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Left Ventricular Diastolic 
Dysfunction in a Rat Model of 
Diabetic Cardiomyopathy using 
ECG-gated 18F-FDG PET
Rudolf A. Werner1,2,3, Christoph Eissler1, Nobuyuki Hayakawa1,2, Paula Arias-Loza4, 
Hiroshi Wakabayashi1,2, Mehrbod S. Javadi3, Xinyu Chen1,2, Tetsuya Shinaji1,2, 
Constantin Lapa1, Theo Pelzer4 & Takahiro Higuchi1,2,5

In diabetic cardiomyopathy, left ventricular (LV) diastolic dysfunction is one of the earliest signs of 
cardiac involvement prior to the definitive development of heart failure (HF). We aimed to explore the 
LV diastolic function using electrocardiography (ECG)-gated 18F-fluorodeoxyglucose positron emission 
tomography (18F-FDG PET) imaging beyond the assessment of cardiac glucose utilization in a diabetic 
rat model. ECG-gated 18F-FDG PET imaging was performed in a rat model of type 2 diabetes (ZDF fa/fa)  
and ZL control rats at age of 13 weeks (n = 6, respectively). Under hyperinsulinemic-euglycemic clamp 
to enhance cardiac activity, 18F-FDG was administered and subsequently, list-mode imaging using a 
dedicated small animal PET system with ECG signal recording was performed. List-mode data were 
sorted and reconstructed into tomographic images of 16 frames per cardiac cycle. Left ventricular 
functional parameters (systolic: LV ejection fraction (EF), heart rate (HR) vs. diastolic: peak filling rate 
(PFR)) were obtained using an automatic ventricular edge detection software. No significant difference 
in systolic function could be obtained (ZL controls vs. ZDF rats: LVEF, 62.5 ± 4.2 vs. 59.4 ± 4.5%; HR: 
331 ± 35 vs. 309 ± 24 bpm; n.s., respectively). On the contrary, ECG-gated PET imaging showed a mild 
but significant decrease of PFR in the diabetic rats (ZL controls vs. ZDF rats: 12.1 ± 0.8 vs. 10.2 ± 1 
Enddiastolic Volume/sec, P < 0.01). Investigating a diabetic rat model, ECG-gated 18F-FDG PET imaging 
detected LV diastolic dysfunction while systolic function was still preserved. This might open avenues 
for an early detection of HF onset in high-risk type 2 diabetes before cardiac symptoms become 
apparent.

As one of the most devastating diseases, diabetes mellitus (DM) type 2 is also called “The Epidemic of the 
Century”1: Mainly due to an increased awareness of physicians and better diagnostic tests, the rates of 
diabetes-associated complications have declined. However, epidemiologists forecast that its prevalence will rise 
up to 33% in the year 20502 and therefore, an extensive disease burden can be anticipated in both the United 
States and Europe2,3. The Framingham Study has intensively reported on an increased risk of heart failure (HF) 
development prior to clinical manifestation of DM4 and consequently, novel non-invasive diagnostic strategies to 
reveal an early onset of HF in diabetic cardiomyopathy (CM) are intensively sought.

Diastolic HF is defined as an increased filling pressure that is needed to achieve ventricle filling to a normal 
end-diastolic volume, while left ventricular (LV) systolic function is not hampered5. As a clinical impetus, dias-
tolic dysfunction has attracted interest, mainly due to its presence in asymptomatic DM patients and as an early 
sign of a chronic heart disease, such as diabetic CM6,7. The latter one is defined as structural and functional heart 
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abnormality in DM patients that is not directly attributable to another underlying pathological cause (e.g. coro-
nary artery disease or arterial hypertension)8. Of note, impaired diastolic function is a common phenomenon in 
asymptomatic patients suffering from diabetes and therefore, it should be assessed systematically among those 
high-risk patients9.

In recent years, a large variety of animal models have been investigated to study diabetic CM and its 
underlying pathology, in particular by using echocardiography or magnetic resonance imaging (MRI) for the 
evaluation of both LV systolic and diastolic function10. Apart from that, electrocardiography (ECG)-gated 
18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has been established for the assessment of 
glucose utilization of the heart, as well as LV volumes and LV ejection fraction (LVEF) in clinical PET studies11–13. 
However, its potential for the assessment of ventricular performance in a dedicated diabetic CM small animal 
model has not been investigated yet.

Therefore, we aimed to elucidate the capability of ECG-gated 18F-FDG PET in the detection of LV diastolic 
dysfunction in a rat-model of type 2 diabetes.

Material and Methods
Animal Model.  Animal protocols were approved by the local Animal Care and Use Committee (Regierung 
von Unterfranken, Germany) and conducted according to the Guide for the Care and Use of Laboratory 
Animals14. Zucker lean (ZL) controls rats and Zucker diabetic fatty (ZDF fa/fa) rats (Charles River, Wilmington, 
n = 6, respectively) were investigated at an age of 13 weeks (ZL controls vs. ZDF rats, body weight, 290 ± 15 g vs. 
382 ± 55 g, p < 0.01).

Small-animal PET and Imaging Protocol.  Fasting was performed >10 h (ZL controls vs. ZDF rats, fast-
ing glucose levels prior to the scan, 113.7 ± 16.2 vs. 239 ± 85.2 mg/l, P < 0.01). A high resolution dedicated small 
animal PET system (Inveon micro PET, Siemens Medical Solutions Inc., Erlangen, Germay) was used for data 
acquisition. Its specifications have been described previously15. 18F-FDG was synthesized in-house according 
to the manufacturer’s instructions. All animals were maintained under anesthesia throughout the imaging pro-
cedure. To enhance cardiac activity, approximately 37 MBq 18F-FDG were administered via the tail vein under 
hyperinsulemic-euglycemic clamp16. A 35-min list-mode PET acquisition with ECG recording was started 
shortly before tracer injection. The data were sorted into 3-dimensional sonograms of 16 frames per cardiac 
cycle, which were then rebinned with a Fourier algorithm to reconstruct dynamic images using a 2-dimensional 
ordered-subset expectation maximization method. All reconstructed images were corrected for 18F decay, ran-
dom coincidences, and dead time. A 13 min transmission scan was also conducted prior to the emission scan for 
attenuation correction17.

PET Data Analysis.  For LV functional and volume analysis, image data from 15 to 35 min after tracer injec-
tion were employed. Evaluation of LV function and volume was performed using a dedicated automatic ven-
tricular edge detection software (Heart Function View, Nihon Medi-Physics Co. Ltd., Tokyo, Japan), which had 
been adapted to the size of a rat heart (5 fold magnification of the voxel size of the reconstructed images). The 
following parameters were assessed using a programme feature for 16-gated myocardial perfusion single photon 
emission computed tomography: As volume parameters, end-diastolic and end-systolic volumes (EDV and ESV, 
microliter). As a systolic parameter, ejection fraction (EF, defined as the % of the stroke volume compared to the 
EDV). As diastolic parameters, the peak filling rate (PFR, defined as the maximum dV/dt value divided by EDV, 
per second), the one-third mean filling rate (1/3MFR, defined as the average of dV/dt values in the first third of 
the filling time, per second) and the time to PFR (TPFR, defined as the time from end-systole to PFR, per milli-
second) were investigated (Fig. 1)18,19. Heart Rate (HR) was also compared.

Figure 1.  Time volume/filling curve. Including systolic (Ejection fraction, EF) and diastolic parameters (One-
third mean filling rate (1/3MFR), Peak Filling Rate (PFR), Time to PFR (TPFR)). EDV = End-diastolic Volume. 
ESV = Endsystolic Volume. RAO = right anterior oblique view.



www.nature.com/scientificreports/

3SCIENTIFIC REPorTs |         (2018) 8:17631  | DOI:10.1038/s41598-018-35986-0

Statistical Analysis.  All results are displayed as mean ± standard deviation. The two-tailed paired Student’s 
t-test was used to compare differences between two dependent groups, and the two-tailed independent Student’s 
t-test for differences between independent groups. The use of the latter test has been recommended, in particular 
for smaller sample sizes20. A P-value of less than 0.05 was assumed to be statistically significant. Statistical analysis 
was done with StatMate III (ATMS Co., Ltd).

Results
LV Functional and Volume Assessment.  ECG-gated PET in the ZDF rat model indicated a reduced dias-
tolic function, while the systolic function was still preserved: No significant difference in the systolic assessment 
could be obtained (ZL controls vs. ZDF rats: LVEF, 62.5 ± 4.2 vs. 59.4 ± 4.5%, n.s., Fig. 2A). On the contrary, PFR 
assessed in diabetic rats revealed a mild but significant decrease (ZL controls vs. ZDF rats: PFR, 12.1 ± 0.8 vs. 
10.2 ± 1 EDV/sec, P < 0.01, Fig. 2B). Moreover, the 1/3MFR and TPFR also both differed significantly (ZL con-
trols vs. ZDF rats: 1/3MFR, 12.0 ± 0.7 vs. 9.9 ± 1.2 EDV/sec, P < 0.01; and TPFR, 35.4 ± 2.7 vs. 40.0 ± 4.2 msec, 
P < 0.05; Fig. 2C,D, respectively). HR, EDV and ESV also did not differ significantly (ZL controls vs. ZDF rats: 
HR, 331 ± 35 vs. 309 ± 24 bpm; EDV, 410.8 ± 60.3 vs. 478.8 ± 77.9 µL; ESV, 155.1 ± 31.4 vs. 194.1 ± 36.6 μL, n.s., 
respectively).

Discussion
Investigating a dedicated diabetic CM rat model with micro PET, diastolic function was significantly altered, 
while systolic performance was still preserved. Hence, in a tailored treatment approach, multiparametric 18F-FDG 
PET assessment might pave the way to detect an early onset of cardiac involvement in DM patients: Consequently, 
even in the absence of clinically apparent signs of HF, promotion of lifestyle changes for the prevention of 
diabetes-associated cardiac diseases could be intensified21 or treatment at an earlier time point could be initiated. 
Thus, multiparametric 18F-FDG PET might have the potential to advance personalized treatment in high-risk 
DM patients.

To assess the clinical condition of diastolic HF, left-sided heart catherization may give ultimate evidence, but 
its invasive nature may limit its widespread adoption22. Thus, several non-invasive imaging modalities have been 
advocated to reliabely investigate the phenomenon of diastolic dysfunction. However, all of those imaging modal-
ities may have some drawbacks: For instance, MRI has a rather limited resolution, in particular when compared to 
transthoracic echocardiography (TTE). In addition, cardiac MRI cannot be routinely performed in patients with 
limiting preconditions, such as subjects with implantable devices or rhythm disorders23. As a fast, accurate and 
easily available method, TTE is extensively performed to assess this phenomenon among high-risk individuals, 

Figure 2.  Left ventricular (LV) functional assessment using ECG-gated 18F-FDG PET. (A) Left ventricular 
Ejection fraction (EF) demonstrated no significant difference between the ZDF rat model and ZL controls. On 
the contrary, diastolic parameters revealed significant differences between both groups. (B) Peak Filling Rate 
(PFR). (C) One-third mean filling rate (1/3MFR) and (D) Time to PFR (TPFR)). Hence, diastolic dysfunction 
with preserved systolic function could be proven in ZDF rats. (Zucker lean (ZL) controls rats and Zucker 
diabetic fatty (ZDF) rats: n = 6, respectively).
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but it may be limited by its acoustic window22,23. In addition, paroxysmal or permanent atrial fibrillation may also 
limit its interpretation24. Thus, novel non-invasive imaging modalities may overcome those hurdles and 18F-FDG 
PET may serve as an attractive alternative, e.g. by investigating subclinical diastolic dysfunction with preserved 
EF in patients with implantable devices.

Previous studies have reported on the use of imaging tests in dedicated diabetes small-animal models: 
Assessing cardiac function via echocardiography, Marsh et al. demonstrated that Zucker diabetic fatty obese rats 
suffered from impaired LV relaxation (along with increased arterial stiffness)25. In a previous investigation also 
relying on echocardiographic images, a dilated ventricle with reduced subnormal contraction was proven in a 
head-to-head comparison between ZDF fa/fa rats and ZL controls26. In addition, 18F-FDG PET studies for the 
assessment of LV function have also been performed previously in healthy animals: Investigating MRI as a refer-
ence standard in healthy mice, an LV function obtained by 18F-FDG PET demonstrated an excellent correlation 
compared to MRI27. Similar results could be obtained for healthy rats: in a comparison of 18F-FDG PET with a 
clinical MRI system, LVEF values were almost identical to the herein obtained LVEF values of ZL control rats28. 
In an elegant approach, Todica et al. recently reported on the use of the novel blood-pool tracer 68Ga-albumin in 
healthy Sprague-Dawley rats: notably, compared to the gold standard MRI, an even better correlation between 
LVEF values could be obtained for 68Ga-albumin than for 18F-FDG29. Moreover, Aikawa and coworkers recently 
investigated 11C-hydroxyephedrine (11C-HED) in HF patients with preserved ejection fraction: altered myocar-
dial sympathetic innervation was associated with the presence of advanced diastolic dysfunction30. Hence, other 
promising cardiac PET imaging agents could potentially be applied in the herein described diabetes rat model and 
might pave the way for further insights into diabetic CM prior to the onset of cardiac involvement in the long run.

Apart from that, the age of the investigated ZDF rats is of utmost importance: analogous to our study, Welch 
et al. studied ZDF rats at week 12, which is considered to be consistent with the metabolic alterations occurring 
at an early stage of type 2 DM in human subjects31,32. To further strengthen our preliminary findings, we also 
investigated 18F-FDG under hyperinsulinemic-euglycemic clamp conditions: This strategy is known to provide 
an excellent image quality and is superior to other conventional techniques to enhance cardiac activity, such as 
glucose load and/or insulin bolus prior to image acquisition33–35.

This study has several limitations: First, it is discussed controversially which animal model may fulfil all dis-
ease conditions present in a human setting and patients suffering from DM. Thus, other animal models could also 
be investigated, e.g. db/db mice and ob/ob mice36. Nonetheless, given a potential partial volume effect on PET, 
the larger size of a rat heart may be more suitable in the present study design37. In addition, such examinations in 
ZDF/ZL rats could also be conducted in recently introduced imaging modalities, such as (PET/)MRI or with the 
more commonly used TTE38. In particular, the latter imaging technique could also serve as a gold standard, in a 
manner similar to left-sided heart catherization22,23.

Conclusions
In a diabetic CM rat model under insulin clamp, ECG-gated 18F-FDG PET demonstrated distinguished character-
istics to assess impaired diastolic function, while systolic function was not significantly altered. Hence, reflecting 
a typical pathological condition which occurs early in diabetic CM prior to symptomatic manifestation of cardiac 
involvement, this novel PET-based strategy might set the scene for identifying high-risk patients before cardiac 
symptoms become clinically apparent. In light of the results of the present study, future efforts may focus on 
investigating this phenomenon in a clinical setting, e.g. by performing PET studies in DM patients at an early 
stage of disease. This could be done not only with the”working horse” in PET imaging, namely 18F-FDG, but also 
with other, recently emerging cardiac radiotracers, such as the blood-pool tracer 68Ga-albumin, or with imaging 
probes evaluating cardiac innervation (11C-HED or 18F-LMI1195)29,30,39,40. Such an approach of a global assess-
ment of different cardiac conditions may pave the way to obtain further insights in the underlying pathology of 
diastolic dysfunction in DM patients.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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