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Electronic Health Records andMachine Learning for Early Detection of
Lung Cancer and Other Conditions
Thinking about the Path Ahead

In this issueof the Journal,Gouldandcolleagues (pp. 445–453)describe
an innovative use of machine learning with stored patient electronic
health record (EHR) data to develop a risk model assessing the short-
termriskofnon-small-cell lungcancer (1).The studyauthors identified
two primary applications of the approach in clinical practice, namely
providing patients and providers with a tool to assist in personalized
decision-making and identifyingpersons for outreach and for potential
eligibility for lung cancer screening with low-dose computed
tomography (LDCT).

The model developed by the study authors, denoted by “MES,”
used demographic information, smoking history, clinical data, and
laboratorydata thatwere available inEHRs in their healthmaintenance
organization’s (HMO’s) data warehouse. TheMESmodel showed
better prediction of lung cancer diagnosiswithin 3–12months than the
current standardLDCTeligibility criteria (which are based only on age,
pack-years, and years since quitting) as well as better prediction than a
well-known risk model based on detailed smoking history and
demographics (the PLCOm2012 model) (1, 2).

Uptake of LDCT screening following the initial B
recommendation of theU.S. Preventive Services Task Force (USPSTF)
in 2013 has been slow and limited, with currently (before coronavirus
disease [COVID-19]) only an estimated 5–10% of eligible individuals

undergoingLDCTscreening(3).Therefore, there isacriticalneedtouse
strategies to substantially increase this rate. Although with shared
decision-makingnot all eligible individualswill choose tobe screened, a
rate of 50% or higher is desirable and potentially attainable.

Around half of patients in this HMO hadmissing data on pack-
years,meaning thatfinal determinationofUSPSTF eligibility couldnot
be made based on EHRs alone (1). Use of theMESmodel could help
identify, among those with missing data, those patients more likely to
meet theUSPSTF criteria. In addition, by helping estimate risk, it could
assist with shared decision-making and potentially encourage
individuals to choose to be screened.

The USPSTF recently updated their lung cancer screening
recommendation, increasing the eligible pool by lowering the age and
minimumpack-year requirements (4, 5) Their recommendation states
that there was insufficient evidence to “assess whether or not risk
prediction model–based screening would improve outcomes” (5). An
argument against using current risk models (e.g., PLCOm2012) is that
they incorporate age as a risk factor and thus skew eligible individuals
toward older individuals. Although older people are at a higher risk of
lung cancer, they also represent fewer potential life-years saved by
screening, so using risk-based criteriamay increase the number of lives
saved but not necessarily the years of life saved (5). In theMESmodel,
agewas oneof the top10most informative features, suggesting that this
same issue applies (1).

For HMOs, which do not rely on fee-for-service reimbursement
from the U.S. Centers for Medicare andMedicaid Services or private
insurers, there is some leeway in deciding whom to screen for lung
cancer. Accordingly, they could use either standard riskmodels such as
PLCOm2012 or models developed from EHRs—such as MES—to
broadentheireligibilitycriteriaforscreening.However,mosthealthcare
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providers and systems operate under fee-for-service models in which
they are dependent on the policies of outside insurers and are thus
constrained by existing coverage rules. It is not clear how feasible it
would be for healthcare organizations toworkwith insurers (including
the U.S. Centers for Medicare andMedicaid Services) to broaden
coverage based on risk models.

More generally, in terms of the use of EHR data and machine
learning forpotential clinical interventions, therehasbeenconsiderable
research in thisfield in the last decade or so. Examples of conditions for
which models were developed include heart failure, high-risk surgery,
asthma, and cancer (6–9). However, this work—as with the work by
Gould and colleagues—has generally been retrospective, in that it
assessed the predictive ability of algorithms for known prior outcomes.

There is less research on how these models perform when
implemented prospectively in clinical practice with actual resultant
interventions. Formanyconditions forwhichprediction ispossible, the
benefit is not clear. In cancer screening, it is generally accepted that the
benefit of early detectionmust be provenwith a randomized controlled
trial (RCT). The early detection of cancer does not necessarily reduce
mortality fromthecancerof interest,andtherearealsoharmsassociated
with cancer screening.

InthinkingaboutusingEHR-basedmodels forpatientcare, several
issues should be considered. First, there is the magnitude of increased
risk identified and the degree of potential mitigation available through
interventions (10). For LDCT lung cancer screening, even among
eligible individuals, the risk of lung cancer death is only moderately
high (about 2% within 6 yr), and the mitigation of that risk is modest
(15–20%reduction)(5,11).However,LDCTscreeninghasbeenproven
at least in RCTs to have a benefit in reducing lung cancermortality. For
the early detectionof other conditions forwhichEHR-basedprediction
models have been developed, there is no such strong, RCT-based
evidence.

There is no guaranteed benefit of early detection per se, and there
are harms—including anxiety—and complications of work-ups. There
arealsocostsofdevelopingandmaintainingEHR-basedmodels, aswell
aspractical issues.Forexample,howoftenwould themodel inputsneed
tobeupdated,ateverynewvisitor labtest?Hasthemodelbeenvalidated
in various subpopulations, some of which may have been
underrepresentedinbuildingthemodel?Also, therecouldberegulatory
issues, depending on the extent to which the model was actually
directing clinical interventions.

Clearly, it would not be feasible to perform an RCT of every
predictive model developed from EHRs. However, it would be
informative to see the results of several RCTs of such predictivemodels
and their resultant interventions as proof of concept. For such RCTs,
pragmatic trials could potentially be performed, with issues such as the
need for patient consent decided on by institutional review boards.

There are ethical concerns as well. Do patients want artificial
intelligence ormachine learning systems assessing their EHRs in order
to identifyconditions thatmaybepresentsubclinicallyor forwhichthey
may be at a high risk? Should patient consent be obtained for such
searches? Furthermore, if the algorithm has limited explainability, as
manydo,howdophysicianspresent thefindings topatients?Allof these
are questions that are currently being debated in the medical artificial
intelligence field (12, 13).

The first phase of research on using EHRs coupled with machine
learning in clinical care settings has successfully demonstrated—as the

with the model by Gould and colleagues—that such systems can
successfully predict disease risk or disease onset better than standard
approaches. Now it seems time to proceed to themore difficult second
phase,which is to showthat theprospectiveuseof suchsystems toguide
patient care actually has a net benefit.�

Author disclosures are available with the text of this article at
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