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Blood pressure in humans presents a circadian variation profile with a morning increase,

a small postprandial valley, and a deeper descent during night-time rest. Under certain

conditions, the nocturnal decline in blood pressure can be reduced or even reversed

(non-dipper), which is related to a significantly worse prognosis than a normal fall pattern

(dipper). Despite several advances in recent years, our understanding of blood pressure’s

temporal structure, its sources and mechanisms is far from complete. In this work,

we developed an ordinary differential equation-based mathematical model capable of

capturing the circadian rhythm of blood pressure in dipper and non-dipper patients with

arterial hypertension. The model was calibrated by means of global optimization, using

24-h data of systolic and diastolic blood pressure, physical activity, heart rate, blood

glucose and norepinephrine, obtained from the literature. After fitting themodel, the mean

of the normalized error for each data point was <0.2%, and confidence intervals indicate

that all parameters were identifiable. Sensitivity analysis allowed identifying the most

relevant parameters and therefore inferring the most important blood pressure regulatory

mechanisms involved in the non-dipper status, namely, increase in sympathetic over

parasympathetic nervous tone, lower influence of physical activity on heart rate and

greater influence of physical activity and glucose on the systemic vascular resistance.

In summary, this model allows explaining the circadian rhythm of blood pressure and

deepening the understanding of the underlying mechanisms and interactions integrating

the results of previous works.

Keywords: mathematical model, blood pressure, circadian rhythm, dipper, non-dipper

INTRODUCTION

Homeostatic regulatory mechanisms allow keeping physiological variables in the human
body within acceptable ranges. These mechanisms operate all the time, generating dynamic
variation profiles such as the blood pressure profile. Blood pressure is regulated mainly by
the neurohumoral system that includes the renin-angiotensin-aldosterone system, natriuretic
peptides of the endothelium, the sympathetic nervous system and the immune system. These
regulatory mechanisms allow the human body to respond to changes in factors such as
physical activity and diet (Peixoto and White, 2007). However, under physiopathological
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conditions, blood pressure can be continuously elevated, causing
damage to the vessels and organs that it irrigates; this condition
is known as arterial hypertension. Depending on the cause of
this pathology, it can be classified as either primary or essential
hypertension, which has no identifiable cause, or secondary
hypertension, when it is possible to identify the pathology or
condition that triggers the disease. The development of essential
hypertension has been associated with family history and genetic
predisposition and a set of factors related to lifestyle, such as
mental stress, high salt intake, poor sleep quality or sleep apnea,
and alcohol consumption, among others (Oparil et al., 2018).

Humans have an internal clock of ∼24 h, which allows us
to anticipate and prepare for events or disturbances that occur
during the activity-rest cycle. Consequently, periodic changes in
diet, sleep-wakefulness, behavioral cycles, and other physiological
activities and processes occur daily in humans and other
organisms (Feng and Lazar, 2012). Among the physiological
variables that present a circadian variation, blood pressure is one
of the most studied due to its impact on chronic cardiovascular
diseases and complex events such as strokes and heart failure.
This circadian variation profile is mainly related to the activity-
rest cycle and presents a morning increase, a small postprandial
valley, and a deeper descent during night-time rest. Under
certain physiological conditions, the nocturnal decline in blood
pressure can be reduced or even reversed (non-dipper pattern),
which is related to a significantly worse prognosis than a
normal fall pattern (dipper). Different hypotheses have been
proposed about the causes of the development of a non-dipper
pattern, including a renal mechanism due to high salt intake
(Fukuda and Kimura, 2012), the alteration of the sleep-wake
cycle (Kitamura et al., 2002), higher activity during night rest
(Mansoor, 2002) and the relationship of the non-dipper pattern
with a decrease in the parasympathetic nervous function and
an increase in the sympathetic nervous function (Nakano et al.,
2001). However, the causes of the development of the non-dipper
pattern are still unclear. The integration of knowledge about the
physiological mechanisms of control and the variables that alter
blood pressure through mathematical models would allow us to
further understand the dynamics of the system to improve the
diagnosis and treatment of this disease.

Several methods have been proposed for the characterization
of the circadian profile of blood pressure, ranging from
simple statistics including the median and mean values (Parati,
2004) to more complex techniques such as Fourier analysis
(Staessen et al., 1993), cosinor mixed-model analyses of variance
(Shea et al., 2011), modeling of non-linear mixed effects (van
Rijn-Bikker et al., 2013) and multiple-components analysis
(Hermida et al., 2002a). However, the aforementioned models
allow modeling the circadian rhythm of blood pressure based
on data rather than physiological regulatory mechanisms.
Therefore, they do not allow deepening into the mechanisms
involved in the blood pressure drop during the night-time rest.
The first mathematical model that sought to explain blood
pressure variation through physiological control mechanisms
was developed by Guyton et al. (1972). The model consists
of hundreds of mathematical equations designed primarily to
understand the long-term regulation of blood pressure and

cardiac output and has served as inspiration and basis for
many other integrative models of physiology. Other models were
developed to explain the short-term response of the circulatory
system; for example, the orthostatic response to head-up tilt
(Melchior et al., 1992; van Heusden et al., 2006). More recently,
Albanese et al. (2016) developed an integrated mathematical
model of the human cardiopulmonary system. Other authors
developed a mathematical model of salt-sensitive hypertension
that challenges Guyton model’s assumptions and does not
limit the cause of salt-sensitive hypertension to primary renal
dysfunction only since it includes the possibility of being the
result of a neurogenic dysfunction (Averina et al., 2015). Despite
the capabilities of the Guyton model and subsequently revised
models to capture the dynamics of blood pressure at different
time scales, they do not adequately characterize the circadian
variation of blood pressure.

This work’s objective was to develop a mathematical model
using ordinary differential equations (ODEs) based on the
mechanisms of physiological control of blood pressure to
explain the circadian variation profile of dipper and non-
dipper patients with essential hypertension. The development of
this model allowed explaining dipper and non-dipper patterns
integrating the results of previous works that attempted to
explain differences between these subjects, evaluating different
physiological variables.

METHODS

Foundations of the Mathematical Model
Themathematical model was based on the expected physiological
response resulting from the interaction between the different
variables involved in the medium-term blood pressure
regulation. Several mechanisms are known to be involved
in the control of blood pressure. However, to simplify the model
and ensure identifiability, fundamental inputs that have more
significant influence or represent the behavior of a set of variables
that affect the circadian variation in blood pressure were used in
this work. The chosen input variables included in the model are
norepinephrine (NE), physical activity (A), and glycemia (glc),
and the dependent variables are systemic vascular resistance
(SVR), systolic blood pressure (SBP), diastolic blood pressure
(DBP), and heart rate (HR).

Physical activity was chosen since previous works have
established that it is one of the determinants of the variation in
blood pressure and the variability of heart rate (Kario et al., 1999;
Leary et al., 2000; Mansoor, 2002). Furthermore, greater night-
time activity has been observed in non-dipper patients, making
it one of the influencing factors in altering the circadian profile.
However, it has been concluded that it cannot predict a non-
dipper pattern by itself (Hermida et al., 2002b). Therefore, other
variables related to the alteration of the circadian pattern of blood
pressure were also considered. On the one hand, the plasma levels
of norepinephrine exhibit a circadian variation, increasing during
the day and decreasing during night time rest (Linsell et al., 1985;
Candito et al., 1992). It is known that norepinephrine generates
vasoconstriction and increases the cardiac frequency and output
due to its action on adrenergic receptors. Furthermore, a high
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correlation has been shown between plasma norepinephrine
and the outflow of the sympathetic nervous system (Goldstein
et al., 1983), which is part of the most relevant blood pressure
regulation mechanisms. For example, renin release has been
shown to be influenced by sympathetic outflow (Zanchetti and
Stella, 1975) and a direct relationship between norepinephrine
levels and plasma renin activity has been observed in both
healthy and hypertensive subjects (Beretta-Piccoli et al., 1980;
Tuck et al., 1985). Therefore, by including this variable, we
include its direct effect and, indirectly, other relevant regulatory
mechanisms. Moreover, the variations of this catecholamine have
been related to the circadian variation profile of blood pressure
and a positive correlation has been observed between urine
norepinephrine and the fall in blood pressure at night rest (Arita
et al., 1996; Därr et al., 2016). On the other hand, it has been
shown that a sharp increase in plasma glucose can decrease
peripheral vascular resistance by 13%, increase heart rate by
14%, consequently increase 20% of cardiac output, maintaining
unaffected blood pressure (Jern, 1991). Furthermore, blood
glucose and the consequent increase in insulin have a positive
effect on the sympathetic nervous systemwithout altering plasma
norepinephrine (Rowe et al., 1981). Additionally, differences in
glucose profiles have been observed between dipper and non-
dipper patients with type II diabetes, where non-dipper patients
have been shown to have greater insulin resistance (Pistrosch
et al., 2007). Differences have also been observed between dipper
and non-dipper patients with essential hypertension, where those
with a non-dipper pattern show greater insulin resistance (Chen
et al., 1998).

Mathematical Model
The equations were formulated based on the dynamics of
the interactions described in the scheme of Figure 1. Direct
relationships were modeled by means of first-order kinetics
while higher-order interactions involving activating or inhibiting
effects were modeled using Hill functions. For the sake of
parsimony, a Hill coefficient equal to one was considered
when possible. The effects described between variables do not
necessarily imply a direct mechanism of activation or inhibition
but express the expected physiological response that each of
the involved variables exerts on one another. For example,
the relationships between physical activity and heart rate and
between physical activity and SVR are complex and include
several components and regulation systems; however, we have
simplified these relationships considering only the initial and
final expected effects. Specifically, physical activity generates a
greater demand for oxygen and nutrients in the skeletal muscle;
this causes the muscle to release vasodilators such as nitric oxide,
which reduces vascular resistance and blood pressure in that area.
Then, the sympathetic nervous system acts to regulate blood
pressure by increasing the vascular resistance in the abdominal
viscera and increasing heart rate and stroke volume, thereby
increasing cardiac output and, consequently, blood pressure
(Nobrega et al., 2014; White and Raven, 2014). Despite the
increase in vascular resistance in the visceral abdominal area, its
decrease at the peripheral level generates a general reduction in
vascular resistance (Casey and Joyner, 2012). The relationships
described above are reflected in the SVR and HR equations

(Equations 1, 3) by the expressions ki1
ki1+A

and A
ki4+A

, which

represent the inhibition and activation exerted by physical
activity on the SVR and HR variables, respectively. Therefore, the
parameters ki1 and ki4 are constants that indicate the relevance
of the effect of the activity in the changes of SVR and HR,
respectively. The larger the value of ki1, the smaller the regulation
(inhibition) of the SVR due to the activity. Analogously, the larger
the value of ki4, the smaller the regulation (activation) of the HR
due to the activity.

Several mechanisms regulate vascular resistance. Some
regulatory molecules are capable of generating a short-
term response; for example, the action of catecholamines,
like norepinephrine, on alpha-adrenergic receptors causes
vasoconstriction (Takeda and Maemura, 2011; Tank and Lee
Wong, 2015). Moreover, as mentioned above, norepinephrine
has a high correlation with the outflow of the sympathetic
nervous system (Goldstein et al., 1983), which is related to
vasoconstriction. On the other hand, insulin secretion, triggered
by increased blood glucose, generates vasodilation (Muniyappa
et al., 2007). Hence, the influence of both norepinephrine and
glucose was included in the model on the expression NE

glcn+NE
.

In a previous version of the model, the effect of glucose
and norepinephrine was modeled by additive inhibition and
activation expressions, respectively. However, a better fit to the
data was obtained by relating them in a single expression,
suggesting a synergistic effect. Therefore, the parameter n is a
constant that represents the impact of glucose on vasodilatation
and k1 represents the basal rate of vasoconstriction (without the
influence of the activity and the glucose). Finally, the expression

SVR
ki2+SVR

∗ SVR, that represents the regulation mechanism of

vascular resistance of blood vessels produced when blood flow to
an organ decreases generating metabolic-induced vasodilatation
(Nobrega et al., 2014), was also included in Equation (1).
Consequently, the ki2 value is related to the self-regulatory
capacity of SVR.

Equations (2) and (4) describe the change of blood pressure

over time, which depends directly on SVR because, for a given

blood flow, an increase of vascular resistance generates an

increase in the pressure on the blood vessels’ walls (SBP and

FIGURE 1 | Diagram of the model describing the interactions between the

main variables involved in the control of blood pressure. The blue arrows

indicate “activation,” the yellow arrows “inhibition” and the arrow with

segmented line refers to a mutual regulation.
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DBP). In addition, the influence of BP over HR is captured by the

expression HR
ki3+HR

; a higher HR (together with a higher stroke

volume) generates an increase in cardiac output, increasing

blood flow, which also induces an increase in SBP and DBP.
Due to this, the parameter ki3 is related to the ability of HR
to modify the value of BP. Besides, heart rate is regulated by
the autonomic nervous system, which activity at this level is
regulated, in part, by the activation of baroreceptors, that are
able to detect changes in BP (Guyenet, 2006). This relationship
between BP and HR is known as baroreflex regulation, and it
was included in Equations (2)–(4). Baroreflex regulation allows
regulating the values of HR and BP, increasing the value of
HR when BP decreases and vice versa. Finally, a constant rate
of increase of HR or baseline is expressed by k2. Moreover,
parameters k3 and k4 were incorporated into the model to ensure
dimensional homogeneity.

Thus, the following system of four differential equations and
seven parameters was obtained:

dSVR

dt
= k1 ∗

ki1

ki1 + A
∗

NE

glcn + NE
−

SVR

ki2 + SVR
∗ SVR (1)

dSBP

dt
= k3 ∗ SVR ∗

HR

ki3 +HR
− SBP (2)

dHR

dt
= k2 ∗

A

ki4 + A
− k4 ∗ DBP ∗HR (3)

dDBP

dt
= k3 ∗ SVR ∗

HR

ki3 +HR
− SBP (4)

Some variables, as changes in fluid volume, were not considered
due to unavailability of data; however, these variables were
enough to capture the general pattern of the circadian rhythm
of blood pressure.

Experimental Data
Experimental data on physical activity, heart rate, and blood
pressure (systolic and diastolic) for dipper and non-dipper
subjects measured every 30min over 24-h were extracted using
the Engauge Digitizer software from the work of Hermida et al.
(2002b). The data correspond to the average of 130 male patients
(53.7± 14.0 years of age).

The norepinephrine data for dipper patients was extracted
from the work of Linsell et al. (1985) and van Dijk and
van Loon (2015) and the values for non-dipper patients were
simulated by increasing by 15% during the night rest the values
obtained from dipper patients, according to the work of Därr
et al. (2016), who reported a significant difference between day-
night urinary norepinephrine excretion ratio between dippers
and non-dippers.

The glycemia data for dipper patients was extracted from the
work of van Dijk and for non-dipper patients, these values were

increased by 4.7, 13.3, and 8.1% 2 h after each of the three meals:
breakfast, lunch, and dinner, respectively, according to what was
reported by Pistrosch et al. (2007).

The systemic vascular resistance (SVR) data to fit the model
was obtained using the following equation (Coats et al., 1989):

SVR(

dyn∗ s
cm5

) =

(

2∗SBP+DBP
3 − CVP

)

∗ 80

SV ∗ HR
(5)

assuming an average stroke volume (SV) for subjects with
essential hypertension of 79.5ml (Messerli et al., 1983) and
replacing the systolic blood pressure (SBP), diastolic blood
pressure (DBP) and heart rate (HR) of dipper and non-dipper
subjects from the work of Hermida et al. (2002b). The value of
the mean right atrial pressure for essential hypertension patients
(5 mmHg) (Ferlinz, 1980) was used instead of the central venous
pressure (CVP), since, as previously reported, both values are
similar given the low resistance of large vessels (Magder, 2005).
The standard deviation of SVR was calculated from the standard
deviation of the variables SBP, DBP and HR.

The data were organized in such a way that the simulation
begins at 0 a.m. and wake-up time is 8 a.m. for all the data.

Parameter Estimation
The ODE-based model was developed using previous knowledge
about the main regulatory mechanisms of blood pressure,
detailed in the Mathematical Model and Experimental Data
sections, and was implemented in MATLAB 2018a. Each model’s
parameters were fitted to the experimental data employing global
optimization using a scatter search method (MEIGO) (Egea
et al., 2014). Scatter Search is an evolutionary meta-heuristic able
to solve combinatorial and non-linear optimization problems,
which allows fitting the model to the experimental data in order
to obtain the values of the parameters that minimize an objective
function, i.e., given a certain range for each parameter, MEIGO
iteratively searches for the combination of the parameters that
minimize the error between the experimental data and the
model predictions. To integrate the model, the solver ode23s of
MATLAB was chosen and the objective function is expressed as a
sum of squares:

Fobjetive =
1

k ∗ N

k
∑

i=1

N
∑

n=1

(

yexp i (tn) − ymodel i (tn)

yexp i (tn)

)2

(6)

where N is the number of experimental data per variable, k is
the number of variables, and yexp i is the experimental value of
the i variable, and ymodel i. is the value predicted by the model.
Twenty-four hour data were used to adjust the model.

Data from both types of subjects were used independently
to estimate the parameters. Then, according to the values
obtained individually, some parameters were established in
common for both types of subjects and the remaining parameters
were re-fitted.

Frontiers in Physiology | www.frontiersin.org 4 January 2021 | Volume 11 | Article 536146

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Cortés-Ríos and Rodriguez-Fernandez Circadian Rhythm of Blood Pressure

Residual Analysis
The analysis of residuals was carried out using Equation (7),
where the residuals, R (tn), are calculated using the experimental
values (HR, SBP and DBP), yexpNCi (tn), and the values predicted
by the model, ymodeli (tn), at each time, tn.

R (tn) = yexpNCi (tn) − ymodel i (tn) (7)

To evaluate the residuals, a QQ plot and a histogram were
plotted using MATLAB’s qqplot and hist functions. Furthermore,
to corroborate these results, the Shapiro Wilks test of normality
was used using MATLAB’s swtest function with an alpha value
of 0.05.

Sensitivity Analysis
Local sensitivity analysis allows quantifying the impact of the
local variation of a parameter on the value of each of the output
variables (in contrast with global sensitivities that explore the
entire parameter space). In this work, the local sensitivity of each
variable yi with respect to each parameter pj evaluated for the best
parameter set was computed using the SENS_SYS third-party
MATLAB function (Garcia Molla, 2019):

Sij (tn) =
dymodel i (tn)

dpj
(8)

Then, normalization was performed using the following
equation:

Srelij (tn) =
dymodel i (tn)

dpj
∗

pj

ymodel i (tn)
(9)

Srelij (tn) was calculated for each parameter (j), variable (i), and
time point (tn) obtaining relative sensitivity trajectories for each
parameter and each variable (SVR, SBP, HR, and DBP). The
analysis of these results is complex, due to the large number
of sensitivity values (for each time and variable). Therefore, a
sensitivity index for each parameter was calculated using the
following equation (Brun et al., 2001), which transforms the
relative sensitivity trajectories corresponding to each parameter
into positive values by squaring and averaging them across the
different time points and variables:

δj =

√

√

√

√

1

k ∗ N

k
∑

i=1

N
∑

n=1

Srel2ij (tn) (10)

where N is the number of experimental data per variable, k is the
number of variables, and ymodel in is the value n of the i variable
predicted by the model.

Identifiability Analysis
To carry out an identifiability analysis, the Fisher information
matrix (FIM) was obtained from the local sensitivity matrix S (tn)
and the covariance matrix Q (tn) (Ljung, 1999):

FIM =

N
∑

n=1

S (tn) · Q (tn) · S(tn)
T (11)

where Q (tn) is a 4-by-4 diagonal matrix calculated using the
standard deviation of the data for SBP, DBP, HR, and the
estimated standard deviation for SVR at each time point and
S (tn) is a 7-by-4 matrix obtained from the local sensitivity values
of each of the four variables with respect to each of the seven
parameters at each time point (Equation 8).

According to the Cramér–Rao theorem, the inverse of the FIM
represents an approximation of the covariancematrix of the error
of the objective estimator of minimum variance (Ljung, 1999).
In this case, the inverse of the FIM is a 7-by-7 matrix where
each element represents an approximation of the parameter
estimation error covariance between the parameters j and h (σ 2

jh
):

σ 2
jh =

(

FIM−1
)

jh
(12)

Therefore, the diagonal of the inverse of the FIM
(

σ 2
jj

)

is an

approximation of the variance of the parameters. Thus, assuming
a normal distribution, the 95% confidence intervals (CI) of a
parameter can be approximated by p ± 1.96 σjj (Walter and
Pronzato, 1997).

Moreover, the correlation between parameters (κjh) can be
calculated using the following equation (Ljung, 1999):

κjh =
σ 2
jh

σhh · σjj
(13)

The correlation matrix measures the interrelationship between
the parameters and gives an idea of the compensation effects
of changes in the parameter values on the output variables.
If two parameters are highly correlated, a change in the
model output caused by a change in a model parameter can
be (nearly) compensated by an appropriate change in the
other parameter value. This prevents the parameters from
being uniquely identifiable even if the model output is very
sensitive to changes in the individual parameters. A singular
FIM indicates the presence of unidentifiable parameters, and
correlations between parameters that are >0.95 may lead to
singular FIM.

RESULTS

Parameter Estimation
After several iterations in the search for equations representing
the data, it was possible to adjust the same model to both dipper
and non-dipper subjects. The experimental data and the model
predictions for the dipper and non-dipper subjects can be seen
in Figures 2, 3, respectively. The estimated values and 95% CI
of the parameters are shown in Table 1. The parameters k3 and
k4 were fixed to one due to its high correlation with ki3 and k2,
respectively; they were kept in the model to ensure dimensional
homogeneity. The table shows the common parameters between
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FIGURE 2 | Adjustment of the model to the experimental data of dipper subjects. The magenta line represents the values predicted by the model and the blue line,

the experimental data with their respective standard deviations. Dynamics of systemic vascular resistance (SVR), systolic blood pressure (SBP), heart rate (HR), and

diastolic blood pressure (DBP) are presented in (A–D), respectively.

FIGURE 3 | Adjustment of the model to the experimental data of non-dipper subjects. The magenta line represents the values predicted by the model and the blue

line and markers, the experimental data with their respective standard deviations. Dynamics of systemic vascular resistance (SVR), systolic blood pressure (SBP),

heart rate (HR) and diastolic blood pressure (DBP) are presented in (A–D), respectively.
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dipper and non-dipper subjects (k1, n, ki2, k3, and k4) and
the parameters with different values for each type of subject
(ki1, ki3, ki4, k2).

The parameters k1, n, ki1 and ki2 are part of Equation (1), of
which only ki1 presents a different value between both types of
subjects, suggesting a difference in the SVR response to physical
activity in non-dipper subjects. On the other hand, in Equation
(2), a greater value for parameter ki3 was obtained for dipper
subjects. This can be due to the range of HR values that is
slightly smaller in non-dipper subjects (minimum value is lower
in dipper subjects). In Equation (3), parameters ki4, k2 have
higher values for dipper subjects, which can be explained by a
higher activation baseline that requires a smaller increase in each
time interval and a greater influence of physical activity on HR.
The 95% confidence interval values indicate that all parameters
are statistically significant. The value of the objective function
was 0.0015; namely, the mean of the normalized error for each
data point is 0.15%.

TABLE 1 | Estimated parameters for dipper and non-dipper subjects.

Parameter Dipper value CI 95% Non-dipper value CI 95%

dipper (±) non-dipper (±)

k3 1 – 1 –

k4 1 – 1 –

k1 614.7 376.0 614.7 324.2

N 2.472 0.336 2.472 0.394

ki2 3,861 3,296 3,861 2,938

ki1 801.3 219.8 544.2 188.3

ki3 805.3 15.70 748.4 26.1

ki4 24.79 1.131 10.86 1.336

k2 7,654 105.8 6,808 122.3

Residual Analysis
The QQ plot and histogram of the residuals
(Supplementary Figures 1, 2) show a distribution close to
normal. This was verified using the Shapiro Wilks test, which
indicates that, with a 95% confidence, the residuals come from a
normal distribution (p-value= 0.762).

Sensitivity Analysis
The results obtained for the sensitivity analysis are summarized
in Figure 4. Parameters n and ki1 have higher sensitivity for
non-dipper subjects than for dipper subjects, parameters k1,
ki2, ki3, and k2 have similar sensitivity for dipper and non-
dipper subjects, and parameter ki4 has higher sensitivity for
dipper subjects than for non-dipper subjects. Parameters ki1 and
ki4 have different sensitivity and they are related to physical
activity, which indicates a different response to physical activity
for non-dipper subjects. Additionally, the higher sensitivity of
parameter n can be due to higher glycemia (glc) values for
non-dipper subjects.

Identifiability Analysis
The results obtained for the identifiability analysis are
summarized in Figure 5. The FIM matrix is not singular;
therefore, it was possible to calculate its inverse and obtain an
approximation of the correlation matrix for parameters of dipper
subjects (Figure 5A) and non-dipper subjects (Figure 5B).
Both types of subjects showed a high correlation between
k1 and ki2, but only dippers subjects had a correlation value
>0.95. The correlation between the rest of the parameters
was <0.95. Therefore, the confidence intervals of the
estimated parameters indicate that the model is capable of
representing the data of dipper and non-dipper subjects with
essential hypertension.

FIGURE 4 | Local sensitivity summaries (δ) calculated for each parameter with respect to each variable designated with different colors: SVR (blue), SBP (orange), HR

(yellow), and DBP (purple) of dipper (A) and non-dipper (B) subjects.
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FIGURE 5 | Correlation matrices of parameters adjusted to data of dipper subjects (A) and to data of non-dipper subjects (B).

DISCUSSION

In this work, a model capable of capturing the blood pressure
profile of dipper and non-dipper subjects is proposed. The
results obtained show different values between the two groups
for the parameters ki1, ki3, ki4, and k2, and different sensitivities
for the parameters n, ki1, and ki4. In the case of parameters
k1 and ki2, they present equal sensitivity and the same values
for both dipper and non-dipper subjects. But, parameter n
has equal value and greater sensitivity in non-dipper patients.
This is related to the higher glycemic values and the narrower
range of norepinephrine values of non-dipper subjects (Pistrosch
et al., 2007; Därr et al., 2016), and explains the more abrupt
drop in postprandial blood pressure in these subjects. Besides,
the greater sensitivity of the parameters related to physical
activity and glucose in the SVR equation in non-dipper subjects
(ki1 and n) indicates a greater influence of physical activity
and glucose on SVR; namely, as the glucose and physical
activity increase, the SVR decreases more in non-dipper than in
dipper subjects.

In the proposed model, predicted SVR fluctuations move
within a wider range in non-dipper patients, presenting marked
increases and decreases. This could be due to an altered function
of vasoconstriction control, since the decrease in sympathetic
control of vasoconstriction (sympathoinhibition) with high levels
of sympathetic activity has been related to post-execution
hypotension in patients with hypertension (Halliwill, 2001).
Considering these precedents, the greater sensitivity of the
parameter ki1 of non-dipper patients (which indicates greater
sensitivity to physical activity) is not entirely surprising and
indicates that, in non-dipper patients, there is an imbalance
in the autonomic nervous system, i.e., an increase in the
sympathetic over the parasympathetic tone in non-dipper
subjects. This coincides with what was reported by Hojo et al. and
Nakano et al., which suggested a decrease in the sympathovagal
balance, with an acceleration of sympathetic function and a
deceleration of parasympathetic function in non-dipper subjects

with essential arterial hypertension (Hojo et al., 1997; Nakano
et al., 2001).

On the other hand, when comparing SVR dynamics to HR
dynamics, it can be noted that the SVR’s behavior has an inverse
tendency to that of HR, mainly in non-dipper patients, i.e., when
HR increases, SVR decreases. This is related to the control of
blood pressure through the baroreflex mechanism. In the model,
the parameter ki3, which relates HR to BP in Equations (2)
and (4), has equal sensitivity in both types of subjects but a
greater value in the case of dipper subjects. This could indicate
a greater influence of SVR than HR on the regulation of BP
in non-dipper subjects. In addition, the value of k2 is lower in
non-dipper subjects, which coincides with a greater sympathetic
basal stimulation of heart, leading to higher HR values in non-
dippers. Besides, the lower sensitivity of the ki4 parameter in non-
dipper subjects indicates a lower influence of physical activity
on heart rate in non-dippers. This coincides with the findings of
Robinson et al. (1966), who studied the effect of the autonomic
nervous system on HR and observed minor changes in HR when
a parasympathetic block was performed at low levels of physical
activity. The foregoing reinforces the idea of deregulation (at
various levels of action) of the autonomic nervous system in
non-dipper subjects, which has been reported previously (Grassi
et al., 2010). In general, the greatest differences in the sensitivity
of the parameters between both types of subjects are related to
the influence of physical activity on the SVR and HR variables.
Concerning the effect of physical activity on the variables studied,
it has been reported that there is a decrease in norepinephrine
levels and a reduction in sympathetic inhibition at the level of
skeletal muscle after exercise training (Rengo et al., 2014; Besnier
et al., 2017). In addition, Ling et al. (2015) reported a change in
blood pressure dipper status in response to chronic exercise in
African American non-dippers. Therefore, this background and
the results of this work suggest that sedentary behavior patterns
could be related to non-dipper subjects’ profiles. The coincidence
between our sensitivity analysis and parameter estimation results
with previous research findings supports the proposed model
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and allows us to integrate these physiological findings into a
mathematical model.

In summary, the mathematical model proposed here is
able to reproduce the behavior of the circadian rhythm of
blood pressure through ODEs using physical activity, glucose
and norepinephrine as inputs. The objective of this model
is not only to predict blood pressure, but to understand
its regulation through the variation of physiological variables
and thus understand the different profiles of blood pressure.
However, the model presents several limitations that must
be considered: (i) average data of different subjects were
used, (ii) data from different works with sample sizes and
different populations were used, (iii) many variables were not
considered to avoid identifiability issues, and (iv) the parameters
obtained do not necessarily imply causal associations and
may reflect the interaction of the variables used with other
unmeasured physiological variables. Despite these limitations,
the adjusted model allowed predicting blood pressure with a
mean of the normalized error of 0.15% for each data point.
Finally, the development of this model allowed integrating the
findings of several investigations that attempted to explain the
different profiles of blood pressure from changes in individual
physiological variables and the residual analysis using the non-
calculated variables showed a normal distribution, which further
supports the model assumptions.
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NOMENCLATURE

Fobjective Objective function

Srelij(tn) Relative local sensitivity of xi variable to variations of parameter j at time tn
tn Time of the experimental data number n
kjh Correlation between j parameter and h parameter

pj Parameter j
xi Variable i
yexp i(tn) Experimental value of the xi variable at time tn
ymodeli(tn) Value predicted by the model for xi variable at time tn
σ 2
jj Variance of parameter j

A Physical Activity (counts/min)
CI Confidence Interval
CVP Central Venous Pressure
DBP Diastolic Blood Pressure (mmHg)
δj Sensitive summary
FIM Fisher information matrix
HR Heart Rate (bpm)
NE Norepinephrine (pg/ml)
Q Covariance matrix
SBP Systolic Blood Pressure (mmHg)
SV Stroke Volume (L)
SVR Systemic Vascular Resistance (dyn ∗ s/cm5)
glc Glycemia (mmol/L)
n Hill coefficient
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