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Abstract: Diabetes mellitus (DM) is a complicated condition that is accompanied by a plethora of
metabolic symptoms, including disturbed serum glucose and lipid profiles. Several herbs are reputed
as traditional medicine to improve DM. The current study was designed to explore the chemical
composition and possible ameliorative effects of Ocimum forskolei on blood glucose and lipid profile
in high-fat diet/streptozotocin-induced diabetic rats and in 3T3-L1 cell lines as a first report of its
bioactivity. Histopathological study of pancreatic and adipose tissues was performed in control and
treatment groups, along with quantification of glucose and lipid profiles and the assessment of NF-κB,
cleaved caspase-3, BAX, and BCL2 markers in rat pancreatic tissue. Glucose uptake, adipogenic
markers, DGAT1, CEBP/α, and PPARγ levels were evaluated in the 3T3-L1 cell line. Hesperidin
was isolated from total methanol extract (TME). TME and hesperidin significantly controlled the
glucose and lipid profile in DM rats. Glibenclamide was used as a positive control. Histopathological
assessment showed that TME and hesperidin averted necrosis and infiltration in pancreatic tissues,
and led to a substantial improvement in the cellular structure of adipose tissue. TME and hesperidin
distinctly diminished the mRNA and protein expression of NF-κB, cleaved caspase-3, and BAX, and
increased BCL2 expression (reflecting its protective and antiapoptotic actions). Interestingly, TME
and hesperidin reduced glucose uptake and oxidative lipid accumulation in the 3T3-L1 cell line.
TME and hesperidin reduced DGAT1, CEBP/α, and PPARγ mRNA and protein expression in 3T3-L1
cells. Moreover, docking studies supported the results via deep interaction of hesperidin with the
tested biomarkers. Taken together, the current study demonstrates Ocimum forskolei and hesperidin
as possible candidates for treating diabetes mellitus.

Keywords: Ocimum forskolei; hesperidin; streptozotocin; diabetes; 3T3-L1; NF-κB; PPARγ

1. Introduction

Diabetes mellitus (DM) is a complex, chronic illness that is characterized by metabolic
disorders such as high blood glucose levels. Three major types of diabetes have been
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identified: type 1, related to insulin deficiency due to pancreatic β cell destruction; type 2
(90% of patients), associated with insulin resistance and insulin secretion deficiency; and
gestational diabetes, developed during pregnancy, leading to complications and increasing
the risk of type 2 diabetes in the mother [1,2]. The risk factors for type 1 diabetes are not
known; however, a complicated interplay between genetic and environmental factors is
involved in its etiology. For type 2 diabetes, obesity represents one of the most potent
risk factors, followed by age, low physical activity, family history, ethnicity, and smoking.
The risk factors for developing gestational diabetes are similar to those for type 2 diabetes,
with the additional risk of excessive weight gain during pregnancy [1–3]. Unmonitored
diabetes leads to serious complications, typically described as microvascular (nephropathy,
neuropathy, and retinopathy) and macrovascular (cardiovascular), in addition to other
attributable complications, including infections, cancer, depressive disorders, dementia,
disability, and death [4].

Despite the fact that synthetic drugs such as sulfonylureas, dipeptidyl peptidase-4
inhibitors, thiazolidinedione, biguanides, and α-glucosidase inhibitors demonstrate ther-
apeutic benefits and effectiveness in the treatment of diabetes, they can produce many
undesirable side effects in the long term [5]. Studies investigating the effect of natural prod-
ucts play a pivotal role in the discovery of new phytoactive compounds that are effective
against several diseases. The huge demand for natural antidiabetic products and herbs is
attributed to their multiple constituents, multiple targets, and lower toxicity, which may
overcome the disadvantages of presently used therapies [5,6]. Due to these advantages,
recent studies have shown that more natural products are currently being explored for
better management of diabetes, especially type 2 [7,8]. Numerous common herbs used in
traditional medicine are reported to lower blood glucose level via different mechanisms.
Such herbs include Cinnamomum zeylanicum bark, Ficus racemosa bark, Nigella sativa seeds,
Ocimum basilicum leaves, Aloe barbadensis leaves, Trigonella foenum-graecum seeds, Cuminum
cyminum fruits, Panax ginseng, and Allium sativum [9]. In addition, polyherbal formulations
are available on the market as favorable adjuvant and alternative therapies for diabetes
mellitus to take advantage of synergistic or additive effects [8–10].

Evaluation of herbal antidiabetic medicines has indicated that the metabolites re-
sponsible for their activity are predominantly polysaccharides, flavonoids, polyphenols,
terpenoids, alkaloids, saponins, and quinones [5,11]. Lamiaceae is a flowering plant family
that encompasses 236 genera with approximately 7136 species. A wide variety of these
herbaceous plants exhibit important economic, biologic, and medicinal applications [12,13].
Lamiaceae species possess a wide range of bioactivity, namely, antimicrobial, antiseptic,
antispasmodic, carminative, analgesic, and antidiabetic [13,14]. Ocimum, in the subfamily
Nepetoideae and incorporating about 160 species, is one of the most important genera in
this family [15]. Studies investigating the biological activity of various Ocimum species
revealed antidiabetic activity in Ocimum tenuiflorum [16,17], Ocimum gratissimum [18], and
Ocimum basilicum [19].

Ocimum forskolei Benth (O. forskolei) is an aromatic herb traditionally used as a flavoring
agent in Saudi Arabia, insect repellant in Eretria, antipyretic in Yemen, and for treating eye
infection in Rwanda [20,21]. Previous studies on this plant have demonstrated that it has
several biological activities, such as local anesthetic [22], antiepileptic [20], antiulcer [23,24],
and anti-inflammatory effects [25]. In addition, it possesses antimicrobial, antioxidant, and
cytotoxic activities [21]. Interestingly, a recent in vitro study on O. forskolei, conducted with
methanol extract of its leaves and stems, showed considerable antidiabetic results through
inhibition of α-amylase and glycosylation of hemoglobin [26].

Considering this background, the present work was conducted to evaluate, for the first
time, the potential hypoglycemic and hypolipidemic activities of O. forskolei, as well as the
isolated flavonoid hesperidin. The study was supported by histopathological investigation.
The results were confirmed using the 3T3-L1 cell line in vitro, as well as in silico studies.
The current study is an attempt to explore a bioactive natural candidate to treat diabetes
with fewer adverse effects, which may prove favorable to synthetic drugs.
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2. Results
2.1. Isolation and Identification of Hesperidin

The total methanol extract (TME) of O. forskolei (500 g) was subjected to several re-
peated chromatographic techniques to yield the pure flavonoid compound hesperidin (HSP)
(1.3 g). The structure was elucidated by 1D- and 2D-NMR spectroscopy and compared with
the literature values and authentic HSP (Supplementary Materials, Supplementary S1) [27].
This study represents the first report on the isolation of HSP (Figure 1) from O. forskolei.
Hesperidin: 1H-NMR (DMSO-d6, 400 MHz) δ: 12.04 (1H, br s, 5-OH), 6.95 (1H, m, H-2′),
6.94(1H, m, H-5′), 6.92 (1H, m, H-6′), 6.16 (1H, s, H-8), 6.14 (1H, s, H-6), 5.50 (1H, br d,
J = 11.4 Hz, H-2), 4.97 (1H, d, J = 6.7 Hz, H-1′′), 4.54 (1H, br s, H-1′′′), 3.78 (3H, s, 4′-OCH3),
3.25–3.65 (6H, m, H-2′′ to H-6′′), 3.25–3.65 (3H, m, H-2′′′ to H-6′′′), 3.17 (1H, br s, H-3a), 2.78
(1H, br d, J = 17.1 Hz, H-3b), 2.51 (1H, br s, H-5′′′), 1.09 (3H, d, J = 6.2 Hz, H-6′′′); 13C -NMR
(DMSO-d6, 100 MHz) δ: 197.0 (s, C-4), 165.1 (s, C-7), 163.0 (s, C-5), 162.4 (s, C-9), 147.9 (s,
C-3′), 146.4 (s, C-4′), 130.8 (s, C-1′), 117.9 (s, C-6′), 114.1 (d, C-2′), 112.0 (d, C-5′), 103.3 (s,
C-10), 100.5 (d, C-1′′′), 99.4 (d, C-1′′), 96.3 (d, C-6), 95.5 (d, C-8), 78.3 (d, C-2), 76.2 (d, C-3′′),
75.5 (d, C-4′′), 72.9 (d, C-2′′), 72.0 (d, C-4′′′), 70.7 (d, C-4′′), 70.2 (d, C-3′′′), 69.6 (d, C-2′′′),
68.3 (d, C-5′′′), 66.0 (t, C-6′′), 55.6 (q, 4-OCH3), 42.0 (t, C-3), 17.8 (q, C-6′′′).
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Figure 1. Structure of isolated pure hesperidin from TME of O. forskolei.

2.2. Effect of TME and HSP on Blood Glucose Level

Injection of streptozotocin (STZ) at 35 mg/kg after feeding with a high-fat diet (HFD)
showed a significant (p < 0.001) increase in blood glucose level (BGL) when compared with
control rats (Figure 2). Day 1 before treatment revealed significantly (p < 0.05) increased
blood glucose levels in all groups compared to the control group (NC). However, day 7
after treatment with glibenclamide (GB, standard drug), TME (200 and 400 mg/kg), and
HSP (100 mg/kg), BGL dropped significantly (p < 0.05) compared to the untreated diabetic
control (DM). In a similar fashion, the levels after day 14 of treatment followed the same
trend but with a very significant (p < 0.001) reduction in BGL. Treatment with TME (200
and 400 mg/kg) ((DM + TME 200) and (DM + TME 400) groups) reduced BGL more than
the HSP group (DM + HSP) (Figure 2). GB attenuated the increase in BGL after induction
of diabetes when compared with the DM group. Treatment with TME and HSP showed a
nonsignificant increase in BGL when compared with the GB-treated group (DM + GB). The
results also revealed that 400 mg/kg TME produced a more significant decrease (p < 0.001)
in BGL compared to both 200 mg/kg TME and 100 mg/kg HSP treatments.
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Figure 2. The effect of TME (200 and 400 mg/kg) and HSP (100 mg/kg) on STZ + HFD-induced
diabetes. Results are presented as mean ± SD (n = 6); * significant difference between control group
and all the other treatment groups; # significant difference between diabetic nontreated group and all
treatment groups (TME and HSP). NC, normal control; TME, total methanol extract; HSP, hesperidin;
STZ, streptozotocin; GB, glibenclamide; DM, diabetes mellitus; BGL, blood glucose level.

2.3. Histopathological Analysis of Pancreatic Tissue

The NC group (Figure 3A) showed normal pancreatic lobules consisting of the exocrine
portion and islets of Langerhans cells, appearing closely packed with secretory acinar cells,
representing the endocrine portion (yellow and white arrows). The acinar cells exhibited
intense basal basophilic and apical acidophilic portions. The intralobular duct separating
the lobules appeared normal (brown arrow). Figure 3B shows that the DM group exhibited
a disturbed lobular architecture with dilated intralobular blood vessels (blue arrow). It
showed a marked decrease in the islets of Langerhans (white arrow) with less apparent
cellularity compared to the NC group, as well as vacuolation (brown arrow). Islets of DM
rats treated with GB Figure 3C showed ameliorated cells with normal pancreatic lobules of
both exocrine (white arrow) and endocrine cells, which started to retain their cellularity
with normal blood vessels (blue arrow), intralobular ducts (green arrow), and vacuolation
(brown arrow). Figure 3D,E show the results for DM rats treated with 400 mg/kg TME
and 100 mg/kg HSP, revealing apparently normal pancreatic tissue including the islets
of Langerhans (white arrow) and normal vacuolation (green arrow), with blood vessels
having a normal architecture (blue arrow), but the amelioration was more prominent in the
100 mg/kg HSP-treated group.

2.4. Morphometric Analysis of Pancreatic Tissue

The mean areas of degeneration, inflammatory cell infiltration, and hemorrhage in the
untreated diabetic group showed a highly significant (p < 0.05) increase in all parameters,
while the DM + GB treatment group showed a significant (p < 0.05) decrease in all param-
eters when compared with the untreated diabetic group. No significance difference was
observed between DM + GB and DM + HSP groups; while no significant difference was
observed between DM + TME and DM + GB groups with respect to degeneration, necrosis,
and hemorrhagic parameters (Table 1).
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Figure 3. Photomicrographs of control and induced diabetic rat pancreas sections with or without
treatment. (A) Control rat pancreas (NC) showing normal (exocrine) pancreatic acinar lobules (yellow
arrow) and islets of Langerhans (white arrow) embedded within the exocrine portions with vacuo-
lation (brown arrow) and normal intralobular ducts (green arrow). (B) Induced diabetic (DM) rat
pancreas revealing pathological changes in exocrine acinar lobules with a marked decrease in islets
of Langerhans and less apparent cellularity with distorted vacuolation (brown arrow) and blood
vessels (blue arrow). (C) DM + GB pancreas showing closely packed lobules with improved islets
of Langerhans (white arrow), as well as normal interlobular septum ducts (green arrow) and blood
vessels (blue arrow), with brown arrows showing normal cellular vacuolation. (D,E) Induced diabetic
rat pancreas treated with DM + TME 400 mg/kg or DM + 100 mg/kg HSP showing improved en-
docrine cells (white arrow) of the islets of Langerhans, normal vacuolation (brown arrow), improved
intralobular septum ducts (green arrow), and normal blood vessels (blue arrow), compared with the
DM group. Scale bar = 50 µm. NC, normal control; TME, total methanol extract; HSP, hesperidin; GB,
glibenclamide; DM, diabetes mellitus.

Table 1. Effect of diabetes and different treatments on pancreatic morphology.

Groups NC DM DM + GB DM + TME DM + HSP

Degeneration and necrosis 0.14 ± 0.11 6.43 ± 0.37 ac 4.43 ± 0.30 ab 2.86 ± 0.26 abc 4.71 ± 0.42 ab

Mononuclear cellular
infiltration 0.63 ± 0.26 23.14 ± 0.74 ac 14.00 ± 1.02 ab 9.29 ± 0.97 a 14.57 ± 1.04 ab

Hemorrhage 1.13 ± 0.25 4.00 ± 0.27 ac 2.75 ± 0.16 ab 1.63 ± 0.26 abc 3.00 ± 0.27 ab

Results are presented as mean ± SD (n = 6). a significant difference from control group; b significant difference
from DM group; c significant difference from DM + GB group, p < 0.05. NC, normal control; TME, total methanol
extract; HSP, hesperidin; GB, glibenclamide; DM, diabetes mellitus.

2.5. Effect of TME and HSP on Lipid Profile in HFD-Fed STZ-Induced Diabetic Rats

The levels of serum total cholesterol (STC), serum triglyceride (STG), and low-density
lipoprotein (LDL) were significantly (p < 0.001) increased in diabetic control rats when
compared with the normal control group. However, the high-density lipoprotein (HDL)
level in the diabetic control group was lower compared with the normal control group.
TME (200 and 400 mg/kg) significantly (p < 0.001) reduced the levels of STC, STG, and
LDL and significantly (p < 0.01) improved the level of HDL compared to diabetic control
rats. In contrast, the HSP group more prominently reduced (p < 0.001) STC, STG, and LDL
levels in addition to significantly improving HDL levels, as shown in Figure 4.
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Figure 4. Lipid profile of HFD-fed STZ-induced diabetic rats treated with TME (200 and 400 mg/kg)
or HSP (100 mg/kg). Values are represented as mean ± SD (n = 6); * significant difference between
control group and all other treatment groups; # significant difference between diabetic nontreated
group and all treatment groups (TME and HSP). NC, normal control; TME, total methanol extract;
HSP, hesperidin; STZ, streptozotocin; GB, glibenclamide; DM, diabetes mellitus; STC, serum total
cholesterol; STG, serum triglyceride; LDL, low-density lipoprotein; HDL, high-density lipoprotein.

2.6. Histopathological Analysis of Adipose Tissue

Adipose tissue photomicrographs of sections from NC, DM, DM + GB, DM + TME,
and DM + HSP groups are presented in Figure 5. The NC rats (Figure 5A) showed normal
adipose nuclei (black arrow) and normal polygonal adipocytes (blue arrow). Figure 5B
shows that the DM group had distorted adipocytes (blue arrow) with intralobular dilated,
congested blood vessels and infiltrated leucocytes (green arrow). Figure 5C shows that
the DM + GB group displayed improved adipose tissue with normal architecture. The
DM + TME group with 400 mg/kg TME (Figure 5D) revealed ameliorated adipocyte
tissues (blue arrow) with normalized adipose nuclei (black arrow). Adipose tissue from
the DM + HSP group with 100 mg/kg HSP showed apparently normal adipocytes (blue
arrow) and normalized adipose nuclei (black arrow), whereas adipocytes of the DM + TME
group with 400 mg/kg TME showed better protection, with more polygonal architectural
adipocytes compared to the DM + HSP-treated group (Figure 5E).

2.7. Effect of TME and HSP on Expression of NF-κB, CASPASE-3, BAX, and BCL2 Markers in
Rat Pancreatic Tissue

The results demonstrate that TME and HSP significantly downregulated the mRNA
expression of apoptosis markers nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB), cleaved cysteine aspartic protease-3 (cleaved caspase-3), and B-cell lym-
phoma 2 associated X (BAX). Similarly, protein expression was significantly downregulated
in HFD/DM pancreatic tissue (Figure 6A–C), whereas TME and HSP significantly upregu-
lated the mRNA and protein expression of B-cell lymphoma 2 (BCL2). Furthermore, GB
significantly and positively modulated the mRNA and protein expression of all markers in
HFD/DM pancreatic tissue compared to the HFD/DM group (Figure 6A–C).
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Figure 5. Photomicrographs of rat adipose tissue. (A) NC group showing normal polygonal fat cells
(blue arrows) and normal adipose nuclei (black arrow). (B) Diabetic group showing large-sized,
distorted adipocytes (blue arrows) with dilated, congested blood vessels (green arrows) and displaced
adipose nuclei (black arrow). (C) DM + GB group showing improved adipose tissue (blue arrow) and
normalized adipose nuclei (black arrow). (D,E) DM + TME (400 mg/kg) and DM + HSP (100 mg/kg)
group showing apparently normal adipose tissue (blue arrows) and normalized adipose nuclei (black
arrow), with a more prominent improvement in DM + TME. Scale bar = 40 µm. NC, normal control;
TME, total methanol extract; HSP, hesperidin; GB, glibenclamide; DM, diabetes mellitus.
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Figure 6. (A) Effects of TME, HSP, and GB on the mRNA and protein expression of NF-κB, cleaved
caspase-3, BAX, and BCL2 markers of rat pancreatic tissue. The effects of TME, HSP, and GB on
NF-κB, cleaved caspase-3, BAX, and BCL2 markers of rat pancreatic tissue were evaluated by real-
time PCR. The mRNA of NF-κB, cleaved caspase-3, BAX, and BCL2 markers were quantified using
quantitative real-time PCR. GAPDH was used as an internal mRNA control. (B,C) Alterations in
the status of protein expression in response to TME, HSP, and GB were inspected using Western
blot. β-Actin was utilized as a control. The experimental data are shown as mean ± SD of triplicate
values; * significant difference between DM groups. # significant difference between DM group and
control. IM, induction medium; TME, total methanol extract; HSP, hesperidin; GB, glibenclamide;
DM, diabetes mellitus; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; CASP,
cleaved cysteine aspartic protease-3; BAX, B-cell lymphoma 2 associated X; BCL2, B-cell lymphoma 2.

2.8. In Silico Binding of HSP and GB with ABC Transporter SUR1

HSP showed potent binding affinity with ABC transporter SUR1 (−6.18 kcal/mol) of
the pancreatic KATP channel protein in comparison to the standard GB (−6.02 kcal/mol).
The receptor showed stable binding with ligands (HSP and GB) through formation of
hydrogen bonds. Interestingly, HSP formed six hydrogen bonds, four hydrophobic inter-
actions, and one noncovalent sulfur interaction with the receptor protein (Figure 7A and
Supplementary S2). On the other hand, GB formed five hydrogen bonds, six hydropho-
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bic interactions, and one pi–pi T-shaped aromatic–aromatic interaction (Figure 7B and
Supplementary S2). The greatest energy reduction took place via hydrogen bonds, thus
improving the binding strength between the ligands and receptor. These findings revealed
that HSP is a highly competitive agonist of the SU receptor and can be considered a suitable
analogue of GB.
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2.9. In Silico Binding of HSP and GB with NF-κB, Cleaved caspase-3, BAX, and BCL2 Markers

HSP showed improved binding affinity with NF-κB and cleaved caspase-3 (−4.92 and
−8.44 kcal/mol, respectively) in comparison to the standard GB (−4.70 and−6.35 kcal/mol,
respectively). The receptor showed stable binding with both ligands (HSP and GB) through
the formation of conventional hydrogen bonds, carbon hydrogen bonds, alkyl hydrophobic
interactions, and various pi–alkyl interactions. Interestingly, HSP formed five hydrogen
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bonds, two carbon hydrogen bonds, and one alkyl hydrophobic interaction with NF-κB
amino acids (Figure 8A and Supplementary S2). On the other hand, GB formed three
hydrogen bonds, one hydrophobic interaction, one pi–pi T-shaped aromatic–aromatic
interaction, and one pi–sulfur interaction (Figure 8B and Supplementary S2). Regarding
cleaved caspase-3, HSP showed eight hydrogen interactions and one pi–alkyl hydrophobic
interaction (Figure 8C and Supplementary S2), whereas GB showed five hydrogen bonds
(Figure 8D and Supplementary S2). Concerning BCL2, HSP and GB demonstrated binding
affinities of −6.07 and −6.67 kcal/mol, respectively. HSP formed two hydrogen bonds,
one pi–anion interaction, and one pi–sulfur interaction (Figure 8E and Supplementary S2),
while GB formed four hydrogen bonds, three alkyl hydrophobic interactions, and one
pi–anion interaction (Figure 8F and Supplementary S2). Neither HSP nor GB interacted
with BAX amino acids. Most of the energy reduction occurred due to hydrogen bonds,
thus improving the binding strength between the ligands and receptors. These findings
revealed that both HSP and GB are highly competitive agonists of NF-κB, cleaved caspase-3,
and BCL2.
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Figure 8. In silico docking and binding interactions of HSP and GB with NF-κB, cleaved caspase-3,
and BCL2 markers showing the analysis of amino-acid interactions and their length, together with the
binding pocket of ligand–receptor interactions for (A) HSP and NF-κB, (B) GB and NF-κB, (C) HSP
and cleaved caspase-3, (D) GB and cleaved caspase-3, (E) HSP and BCL2, and (F) GB and BCL2. HSP,
hesperidin; GB, glibenclamide; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells;
cleaved caspase-3, cysteine aspartic protease-3; BCL2, B-cell lymphoma 2.

2.10. Effect of HSP on Cell Viability and Glucose Uptake of 3T3-L1 Cell Lines

The cell viability percentage of 3T3-L1 cells following the administration of TME
and HSP was determined, with a 25% reduction observed at 50 µg/mL TME and 10 µM
HSP (Figure 9A). The 3T3-L1 cell line was screened in vitro for adipocyte differentiation.
Induction medium (IM) containing rosiglitazone is widely applied to induce differentiation
in the 3T3-L1 cell line. In this study, medium containing rosiglitazone, insulin, and dexam-
ethasone was applied to induce lipogenesis in the 3T3-L1 cells. The effect of TME and HSP
on glucose uptake, intracellular lipid content, and activation of the transcriptional cascade,
indicating the mature phenotypic characteristics of adipocytes, was assessed. TME and
HSP affected the differentiation of 3T3-L1 cells from pre-adipocytes to adipocytes, with
an IC20 of 50 µg/mL and 10 µM, respectively. The dose concentration was determined,
and the functional concentration was followed for the glucose update assay. The level of
glucose in the culture medium was decreased following rosiglitazone-induced adipocyte
differentiation. Furthermore, the glucose concentration in the HSP group was increased
compared to the induction medium group (Figure 9B). Specifically, it was observed that
glucose levels in the medium were increased twofold in response to HSP treatment com-
pared to the IM group. These findings indicate that TME and HSP inhibited glucose uptake
from the medium by the 3T3-L1 cell line. Taken together, TME and HSP demonstrated a
good reduction in glucose level compared to the control group, suggesting antidiabetic
activity, as well as a lower uptake of glucose compared to the IM group, demonstrating a
potentially lower lipogenic effect on 3T3-L1 cells.
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Figure 9. Effect of TME and HSP on 3T3-L1 cell line. (A) Cell viability. (B) Glucose uptake.
(C–E) Oil Red O staining on day 8 of culture; OD values were measured at 490 nm. The exper-
imental data are shown as mean ± SD of triplicate values; * significant difference from the IM group.
# significant difference between IM and control groups. TME; total methanol extract, HSP; hesperidin,
IM; induction medium.

2.11. HSP Inhibited 3T3-L1 Pre-Adipocyte Differentiation to Adipocytes

TME and HSP significantly affected the differentiation of 3T3-L1 cells from pre-
adipocytes to adipocytes upon being added to the differentiation medium. On day 8
of culture, as shown by Oil Red O staining, HSP significantly inhibited pre-adipocyte
differentiation and the lipid content in intercellular storage. Lipid content was quantified
by adding isopropanol to each well to dissolve the Oil Red O, followed by measuring the
OD at 490 nm. The results revealed that TME and HSP led to a remarkable decrease in the
OD as the concentration increased. Specifically, treatment led to significant decreases in
lipid storage content when compared to the IM group (Figure 9C–E).
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2.12. Effect of TME and HSP on Expression of DGAT1, CEBP/α, and PPARγ in 3T3-L1 Cells

Transcriptional markers play a major role in differentiation and functional adipoge-
nesis. Diacylglycerol acyltransferase (DGAT1), CCAAT enhancer-binding protein alpha
(CEBP/α), and peroxisome proliferator-activated receptor gamma (PPARγ) are receptors
that regulate adipogenesis; hence, they were quantified as anti-adipogenesis targets. The
results demonstrated that TME and HSP significantly downregulated adipogenesis in the
3T3-L1 cell line (Figure 10A–C). The results showed that mRNA and protein expression
of DGAT1, CEBP/α, and PPARγ was upregulated in the IM group, while TME and HSP
treatments downregulated their expression. HSP was highly potent in controlling the
expression of adipogenic markers in addition to inhibiting lipid storage and glucose uptake
in the 3T3-L1 cell line. However, expression of DGAT1 following TME and HSP treatment
was more significantly reduced compared to that of CEBP/α and PPARγ (Figure 10A–C).
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Figure 10. Effects of TME and HSP on mRNA and protein expression of DGAT1, CEBP/α, and
PPARγ markers in 3T3-L1 cells evaluated by real-time PCR. 3T3-L1 cells were supplemented with
50 µg/mL TME or 10 µM HSP. (A) The mRNA expression of DGAT1, CEBP/α, and PPARγ markers
was quantified using quantitative real-time PCR. GAPDH was used as an internal mRNA control.
(B,C) Alterations in protein expression in response to TME and HSP were inspected using Western blot.
3T3-L1 cells were supplemented with 50 µg/mL TME or 10 µM HSP for 24 h. β-Actin was utilized as
a control. The experimental data are shown as mean ± SD of triplicate values; * significant difference
from IM group. # significant difference between IM and control groups. TME, total methanol extract;
HSP, hesperidin; IM, induction medium; DGAT1, diacylglycerol acyltransferase; CEBP/α, CCAAT
enhancer-binding protein alpha; PPARγ, peroxisome proliferator-activated receptor gamma.

2.13. In Silico Binding of HSP to DGAT1, CEBP/α, and PPARγ Adipogenic Markers in
3T3-L1 Cells

The in silico binding of HSP to DGAT1, CEBP/α, and PPARγ receptors was eval-
uated to determine its effect on the regulatory proteins. The interaction of HSP with
the DGAT1 receptor exhibited a binding energy of −7.07 kcal/mol and intermolecu-
lar energy of −8.46 kcal/mol through the formation of nine interactions with cysteine,
leucine, tryptophan, and tyrosine of DGAT1 (Figure 11A and Supplementary S2). HSP
also interacted with CEBP/α with a binding energy −6.64 kcal/mol and intermolecular
energy of −7.54 kcal/mol through the formation of hydrogen bonds with arginine, as-
paragine, and glutamine, as well as an alkyl hydrophobic interaction with leucine and
valine of CEBP/α (Figure 11B and Supplementary S2). HSP demonstrated a binding
energy of −4.61 kcal/mol and intermolecular energy of −8.83 kcal/mol toward PPARγ
(Figure 11C and Supplementary S2) through interactions with seven amino acids between
residues 320 and 444, including pi–alkyl hydrophobic interactions and a covalent interaction
with Tyr-320.
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Figure 11. In silico docking and binding interactions of HSP with (A) DGAT1, (B) CEBP/α, and
(C) PPARγ receptors, showing the analysis of amino-acid interactions and their length, together
with the binding pocket of ligand–receptor interactions. HSP, hesperidin; DGAT1, diacylglycerol
acyltransferase; CEBP/α, CCAAT enhancer-binding protein alpha; PPARγ, peroxisome proliferator-
activated receptor gamma.
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3. Discussion

Hyperglycemia and hyperlipidemia are two hallmarks of type 2 diabetes mellitus,
mainly due to insulin resistance in tissues such as adipocytes [28]. According to the lit-
erature, HFD is reported to induce insulin resistance via lipid accumulation in adipose
tissues [29], whereas a low dose of STZ destroys the beta cells in the islets of Langer-
hans [30]. It has been previously reported that HFD induces oxidative and inflammatory
characteristics that can contribute to insulin resistance [31]. Therefore, the combination of
HFD and low doses of STZ has the potential to precipitate hyperglycemia due to insulin
resistance and the elevation of lipid levels [32].

Ocimum is considered one of the venerable medicinal plant species of the family
Lamiaceae. Various species of Ocimum create a wide array of natural products, such
as flavonoids, with great medicinal importance, including antidiabetic activity [33–35].
O. forskolei has been proven to possess several biological activities as shown previously
in our in vitro antidiabetic assessment of O. forskolei [36]. Hence, the current study was
conducted as a thorough assessment of the possible antidiabetic activity of O. forskolei
(TME) and the isolated pure flavonoid hesperidin (HSP). The current study demonstrated
the isolation of HSP from TME (Figure 1). Furthermore, we investigated the effects of
TME on HFD/STZ-induced diabetic rats. The HFD/STZ-induced diabetic control showed
marked hyperglycemia, particularly compared to the normal control. Our observation in
this study is consistent with numerous other studies, proving the role of both STZ and
HFD in inducing type 2 diabetes [36–38]. The results also revealed that TME (200 and
400 mg/kg) significantly lowered BGL (Figure 2) compared to the diabetic control in a
dose-dependent manner, in agreement with previous studies [19,39]. This observation
clearly indicates that O. forskolei TME has the potential to attenuate hyperglycemic effects.
In addition, treatment with TME minimized the destruction of pancreatic islets in STZ-
induced diabetic rats (Figure 3). This protection from damage could lead to improved
release of insulin and, consequently, enhanced glucose uptake by tissues, as evidenced by
the subsequent reduction in BGL [19]. HSP isolated from TME also showed a reduction
in the BGL of STZ-induced diabetic rats (Figure 2). Studies have demonstrated that HSP
plays numerous protective roles against factors that advance the progression of diabetes
mellitus [40]. Furthermore, it has been reported that HSP improves insulin sensitivity by
inhibiting inflammatory responses. Our result is in total agreement with many reported
studies on the antihyperglycemic activity of HSP [41–43].

Evidence from other studies indicated that Ocimum extract augmented insulin secre-
tion via its positive effects on pancreatic islet cells [44], which is also supported by the
findings of this investigation obtained through histopathology and morphometric analysis
of pancreatic cells (Figure 3, Table 1). Histopathological examination showed improved
structure of islet cells compared to the damaged pancreatic cells observed in the diabetic
control group. Results showed that HFD-STZ-induced untreated diabetic rats exhibited
significant degeneration of pancreatic cells, along with hemorrhage and inflammatory cell
infiltration. The disruption of pancreatic cell architecture observed in this study is similar
to other previously reported studies [45]. In addition, morphometric analysis confirmed
pancreatic cell restoration and normalized cellular architectural in the TME-treated diabetic
group compared to the untreated diabetic group. This study’s findings agree with the
report of Almalki et al. [46]. Following TME and HSP treatment, mRNA and protein
expression of apoptotic markers NF-κB, cleaved caspase-3, and BAX was downregulated,
while that of antiapoptotic marker BCL2 was upregulated in the pancreatic tissue of treated
and diseased groups compared to the control group (Figure 6). Therefore, TME and HSP
possibly protect pancreatic tissue against HFD/STZ-induced stress via a modulatory effect
on NF-κB, cleaved caspase-3, BAX, and BCL2 biomarkers. The current findings are con-
cordant with reports of the ameliorative effect of natural products on such biomarkers in
the HFD/STZ-induced diabetic model [47–50]. Along with diabetes, hyperlipidemia is a
common complication of hyperglycemia [51]. In the present study, we witnessed increased
serum levels of STG, STC, and LDL, with a decrease in HDL level in HFD/STZ-induced di-
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abetic control rats. These observations were consistent with the distorted adipocytes, which
could be a consequence of fat mobilization according to [18]. However, this study found
that TME significantly improved the lipid profile indices of HFD/STZ-induced diabetic rats.
The improvement was seen as decreased levels of STC, STG, and LDL, along with enhanced
levels of HDL and restoration of the cellular architecture of adipose tissue (Figures 4 and 5).
The present results are, therefore, consistent with other documented studies [19,52]. In
addition, HSP produced lipid profile characteristics similar to GB in STZ-induced diabetic
rats. This finding is consistent with the findings of [41]. The in silico results revealed
that both GB and HSP bind to ABC transporter SUR1 via binding to Cys-418. In addition,
Cys-418 and Ala-1204 were also involved in alkyl hydrophobic interactions between ABC
transporter SUR1 and GB/HSP, revealing the similarity of their binding pockets in SUR1
(Figure 7, Supplementary S2). The ABC transporter has been reported to function through
nucleotide-binding domain (NBD) dimerization [53]. Targeting SUR1 using sulfonylureas
to inhibit the ATP-sensitive potassium channel protein has been adopted as a strategy to
promote insulin secretion [54]. Subsequent structural studies revealed that GB binds to
NBD, preventing ATP/ADP-mediated NBD closure and regulating SUR-mediated channel
activity [55]. Altogether, the present computational analysis revealed that both GB and HSP
have a similar binding pocket in ABC transporter SUR1, which is involved in the regulation
of ATP-sensitive potassium channels (Figure 7, Supplementary S2). Similarly, the in silico
results revealed that both GB and HSP interacted with NF-κB, cleaved caspase-3, BAX, and
BCL2, confirming their protective effect on pancreatic tissues (Figure 8, Supplementary S2).

Increased fat mass and body weight are observed in type 2 diabetes, leading to a
higher amount of lipid storage in adipose tissue and its associated cells [56]. Reducing
glucose uptake and fat storage is a significant prognostic approach to controlling type 2
diabetes. Insulin stimulates fibroblastic adipose tissue stores to increase lipid accumulation
via upregulation of DGAT1, CEBP/α, and PPARγ [57,58]. In this study, TME and HSP
reduced the cell proliferation rate of 3T3-L1 cells to 80% at 50 µg/mL and 10 µM, respec-
tively (Figure 9), confirming the nontoxicity of TME and HSP toward adipose cells at these
concentrations. Mechanistically, glucose uptake was significantly inhibited by 50 µg/mL
TME and 10 µM HSP (Figure 9). The adipogenic markers DGAT1, CEBP/α, and PPARγ are
the key regulatory factors of adipogenesis in liver and adipose cells [59,60]. The results indi-
cated that TME and HSP reduced mRNA and protein expression of DGAT1, CEBP/α, and
PPARγ (Figure 10). A significant reduction was observed in all targets, with PPARγ show-
ing the most significant reduction, thus inhibiting lipogenesis and fatty-acid biosynthesis
(Figure 10). Moreover, in silico interaction studies confirmed the regulatory effect of HSP
on adipogenic markers DGAT1, CEBP/α, and PPARγ (Figure 11 and Supplementary S2).
The current findings reveal the antidiabetic and antihyperlipidemic role of TME and HSP
in the HFD/STZ-induced diabetic rat model. This study also confirmed their modula-
tory effect on diabetes-mediated adipogenic factors in 3T3-L1 adipocytes through in silico
docking interactions.

4. Materials and Methods
4.1. General Experimental Procedures and Chemicals

Two-dimensional 1H- and 13C-NMR spectra were measured on an Avance 400 NMR
spectrometer (1H-NMR: 400 MHz and 13C-NMR: 100 MHz, Bruker, Uster, Switzerland).
Diaion HP-20 (Sigma-Aldrich, Darmstadt, Germany) and Sephadex LH-20 (Sigma-Aldrich,
St. Louis, MO, USA) columns, along with precoated silica gel 60 F254 plates, 0.25 mm
and 1000 µm in thickness (Sigma Aldrich, Darmstadt, Germany), were used for thin-layer
chromatography (TLC), applying 10% vanillin in ethanol as the visualizing agent with a
hotplate (150 ◦C). Analytical-grade chemicals and reagents were used. Streptozotocin (STZ)
and glibenclamide (GB) were obtained from Sigma-Aldrich (St. Louis, MO, USA).



Molecules 2022, 27, 2800 17 of 24

4.2. Plant Material

O. forskolei Benth was purchased from a local market, Al-Ahsa region (April 2016).
O. forskolei was kindly identified by Eng. Mamdouh Shokry, Director of El-Zohria Botanical
Garden, Giza, Egypt. A voucher specimen of the plant is deposited in the Herbarium
of the Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal
University, Al-Ahsa, Saudi Arabia (16-Apr-OF).

4.3. Extraction and Isolation of the Major Plant Constituents

The carefully shade- and air-dried powdered areal parts of O. forskolei (10 kg) were
exhaustedly extracted by cold maceration using 70% methanol at room temperature. The
compiled extracts were then concentrated under reduced pressure, yielding the total
methanol crude extract (600 g). The total methanol extract (TME) (500 g) was suspended in
deionized water and then partitioned with n-hexane to give the hexane fraction (120 g),
while the remaining mother liquor was concentrated to give defatted TME (280 g). The
defatted TME (28 g) was subjected to Diaion HP-20 CC (4 kg; water (20 L), methanol (20 L),
and acetone (8 L)) to give the water-soluble fraction (70 g), methanol-soluble fraction (130 g),
and acetone-soluble fraction (80 g), respectively. During concentration of the methanol-
soluble fraction (130 g), a heavy precipitate was noted and collected. The precipitate was
further purified by Sephadex LH-20 column chromatography, eluted with 50% methanol,
and monitored by TLC, yielding hesperidin (HSP)-containing subfractions. HSP-containing
subfractions were compiled and concentrated before being subjected to Sephadex LH-20
column chromatography using butanol saturated with water as the mobile phase to finally
yield pure hesperidin (HSP) (1.3 g).

4.4. Animals

Thirty-six male Wistar rats were obtained from Nahda University, Beni Suef (NUB)
Animal Care Facility. The animals were housed under standard laboratory conditions and
maintained on a 12-h light/dark cycle to allow acclimatization for 2 weeks. Animals were
allowed free access to food and water, following the procedure for animal experiments
described by the Minia University Ethical Committee (ES13/2020). Animals were then
randomly assigned to six treatment groups consisting of six rats per group.

4.5. Diet

Rat diet composition was adopted according to Mirghani et al. [61]. A normal rat
chow diet containing 3% fat (soy oil), 18% casein protein, 69% carbohydrates, 9% min-
erals, and 1% vitamins (per 100 g) was used for the control. The high-fat diet for the
diabetic group consisted of 40% fat (20% soy oil and 20% lard fat oil), 14% casein protein,
37% carbohydrates, 8.2% minerals, and 0.8% vitamins.

4.6. Design of Experiment

Treatment groups were divided into two main categories: the control group (nondia-
betic, normal diet; NC group) and the diabetic group (high-fat diet (HFD) with 40% fat for
2 weeks, followed by a single intraperitoneal injection of STZ dissolved in 0.1 M sodium
citrate buffer at pH 4.4, 35 mg/kg, for induction of type 2 diabetes) [62]. The diabetic group
(with a fasting blood glucose level >250 mg/dL) was then subdivided into four groups
comprising nontreated diabetic rats (DM group), diabetic rats treated with 50 mg/kg GB
(DM + GB group), diabetic rats treated with 200 and 400 mg/kg TME suspended in sterile
water (DM + TME 200 and DM + TME 400 groups, respectively), and diabetic rats treated
with 100 mg/kg HSP (DM + HSP group). Blood samples were collected via the tail vein
for measurement of blood glucose levels using glucose–oxidase–peroxidase reactive strips
(Accu-Chek Active, Roche Diagnostics GmbH, Mannheim, Germany). Lipid parameters
were evaluated using an automated chemistry analyzer (Merck, Wiesbaden, Germany).
Treatments were given orally and continued for 2 weeks, after which all rats were sacrificed
for tissue collection.
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4.7. Tissue Collection

Animals were anaesthetized before their pancreas and epididymal fat were dissected
out and then perfused with cold saline in 10% neutral buffered formalin overnight, followed
by processing to obtain paraffin blocks. After staining with hematoxylin and eosin, serial
paraffin sections of 6 µm thickness were cut and prepared for histological examination, as
previously described by Abdelwahab et al. (2021) [63]. The slide sections were examined
using a light microscope (Olympus, Tokyo, Japan). Photomicrographs were digitally
captured using a high-resolution color digital camera (Olympus, Tokyo, Japan) adapted to
the microscope and connected to a computer.

4.8. Morphometric Analysis

Using image analyzer software (ImageJ v1.47, National Institutes of Health, Bethesda,
MD, USA), the percentage area of connective tissue and the intensity of the brown color of
anti-insulin immune expression were calculated. Quantitative data were collected for three
parameters. Pancreatic histological scoring was performed on H&E-stained slides from each
rat at a magnification of ×400. Scoring was carried out on a scale of 0–4 for the parameters
of degeneration, lymphocytic infiltration, and hemorrhage by counting the mean number of
affected foci as follows: 0 = absent, 1 = mild, 2 = moderate, 3 = severe, and 4 = overwhelming.
The degree of all previous parameters were measured semi-quantitatively in 10 random
fields within each slide (three sections per animal) [64,65].

4.9. Computational Studies

Computational studies were carried out to explain the molecular basis underlying
the interactions of HSP (CID-10621) and GB (CID-3488) ligands with the ATP-binding
sulfonylurea receptor. The crystal structures of the ABC transporter (ATP-binding cas-
sette of the sulfonylurea receptor) of pancreatic KATP channel protein (SUR1) (PDB ID:
6c3o; Chain E), DGAT1 (PDB ID: 6vz1), CEBP/α (PDB ID: 1nwq), PPARγ (PDB ID: 3et0),
BCL2 (PDB ID: 5c3g), BAX (PDB ID: 5w62), cleaved caspase-3 (PDB ID: 3dek), and NF-κB
(PDB ID: 1vkx) were retrieved from the Protein Data Bank (www.rcsb.org, accessed on
10 February 2022). The protein structure was prepared and optimized by the protein prepa-
ration modules in the assorted tools of the WhatIF server, PyMol, and AutoDock software
package, as described earlier by [66]. The water molecules and crystal-bound molecules
in the receptors were removed. The protein structures were protonated and optimized in
physiological pH conditions by adding polar molecules. The AutoDock grid was centered
around the co-crystallized ligand in a box size of 15 Å. Then, the docking module was used
for docking the compounds into the SU receptor. The docking scores were calculated using
AutoDock analysis.

4.10. Cell Culture

The 3T3-L1 cell line was procured from KFSHRC, Saudi Arabia, and maintained by
the Molecular Biology Laboratory, College of Science, King Faisal University, Saudi Arabia.
Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FBS
and 25 mM HEPES (Sigma, St Louis, MO, USA) at 37 ◦C with 5% CO2. Differentiation of
adipocytes was achieved by induction with 10 µg/mL insulin (Sigma, St Louis, MO, USA),
1 µM dexamethasone, and 10 µM rosiglitazone (Sigma, St Louis, MO, USA) differentiation
medium (DM), with TME and HSP added for 7 days. During this process, the differentiation
medium was replenished every 36 h [67]. On day 8 of culture, all groups of 3T3-L1 cells
were analyzed for Oil Red O staining, glucose uptake, and mRNA and protein expression
of adipogenic markers.

4.11. Measurement of Glucose Content in Medium

The 3T3-L1 cells were cultured in 48-well plates up to differentiation. The cell-free
supernatants were collected, and total glucose was quantified using BioTek microplate

www.rcsb.org
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reader (BioTek, Winooski, VT, USA) (Cayman chemicals, Ann Arbor, MO, USA) according
to the manufacturer’s protocols, with values expressed as mg/dL.

4.12. Oil Red O Staining

After day 7 of 3T3-L1 cell differentiation, cells treated or not treated with HSP were
washed with PBS and fixed with 4% paraformaldehyde for 30 min, then stained with Oil
Red O [68] (Sigma, St Louis, MO, USA) at 4 ◦C for 60 min. Following staining, the cells were
aspirated twice with PBS and fixed using 8% methanol. The lipid content in the cells was
photographed using an XLcore Life Technologies microscope at 200×magnification with
EVOS XL core imaging (Life Technologies, Austin, TX, USA). In brief, cell supernatants
were removed, and the lipid-loaded Oil Red O stain was dissolved using isopropanol. Then,
200 µL aliquots from each well were transferred to a new 96-well plate, and the OD value
was measured at 490 nm using a BioTek ELISA reader (BioTek, Winooski, VT, USA).

4.13. mRNA Quantification

The TME- and HSP-treated 3T3-L1 cells were cultured for 8 days in a CO2 incubator.
The treated 3T3-L1 cells and collected rat pancreatic tissues were washed with ice-cold PBS,
and the cell-free supernatant was removed. Total RNA was extracted using the modified
Trizol (Thermo Fisher, San Jose, CA, USA) method. The extracted RNA was quantified
using NanoDrop, and 300 ng of mRNA was used for cDNA preparation using the MQ
basic cDNA synthesis kit (Molequle-on, Takara, Kusatsu, Shiga, Japan) [69]. The cDNA
was amplified according to the primers summarized in Table 2, and mRNA expression was
quantified using ∆∆Ct values.

Table 2. Real-time PCR primer details.

Primer Name Forward Reverse PCR Product Size in Base
Pair (bp)

PPARγ GAAAGACAACGGACAAATCACC GGGGGTGATATGTTTGAACTTG, 169

CEBP/α TTGTTTGGCTTTATCTCGGC, CCAAGAAGTCGGTGGACAAG

DGAT1 CTACAGGTCATCTCAGTGCT GAAGTAGAGCACAGCGATGA 121

BAX TGGCAGCTGACATGTTTTCTGAC TCACCCAACCACCCTGGTCTT- 195

BCL2 TCGCCCTGTGGATGACTGA CAGAGACAGCCAGGAGAAATCA 134

CASPASE-3 GTGGAACTGACGATGATATGGC CGCAAAGTGACTGGATGAACC 211

NF-κB CATGAAGAGAAGACACTGACC
ATGGAAA

TGGATAGAGGCTAAGTGTAGA
CACG 310

GAPDH CGTCCCGTAGACAAAATGGT, TTGATGGCAACAATCTCCAC 212

PPARγ, peroxisome proliferator-activated receptor gamma; CEBP/α, CCAAT enhancer-binding protein alpha;
DGAT1, diacylglycerol acyltransferase; BAX, BCL2 associated X; BCL2, B-cell lymphoma 2; CASPASE-3, cleaved
caspase 3 (cleaved cysteine aspartic protease-3); NF-κB, nuclear factor kappa-light-chain-enhancer of activated
B cells; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

4.14. Western Blot Analysis

TME- and HSP-treated 3T3-L1 cells were collected after 7 days of treatment and
trypsinized using ice-cold PBS. The cell pellet was collected and lysed using Santa Cruz
RIPA lysis buffer (Santa Cruz, Paso Robles, CA, USA). The extracted proteins were quan-
tified, and 50 µg of protein was loaded in SDS-PAGE. Similarly, for pancreatic tissues,
pancreatic homogenate was prepared, and 45 µg of pancreatic protein was used. The sepa-
rated protein was transferred to polyvinylidene difluoride (PVDF) membranes (pore size:
0.45 µm, Bio-Rad, Hercules, CA, USA). Transferred blots were probed with primary anti-
bodies overnight at 4 ◦C according to the manufacturer’s protocol. The primary antibodies
CEBP/α (mouse monoclonal antibody, 1:1000; Biorybt, Cambridge, UK), PPARγ (rabbit
polyclonal antibody, 1:2000; Biorybt, Cambridge, UK), BAX (rabbit polyclonal antibody,
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1:750; Biorybt, Cambridge, UK), BCL2 (rabbit polyclonal antibody, 1:1000; Biorybt, Cam-
bridge, UK), cleaved caspase-3 (rabbit polyclonal antibody, 1:1000; Cell Signaling, Danver,
MA, USA), DGAT (rabbit polyclonal antibody, 1:1500; Biorybt, Cambridge, UK), NF-κB-p65
(rabbit polyclonal antibody, 1:2000; Thermo Fisher Scientific, Waltham, MA, USA), and
β-actin (rabbit polyclonal antibody, 1:2000; Cell Signaling Technology, Beverly, MA, USA)
were incubated overnight at 4 ◦C and then washed with TBST. Washed blots were incubated
with horseradish peroxidase-conjugated secondary antibody at room temperature for 1 h.
The blots were visualized by an enhanced chemiluminescence (ECL) system (Pierce, Life
Technologies, Austin, TX, USA) and scanned using a LICOR detection system. Expressed
bands were analyzed using ImageQuant software and quantified by densitometry using
ImageJ software v1.8 [70].

4.15. Data Analysis

Data analysis was performed using SPSS version 20 (SPSS Inc., Chicago, IL, USA)
and GraphPad Prism software version 8.2 (San Diego, CA, USA). Data were expressed
as mean ± standard deviation (mean ± SD). Significant differences between groups were
carried out by two-way ANOVA, and Tukey’s multiple comparison test was used to
compare between groups. A p-value < 0.05 was considered statistically significant.

5. Conclusions

The current study revealed the antidiabetic and anti-obesity properties of Ocimum
forskolei for the first time. The study demonstrated the potential of the TME of Ocimum
forskolei and its constituent HSP to control BGL and serum lipid levels in HFD/STZ-
induced diabetic rats. In addition, the results suggested the ability of the TME of Ocimum
forskolei and HSP to restore normal pancreatic and adipose tissue architecture. The TME
of Ocimum forskolei and HSP demonstrated the regulation of apoptotic markers NF-κB,
cleaved caspase-3, BAX, and BCL2 in pancreatic tissue. On the other hand, TME and HSP
reduced the uptake of glucose and the oxidative lipid accumulation in 3T3-L1 cells via mod-
ulation of mRNA and protein expression of DGAT1, CEBP/α, and PPARγ. Furthermore,
virtual binding studies supported the results, revealing potent binding of HSP with ABC
transporter SUR1, DGAT1, CEBP/α, PPARγ, NF-κB, cleaved caspase-3, BAX, and BCL2.
These findings highlight the potential of the TME of Ocimum forskolei and HSP as beneficial
therapeutic agents to treat elevated blood glucose levels and other lipid profile biomarkers
in diabetes and obesity-related conditions. Future clinical pharmacokinetic trials on the
TME of Ocimum forskolei and HSP are recommended to validate their approval as potential
antidiabetic and anti-obesity agents.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27092800/s1: Supplementary S1. 1D- and 2D-
NMR spectroscopic data; Supplementary S2. Interactions of HSP and GB with amino-acid residues
of corresponding docked receptors.
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