenous isopentenyl pyrophosphate (IPP) and the microbial metabolite (E)-4-hydroxy-3-

methyl-but-2-enyl-pyrophosphate (HMB-PP) drive conformational changes in the accessory 

molecules butyrophilin subfamily 3 member A1 (BTN3A1) and BTN2A1, which are then 

recognized by Vγ9Vδ2 T cells [95, 96]. The roles of butyrophilin molecules in humans and 

butyrophilin-like molecules in both humans and mice for γδTCR antigen recognition have 

been reviewed in detail elsewhere [97–99]. Although the precise mechanism of Vγ9Vδ2 T 

cell by butyrophilins is still an open area of investigation, Vγ9Vδ2 T cells have clear roles 

in antitumor immunity [100]. For immunotherapy approaches, Vγ9Vδ2 T cell activation can 
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be targeted in vivo using amino-bisphosphonates, such as zoledronate, which are a class 

of osteoclastic bone resorption inhibitors used for the clinical treatment of osteoporosis. 

These drugs additionally inhibit the mevalonate pathway resulting in increased intracellular 

concentrations of IPP allowing for Vγ9Vδ2 T cell activation and expansion in vivo. 

Alternatively, Vγ9Vδ2 T cells can be expanded ex vivo using either amino-bisphosphonates 

or often phosphoantigens such as IPP or HMB-PP directly for ACT approaches [95, 101]. 

Vγ9Vδ2 T cells expanded in this way have shown enhanced antitumor activity both in 
vitro and in preclinical mouse tumor xenograft models [102]. Clinical trials using expanded 

Vγ9Vδ2 T cells have had limited success to date at most inducing partial responses [103], 

but much work is still devoted to improving ex vivo expansion methods for the ACT. For 

example, the addition of vitamin C (L-ascorbic acid) derivatives to bisphosphonate-driven 

Vγ9Vδ2 T cell expansion methods enhances their cellular expansion, cytokine production, 

and metabolic function [104]. Direct targeting of butyrophilin molecules in vivo, without the 

need for ex vivo γδ T cell expansion, is also being explored as a therapeutic strategy [96, 

105, 106].

Although there is much promise in targeting γδ T cells for antitumor immunity, these 

therapeutic approaches will additionally have to consider the potential immunosuppressive 

roles of γδ T cells that can occur after activation through TCR signals. For example, 

phosphoantigen-activated γδ T cells have been shown to limit αβ T cells responses via 

expression of programmed cell death ligand 1 (PD-L1) and in the context of cancer 

vaccination with IL-12-secreting DCs [107, 108]. Furthermore, immunosuppressive FOXP3+ 

Vδ2+ T cells can be generated in vitro following TCR activation with IPP in the presence 

of IL-15 and transforming growth factor-β1 (TGF-β1) [109]. Together with other studies 

that have demonstrated immunosuppressive roles of γδ T cells [110] and potential protumor 

functions such as IL-17 production [61], these results highlight a critical limitation to 

overcome in the design of γδ T cell-targeted cancer immunotherapies.

Despite the potential to generate immunosuppressive γδ T cell responses, several other 

approaches that do not rely on phosphoantigen sensing to exploit γδ T cells for cancer 

immunotherapy have shown promise in preclinical studies. A protocol for the rapid 

expansion of highly functional Vδ1+ T cells from human peripheral blood has been 

developed [111]. These cells, termed Delta One T (DOT) cells, have high expression of 

NK cytotoxicity receptors, such as NKp30 and NKp44, and exhibit enhanced killing of both 

chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) cells [111, 112]. 

The potential roles for these NK cell receptors on γδ T cell activity have been reviewed 

elsewhere [31]. Because of their potential use as an allogeneic, “off-the-shelf” ACT therapy, 

other groups have explored γδ T cells as chimeric antigen receptor (CAR)-T cell vectors 

[113–115]. Additionally, bi-specific antibodies engineered to co-engage Vγ9 and tumor 

antigens, such as human epidermal growth factor receptor 2 (HER2) for solid tumors and 

CD123 for AML, are also in preclinical development [116–118].

Targeting γδ T cell costimulatory molecules is potentially a novel approach to build upon 

these current strategies being explored to leverage the antitumor activity of γδ T cells. 

Of note, many groups have developed agonist monoclonal antibodies targeting other T 

cell costimulatory molecules such as 4–1BB [CD137, tumor necrosis factor superfamily 
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(TNFRSF) member 9], OX40 (CD134, TNFRSF4), CD28, and ICOS (CD278, inducible T 

cell costimulator), and many of these agents are currently being tested in human clinal trials 

[119]. Unlike antagonistic anti-PD-1 and anti-cytotoxic T lymphocyte associated protein 

4 (anti-CTLA-4) that limit T cell inhibition by block receptor-ligand interactions, these 

agonist antibodies mediate their effects by clustering costimulatory molecules on the surface 

of T cells to induce intracellular signaling events that potentiate T cell activation [119, 

120]. Despite much work in this area, T cell agonist monoclonal antibodies have had 

limited success in clinical trials to date, which may be associated with the limited ability 

of typical bivalent monoclonal antibodies to mediate this receptor clustering [119]. Similar 

challenges would likely apply to the clinical development of agonist antibodies against the 

γδ T cell costimulatory molecules discussed above. However, novel engineering approaches 

such as the use of highly multivalent ligand-antibody fusions and Fc receptor engineering 

approaches to enhance cross-linking of therapeutic antibodies in trans may overcome these 

challenges [119, 121, 122]. Additionally, agonist monoclonal antibodies against γδ T cell 

targets are potentially a useful way to improve the efficacy of either γδTCR x tumor antigen 

bi-specific antibodies or γδ T cell ACT therapies when used in combination (Figure 2A).

In addition to representing potential targets of agonist monoclonal antibody therapies, 

CD100 and CD316 have unique roles outside of γδ T cell costimulation that may 

represent intriguing targets for immunotherapy. Although CD100 has been described as a 

costimulatory ligand for DETC, its role in cancer appears to be mostly pro-tumorigenic 

as demonstrated by the antitumor activity of blocking anti-CD100 antibodies in mouse 

tumor models [52, 59]. Based on these studies, an antagonistic anti-human CD100 antibody 

(pepinemab) is currently being tested in phase II clinical trials for the treatment of human 

cancers [123, 124]. If successful in clinical trials, the effect of blocking anti-CD100 

antibodies on inhibition of pro-tumor IL-17-producing γδ T cells versus antitumor IFNγ-

producing γδ T cells will be of interest and may help inform which solid tumor indications 

are most suitable for treatment [61]. Similarly, CD316 is not specific to γδ T cell function 

and has been shown to induce DC activation upon binding to HSPA8 [78]. Given that 

HSPs have been used in tumor vaccine formulations and that human Vγ9Vδ2 T cells 

possess antigen-presenting capabilities, it is interesting to speculate that HSPA8-derived 

tumor vaccines, delivered directly in vivo or in combination with ex vivo expanded Vγ9Vδ2 

T cells for ACT therapy, may be a novel approach to activate Vγ9Vδ2 T cell APC function 

and stimulate endogenous antigen-specific αβ T cells responses [80, 125–127] (Figure 2B). 

Importantly, recent evidence suggests that Vγ9Vδ2 T cells can both kill tumor targets and 

cross-present tumor antigens [128]. Whether the use of HSPs and targeting CD316 is a 

relevant strategy to exploit this activity remains to be explored.

As discussed above, the use of γδ T cells in ACT therapies has garnered much interest 

because of their potential use as an “off-the-self”, allogeneic T cell therapy without the 

need for donor-recipient MHC matching [95]. The use of bisphosphonates to expand 

Vγ9Vδ2 T cells and novel protocols to expand Vδ1+ T cells may prove to be effective 

immunotherapies, but there is likely much room for improvement in the engineering of these 

T cell products. One challenge with the development of γδ T cell-based ACT therapies 

is the limited ability to activate and expand cells ex vivo with more standard T cell 

costimulatory molecules such as CD28, which are critical for the manufacturing of αβ T 
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cell-based cellular therapies [129, 130]. Vγ9Vδ2 T cells typically express much lower levels 

of CD28 compared to αβ T cells and decrease expression upon activation, which may limit 

the use of CD28 costimulation in Vγ9Vδ2 T cell expansion [131–134]. Furthermore, tissue-

resident Vδ1+ T cells in humans may be the best population to utilize in ACT therapy based 

on their intrinsic ability to sense signals of self-stress due to tissue damage and malignancy 

and function within non-lymphoid tissues. However, research on mouse tissue-resident γδ 
T cells, such as DETC, has found that these subsets typically lack expression of CD28 

and therefore require other signals for activation, which may also apply to human Vδ1+ T 

cells [1]. Thus, costimulation of either Vγ9Vδ2 T cells or tissue-derived Vδ1+ T cells via 

NKG2D, JAML, CD100, LFA-1, or CD316 may be novel approach to expand these cells 

ex vivo (Figure 2C). Similar to the development of DOT cell expansion protocols [111], 

this work would have to be done empirically and may require sequential activation steps 

utilizing one or more of these costimulatory ligands at a time. If such a strategy is viable, γδ 
T cells expanded in this way may be ideal candidates for ACT approaches including CAR-T 

engineering.

Conclusion

Basic research interrogating γδ T cell biology in mice has identified an important role 

for γδ T cells in tumor surveillance and led to the identification of novel costimulatory 

ligands that control their activation within non-lymphoid tissues. Despite the evolutionary 

divergence of mouse and human γδ T cells, these findings in mice have potential 

implications for the treatment of human cancers. Most notably, γδ T cell-mediated tumor 

surveillance and cytotoxicity mediated by NKG2D has clear parallels in mouse and human, 

and studies of NKG2D’s function on γδ T cells have helped lead to the development 

of agents targeting NKG2D that are currently being tested in human clinical trials [135]. 

Although less well characterized, other γδ T cell costimulatory ligands such as JAML, 

CD100, LFA-1, and CD316 may also represent important targets for cancer immunotherapy. 

Future studies of these costimulatory molecules and the identification of additional novel 

mechanisms of γδ T cell activation will be important to leverage the unique properties of 

these cells for successful cancer immunotherapy interventions.
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APCs antigen-presenting cells
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CXADR coxsackie and adenovirus receptor

DAP10/12 DNAX-activating protein 10/12

DC dendritic cell

DETC dendritic epidermal T cells

H60 histocompatibility 60

HSPs heat shock proteins

HSPA8 heat shock protein family A member 8

ICAM-1 intercellular adhesion molecule-1

IFNγ interferon-γ

IL-17 interleukin-17

IPP isopentenyl pyrophosphate

JAML junctional adhesion molecule-like protein

KGF-1 keratinocyte growth factor-1

LFA-1 lymphocyte function-associated antigen 1

MICA/B major histocompatibility complex class I polypeptide-related 

sequence A/B

MHC major histocompatibility complex

PI3K phosphoinositide 3-kinase

NK natural killer

NKG2D natural killer group 2D

Rae-1 retinoic acid early inducible 1

TCR T cell receptor

Tcrd−/− T cell receptor delta-deficient

TIL tumor-infiltrating lymphocytes

TME tumor microenvironment
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Figure 1. 
Tissue-resident γδ T cell costimulatory ligand interactions. Tissue-resident γδ T cells 

express the costimulatory molecules NKG2D, JAML, CD100, LFA-1, and CD316. Upon 

tissue damage or malignant transformation, epithelial cells upregulate expression of both 

γδTCR antigens and the costimulatory ligands Rae-1/H60 [MHC class I polypeptide-related 

sequence A and B (MICA/B) in human], CXADR, plexin B1/2, ICAM-1, and HSPA8 

allowing for γδ T cell activation and their promotion of tissue homeostasis. HSPA8: 

heat shock protein family A member 8; ICAM-1: intercellular adhesion molecule-1; Ag: 

antigens; CXADR: coxsackie and adenovirus receptor; Rae-1: retinoic acid early inducible 

1; H60: histocompatibility 60; DAP10/12: DNAX-activating protein 10/12
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Figure 2. 
Targeting γδ T cells for cancer immunotherapy. A) γδ T cell agonists include monoclonal 

antibodies (mAb) and γδTCR x tumor antigen (Ag) bi-specific antibodies (BsAb) that 

can be used alone, in combination, or after γδ ACT therapy; B) HSPs such as HSPA8 

can be used to target tumor neoantigens for uptake by Vγ9Vδ2 T cells to promote their 

APC function and promotion of broader antitumor immunity. HSP-based vaccines can be 

combined with Vγ9Vδ2 T cell expansion using bisphosphonate drugs such as zoledronate 

(Zol) either ex vivo for ACT therapies or directly in vivo; C) addition of costimulatory 

signals (e.g., with antibody-coated beads) during ex vivo expansion of Vδ1 T cells can be 

used to generate more functional allogeneic T cell products for the ACT and CAR-T cell 

approaches
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Table 1.

Most common γδ T cell subsets in mouse and human

Circulating subsets Tissue-resident subsets

Mouse Vγ1.1+ Vγ3+ (epidermis)

Vγ2+ Vγ4+ (dermis, lung, uterus, adipose, liver)

Vγ5+ (gut)

Human Vδ2+ Vδ1+ (epidermis, dermis, adipose, gut, liver)

Note. Adapted from “γδ T cells in cancer [12]” by Silva-Santos B, Serre K, Norell H. Nat Rev Immunol. 2015;15:683–91 (https://
pubmed.ncbi.nlm.nih.gov/26449179/). © 2015 Macmillan Publishers Limited.
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