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Abstract

A typical goal in cognitive psychology is to select the model that provides the best explanation of the observed behavioral
data. The Bayes factor provides a principled approach for making these selections, though the integral required to calculate
the marginal likelihood for each model is intractable for most cognitive models. In these cases, Monte Carlo techniques must
be used to approximate the marginal likelihood, such as thermodynamic integration (TI; Friel & Pettitt, Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 70(3), 589—607 2008; Lartillot & Philippe, Systematic Biology, 55(2),
195-207 2006), which relies on sampling from the posterior at different powers (called power posteriors). TI can become
computationally expensive when using population Markov chain Monte Carlo (MCMC) approaches such as differential
evolution MCMC (DE-MCMC; Turner et al., Psychological Methods, 18(3), 368 2013) that require several interacting chains
per power posterior. Here, we propose a method called thermodynamic integration via differential evolution (TIDE), which
aims to reduce the computational burden associated with TI by using a single chain per power posterior (R code available
at https://osf.io/ntmgw/). We show that when applied to non-hierarchical models, TIDE produces an approximation of the
marginal likelihood that closely matches TI. When extended to hierarchical models, we find that certain assumptions about
the dependence between the individual- and group-level parameters samples (i.e., dependent/independent) have sizable
effects on the TI approximated marginal likelihood. We propose two possible extensions of TIDE to hierarchical models,
which closely match the marginal likelihoods obtained through TI with dependent/independent sampling in many, but not all,
situations. Based on these findings, we believe that TIDE provides a promising method for estimating marginal likelihoods,
though future research should focus on a detailed comparison between the methods of estimating marginal likelihoods for
cognitive models.
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When creating and testing psychological models, the goal
is often to select the model among a pool of models that
provides the best explanation of the observed data (Roberts
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& Pashler, 2000). Recent advancements in computing
technology have led to an increasing number of formalized
models (e.g., Ratcliff, 1978; Brown & Heathcote, 2008),
which can produce precise quantitative predictions. The
advantage of the precise, quantitative predictions of
formalized models also comes with an additional challenge:
How do we quantitatively choose the model that provides
the best explanation of the psychological process? Although
this choice may seem like an easy one, where the model that
provides the best fit to the observed data should be selected,
models that have a greater flexibility will often “over-fit” to
the noise within the sample, leading to poor generalization
(Myung & Pitt, 1997; Myung, 2000; Roberts & Pashler,
2000). Making this choice between models is a process
known as model selection (Myung & Pitt, 1997). Traditional
model selection methods such as the Akaike information
criterion (AIC; Akaike, 1974) or the Bayesian information
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criterion (BIC; Schwarz, 1978) combine a goodness-of-fit
statistic with a penalty term for model flexibility based on
the number of parameters in the model. Although these
methods are computationally simple, they can be inadequate
in situations where, for example, parameters affect model
flexibility differently (Myung & Pitt, 1997). In this article,
we will use the Bayesian approach to model selection, an
approach that balances goodness-of-fit and model flexibility
in a cohesive framework (Myung & Pitt, 1997; Shiffrin
et al., 2008).

The Bayesian approach to model selection is most
easily introduced by first discussing the more familiar
Bayesian approach to parameter estimation. The goal of
Bayesian parameter estimation is to find the joint posterior
distribution of the parameters, 8, p(0|D, M), where M is
the model, and D is the data vector. The joint posterior
distribution is given by Bayes’ rule:

p(D|0, M)p (8| M)
p0|D, M) »(DIM) ; ey
where p(D|#, M) is the likelihood function, p(@|M) is
the prior probability of the parameters, and p(D|M) is the
marginal likelihood found by marginalizing over all possible
parameter values.

While Bayesian parameter estimation is primarily concerned
with estimating the posterior distribution, p(@|D, M), the
quantity of interest in Bayesian model selection is the marginal
likelihood:

p(DIM) = fP(DIO)p(ﬁ’IM)dO- @

The marginal likelihood can be used to perform Bayesian
model selection by obtaining the posterior odds ratio:

pMiID) _ p(DIMy) p(M) 3)
p(M2|D)  p(DIMa) ~ p(Ma)’
where the term ﬁ Eglﬁ;; is the Bayes factor and % is

the prior model odds. Bayesian model selection is often
performed in the absence of the prior model odds. In this
case, only the Bayes factor must be computed, a measure of
evidence provided by the data in favor of one model over the
other, which accounts for model flexibility by integrating
over all possible parameter values (Myung & Pitt, 1997).

For very simple models with only a few parameters,
sometimes the marginal likelihood integral can be analyti-
cally solved or estimated via standard numerical integration
techniques. In many cases, where the model has more than a
few parameters and the integral is intractable, we must resort
to Monte Carlo techniques. The Monte Carlo approach
relies on the relationship between certain forms of integrals
and their corresponding representations as expected values,
which can be approximated via sampling techniques (Evans
& Brown, 2018).

One of the most straightforward Monte Carlo estimators
of the marginal likelihood is the arithmetic mean estimator
(Kass & Raftery, 1995; Evans & Brown, 2018), in
which the average likelihood under samples from the
prior is used as an approximation to the marginal
likelihood. Although the arithmetic mean estimator is
both conceptually simple and easy to implement, a large
number of samples (e.g., 10,000,000+) is often required
to obtain an accurate approximation of the marginal
likelihood in a complex cognitive models (e.g., the linear
ballistic accumulator; LBA; Brown & Heathcote, 2008)
with around six parameters, and the number of samples
required continues to increase with dimensionality (Evans
& Brown, 2018). Thus, the arithmetic mean estimator is
impractical for many complex cognitive models on standard
computing hardware. Instead, graphical processing units
(GPUs) capable of drawing a large number of samples in
parallel can be used to obtain accurate estimates (Evans &
Brown, 2018). Alternatively, there are a host of methods
that can be used to approximate the Bayes factor or
marginal likelihood using standard computing hardware
such as bridge sampling (Gronau et al., 2017), the Savage—
Dickey method (Wagenmakers et al., 2010), Chib’s method
(Chib, 1995), the product method (Lodewyckx et al., 2011),
the harmonic mean estimator (Gelfand & Dey, 1994), an
adjusted arithmetic mean estimator (Pajor, 2017), or a
generalization of the harmonic mean and inflated density
ratio estimators (Wang et al., 2018). Note, the focus of
this article will not be on comparing methods for marginal
likelihood estimation. For those interested in a comparison
of methods, we refer the reader to reviews by Friel and Wyse
(2012) and Liu et al. (2016).

The present article will focus on improving an existing
method known as thermodynamic integration (TI; Lartillot
& Philippe, 2006; Friel & Pettitt, 2008). In TI, the
posterior distribution is raised to powers between O and 1.
Samples are drawn from each of these power posteriors
and are then used to calculate the marginal likelihood.
TI can be computationally expensive because sampling
must be done over many power posteriors. This is
especially true when using population Markov chain Monte
Carlo (MCMC) techniques, such as differential evolution
MCMC (DE-MCMC; ter Braak, 2006; Turner et al., 2013),
to sample from the power posteriors. Specifically, DE-
MCMC uses the differential evolution algorithm to generate
proposals for the MCMC sampling process, where the
newly proposed parameter values are informed by the
difference in parameter values from two other random
samples. This interaction between samples is obtained
through simultaneously sampling from the posterior with
a set of chains—the number of chains usually being 2-
3 times the number of individual-level parameters—with
the chains mutually informing the new proposals of one
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another. The DE-MCMC approach has become popular
due to its ability to efficiently sample from models with
correlated parameters (see Turner et al., 2013a, b, 2015;
Evans & Brown, 2017; Evans et al., 2017b, 2018 for some
applications), though it can be computationally burdensome
when used in the context of TI as several chains are
required for each power posterior, especially as the number
of individual-level parameters grows.

Here, we present a variation of TI utilizing DE-MCMC
in which only a single chain per power posterior is
needed. Our method, which we call TIDE, implements
TI within a population MCMC framework, an approach
first introduced by Calderhead and Girolami (2009). We
found that TIDE provided an approximation of the marginal
likelihood that closely matched TI for models with a
single subject. However, when extending the models
hierarchically, we found that certain assumptions about
the dependence between the individual- and group-level
parameter samples resulted in large differences in the
TI approximated marginal likelihood, where the standard
dependent sampling results in higher marginal likelihoods
than the recently implemented (e.g., Heathcote et al., 2018
implemented within their DMC package) independent
sampling. We extended TIDE to these two different
situations, with dependent sampling only requiring a natural
extension of TIDE, and independent sampling adding the
use of past iterations in a manner similar to “Z updating”
from an extension of DE-MCMC, DE-MCz (ter Braak &
Vrugt, 2008). We refer to the latter, independent sampling
extension as TIDE?z, and find that both TIDE and TIDEz can
closely match to the marginal likelihood obtained through
TI in some situations, but that this does not occur in
all situations. However, when making inferences in our
empirical data example, we find that both methods and
sampling assumptions result in the same general inferences.

The remainder of this article will take the following
format. First, we will discuss the TI method, and why TI can
become computationally burdensome in some situations.
Second, we will explain how integrating TI and DE-MCMC
to form our new method, TIDE, can lead to a reduction in the
computational burden associated with TI. Third, we present
extensions of TIDE to hierarchical models, and show that
they closely agree with the marginal likelihoods obtained by
TI in some situations, using both simulated and empirical
data.

Thermodynamic integration
Thermodynamic integration (TI) (Friel & Pettitt, 2008;
Lartillot & Philippe, 2006) is a method for estimating the

marginal likelihood of a model. TI defines a set of posterior
distributions. The likelihood of each posterior is raised to
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a power, t; = {0,..., 1} (called the temperature). These
new posteriors are referred to as power posteriors and are
defined as:
t
p@ID. 1)) = 2L P @)
[ p(D16)"i p(6) db

where j = {l,...,k} (called the temperature rung)
indexes each of the k temperatures, dropping the model
notation, M, for brevity. The power posterior with
a temperature of O is the prior distribution, and the
power posterior with a temperature of 1 is the posterior
distribution. After obtaining samples from each power
posterior, 8; ; ~ p(0|D,t;), the average log-likelihoods,
%Z?:l In p(D|0; ;), are computed. These form k points
along a one-dimensional curve with respect to ¢, and the area
under this curve is an estimate of the marginal likelihood.
Since it is a one-dimensional curve, its area is easily
estimated with standard numerical integration techniques.
Friel and Pettitt (2008) suggest the trapezoidal rule:

k

ti—ti_q
D)~y LI
p(D) 2

1 & 1 &
[; > InpDi: )+~ Zlnp(Dwi,‘,'_l)} (5

i=1 i=1

TI relies on the discretization of temperatures, referred
to as the tremperature schedule. A temperature schedule in
which ¢; is set to the (j — 1)th quantile of a Beta(ax, 1)
distribution, where « = .3 has been shown to work well
(Xie et al., 2010; Friel & Pettitt, 2008):

== ®)
T k-1
where £ is the total number of temperatures, j = {1, ..., k}.

More about TT and its implementation can be found in Annis
et al. (2018), and the exact mathematical details of TI can
be found in the Appendix.

Notice that TI suffers from two major sources of error, the
discretization of temperatures, and MCMC error. Dis-
cretization error can be reduced by increasing the number
of temperature rungs, and MCMC error can be reduced
by increasing the number MCMC samples per tempera-
ture rung. Although error reduction in TI is straightforward,
increasing the number of MCMC samples and temperature
rungs leads to increased computational workload.

Thus, a major drawback of the method is the computa-
tional burden that TI can impose in order to obtain accurate
marginal likelihood estimates. For example, in prior work
(Annis et al., 2018), we found the number of temperatures
needed to obtain a stable estimate of the marginal likeli-
hood to be around 20-35 for hierarchical LBA models. This
computational burden increases when a population MCMC
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algorithm is used to obtain samples, where several inter-
acting chains are necessary for each power posterior. The
population MCMC approach we focus on is differential
evolution MCMC (DE-MCMC; ter Braak, 2006; Turner,
Sederberg, et al., 2013), which has become popular in cogni-
tive psychology due to its ability to efficiently sample from
posteriors with correlated parameters. It requires a number
of chains equal to 2-3 times the number of parameters in
the largest updating block, which within hierarchical mod-
els is commonly the number of parameters per individual. In
the next section, we propose a method based on DE-MCMC
that aims to reduce the number of chains needed for each
power posterior to one.

Thermodynamic integration via differential
evolution (TIDE)

The algorithm we present combines TI and DE-MCMC so
that only a single chain needs to be run for each power poste-
rior, which provides the benefits of DE-MCMC while avoid-
ing the costly overhead of having to run several chains per
power posterior. The algorithm relies on the same approach
as Calderhead and Girolami (2009) who originally proposed
implementing TI within a population MCMC framework.
Here, we propose an extension we refer to as thermody-
namic integration via differential evolution (TIDE).

DE-MCMC uses the genetic algorithm, differential evo-
lution, to generate proposals. Generally, genetic algorithms
are a class of algorithms that involve some amount of
crossover between different existing elements to create new
elements, as well as some possible random mutations that
change the new elements. DE-MCMC uses a set of inter-
acting chains that are all simultaneously sampling from the
posterior. To create a new proposal on iteration i for chain
¢, 0; , the previous value on that chain, 6;_; ., is added to
the difference between two randomly chosen other chains, /
and m (i.e., a crossover):

Oic=0i_1c+v@Oi_11—0;_1m) +e¢, @)

where y controls the size of “jump” for the new proposal,
and ¢ is a small amount of random noise (i.e., a mutation).
The proposal is then accepted or rejected according to the
Metropolis Hastings step, and the process continues on to
create a proposal for the next chain. DE-MCMC forms a
population of interacting chains, @ = (01, .., 0¢), where
C is the total number of chains, with the following product
distribution:

p(O|D) =

C
1
p(DI6:) p(@.) ®)
[, [ p(DI6)p(®B.) dB 1:[1

0;. ~ p(0|D). This is the typical case in which samples
are drawn from the posterior distribution. It is also possible
to sample from a power posterior at temperature, ;. In this
case, the population of chains forms the following product
distribution:

1 C
[1p@16:)" p®e). 9

p(@®|D,t;) =
YL [ DI p®de

where 8; . ~ p(8|D, t;). This is what we refer to as standard
TI with DE-MCMC or just standard TI. A drawback of this
approach is that it requires C chains for each power
posterior. To more elegantly combine DE-MCMC with
TI, we associate each chain, ¢, with a temperature, j, meaning
that the index ¢ can be dropped. TIDE then forms a
population of interacting chains, ® = (01, .., 0;), where
each chain is associated with temperature, j:

1
k_ [ p(DI8,) p(8;)db

k
[1r16))7 p6)). (10)

j=1

p(@I|D. 1) =

where 0; ; ~ p(0|D, t;). Thus, TIDE only requires a single
chain per power posterior by allowing chains to interact
between power posteriors instead of only within power
posteriors. After sampling, the average log-likelihood under
each chain is computed, % ", In p(D|6; ), and the
trapezoidal rule is used to estimate the marginal likelihood.
It should also be noted that TIDE is equally applicable
to any other method that approximates the marginal
likelihood using power posteriors, such as TI “corrected”,
or steppingstone sampling (SS; see Annis et al., 2018 for
a tutorial on both of these methods). Next, we compare
the performance of TIDE to standard TI for the data of an
individual simulated subject, and extend it to hierarchical
models for groups of subjects, and compare its performance
to standard TI for a group of simulated subjects.

Algorithm 1 displays pseudo-code for how to implement
TIDE. Once starting points for the parameter values
(i.e., #1) are obtained, an iterative process is performed
to obtain the posterior samples (for i <« 2 to n do),
which is performed for each temperature (for j < 1 to k
do). Each iteration for each temperature requires selecting
two other random chains (i.e., two other temperatures),
creating the DE proposal using those selected chains, and
then deciding whether to accept the proposal based upon
the Metropolis Hastings step. After the iterative process is
complete, the marginal likelihood estimate is obtained using
the trapezoidal rule.
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Algorithm 1 Non-hierarchical TIDE

:t=1[0,0,...,%—1, 1],y € Rog,data D,
iterations 7, rungs k, initial

output: Marginal likelihood estimate w

fori < 2ton do

for j < 1tok do
Sample 6; and ,, without replacement from

{013\ {0:-1;}
0 <0, 1;+yO —0,) +e¢

input

Q@ < min (1, p(DIG*)iJ:p(ﬂ*) )
p(DI0;—1,;)7 p@i-1.;)
ifa > U(0, 1) then
| 0,"]‘ < 0*
else
| 0,~,j < 0i_1,j
end
end
end

w <—
Z];:2 e [% i Inp(DI6; ) + 3 i In
p(DI6;;1)]

TIDE for hierarchical models

Hierarchical models have become an increasingly popular
method within cognitive psychology for making inferences
on groups of participants (Shiffrin et al., 2008). Hierarchical
models involve estimating parameters for individual par-
ticipants (i.e., the individual-level, 0), and constraining the
estimates of each parameter for all individuals to follow a
group-level distribution of the parameters (i.e., the group-
level, ¢). Hierarchical models provide key benefits over
non-hierarchical estimation, allowing information from dif-
ferent individuals to constrain the estimation of one another
(commonly known as “shrinkage”), and providing a method
of performing group-level inference on the entire dataset
from experiments. Formally, a general hierarchical model
can be defined as:

D; ~ p(Dsl;)
05 ~ P(0>|¢)

¢ ~ p(9), Y

where s indexes the participant. For hierarchical models of
this form, the power posterior is given by:

D|0,$)ip@,
p©0,6|D, 1)) = p(D18.9)p®, ¢)

= . 12
JT,(DI6. ) p(®. #)db s (12
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TIDE now forms two populations of interacting chains,
O = (01,.,0r) and ® = (¢, .., p;), with the following
product distribution:

1

p(@®,®|D,t) =
[T_y [ [ p(DI8,) p(6;. b,)db dop

k
[1r016))5p®;.9)) (13)

j=1

where (0, j, ¢; ;) ~ p(0,¢|D, ;). After drawing samples
from the joint distribution, the individual-level samples are
used to compute the average likelihoods in the same way
as before, %Z?:l In p(D|6; ;), which are in turn are
used in the trapezoidal rule to obtain an estimate of the
marginal likelihood. Although samples are drawn from the
joint distribution, p(#,@|D,t;), only the individual-level
samples, ; ;, are needed in the computation of marginal
likelihood estimate. Thus, the group-level priors only enter
indirectly into the estimation of the marginal likelihood
by constraining the 6; ; samples. A proof is given in the
Appendix.

Algorithm 2 displays pseudo-code for how to implement
hierarchical TIDE. The algorithm is very similar to the
non-hierarchical TIDE in Algorithm 1, though the iterative
process now involves two stages: updating the group-level
parameters, and updating the individual-level parameters.
The first stage, updating the group-level parameters, is
similar to updating the parameters in non-hierarchical
TIDE, and requires selecting two other random chains (i.e.,
two other temperatures), creating the DE proposal using
those selected chains, and then deciding whether to accept
the proposal based upon the Metropolis Hastings step. Note
that the Metropolis Hastings step shown here does not
involve the probability of the data under the individual-
level parameters (i.e., p(D|@)), as the proposal does not
involve new individual-level parameters, and therefore,
the terms involving identical individual-level parameters
cancel out in the Metropolis Hastings step. The second
stage, updating the individual-level parameters, involves
a loop over participants (for s <« 1 to P do), as
the parameters for each individual are updated separately
to reduce dimensionality. After this, the process involves
the same steps as stage one, though for the individual-
level parameters for this participant. Also note that the
Metropolis Hastings step shown here does not involve the
prior probability of the group-level parameters (i.e., p(¢)),
for the same canceling out reasons as above.
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Algorithm 2 Hierarchical TIDE
:t=1[0,0,...,%—1, 1],y € Ry, data
D =[Dy, ..., Dp], iterations n, rungs k,
number of participants P, initial 81 and ¢,
output: Marginal likelihood estimate w
fori < 2tondo

for j < 1tok do
Sample ¢; and ¢,, without replacement from

@i 13\ {di1j}
¢ i1ty —9,) te
o < (1’ POi-1.1r.1169P(4) )
PO@i-1,1:p,j16i—1,;)7 p(bi_1 ;)
ifa > U(0, 1) then
| ¢i,j <~ ¢
else
| @ij < bi-1;
end

fors <— 1to P do
Sample 6; and 6, without replacement

from {0; 1,5} \ {0i-1,;}
0" <015, +v@ —0,) +¢

input

v < min <1’ p<D|o*>;(p<0*\¢,~,,-> )
pDI0i—15.)7 pOi-1s5jl; ;)
ifo > U(0, 1) then
| ai,x,j < 0*
else
| Ois,j < 0i 15,
end
end
end

end

W Zl;=2 e [% S Y Inp(DI6; )
L XL I p(DIBis -1 ]

Thermodynamic integration via differential
evolution with Z updating (TIDEz)

Although hierarchical models are conceptually simple
to implement, practical difficulties have been reported
when extending cognitive models to these hierarchical
structures. For example, when hierarchically estimating
the diffusion model (Ratcliff, 1978), some researchers
have recommended fixing specific parameters to only be
estimated at the group level (i.e., all individuals share the
same parameter value), due to these parameters having only
small influences on the model likelihood, which results
in difficulties accurately estimating the full hierarchical
structure (e.g., Wiecki et al., 2013; the group-level fixing
of inter-trial variability parameter is implemented in their

HDDM package). A related problem has been referred to
as the “zero-variance trap”, where all participants values
for a certain parameter—a parameter that only has a small
effect on the likelihood, and therefore, can be highly
influenced by the group-level constraints—converge to a
single value, resulting in the group-level variability between
participants approaching zero, and the values becoming
“stuck”. However, when using the DE-MCMC framework
and a specific system of “blocking” outlined below, a simple
solution can be used to remedy this problem by “breaking
the dependency” between the individual and group-level
parameters (Turner et al., 2013a, b; Tillman et al., 2017;
Osth et al., 2018).

When using the DE-MCMC algorithm, the parameters
being updated at any one point are usually split into different
sampling blocks, as large numbers of parameters (i.e., high
dimensionality) can lead to inefficient sampling. These
blocks involve only specific parameters having proposals
generated, and the posterior likelihood being conditioned on
the other parameters. Commonly, a different block is used
for the parameters of each participant, and for the group-
level parameters. This means that the parameters of each
individual participant are updated according to:

pOisld;. D) o< p(D10;)p(0i|e;). 14

where s indexes the participant and i indexes the current
sample. The parameters of the group are updated according
to:

p(910;. D) x pBil¢;)p($;). 5)

Importantly, this system of blocking allows for a sim-
ple method of “breaking the dependence” between the
individual- and group-level parameters, which has been
found to remedy some of the practical issues that can occur
in hierarchical models discussed above (Turner et al., 2013a,
b; Tillman et al., 2017; Osth et al., 2018). Specifically, the
method involves randomly pairing the values of the 6 and ¢
parameters of different chains for the purposes of updating:
for the updating of the @ parameters for a specific chain, the
¢ parameters from another random chain are selected to be
conditioned on, and vise-versal. Equation 14 can then be
changed to:

p@isl¢;. D) o< p(DI0:)p0ilg)). (16)

where i indexes the current sample (i.e., the current chain),
and / indexes another random chain. Likewise, Eq. 15 can
then be changed to:

p(9;101, D) o< p(0:119;) p(¢;). a7

1 As far as we are aware, this solution was first suggested by Brandon
M. Turner.
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Essentially, this random pairing “breaks the dependence”
between the individual- and group-level parameters, result-
ing in the joint posterior having independent samples of
individual- and group-level parameters, as opposed to the
standard sampling method, which contains a full joint pos-
terior. It should also be noted that the random pairing
is performed as sampling without replacement: that this,
each individual-level chain is randomly paired with one
other group-level chain. However, this simple solution is
no longer possible with TIDE, as each chain estimates the
power posterior for a different temperature, and therefore, a
different target distribution.

Although we cannot sample across chains, we can
sample across tfime. This solution is similar to an updating
procedure called Z-updating in DE-MCz (ter Braak &
Vrugt, 2008) and so we refer to this algorithm as TIDEz.
As discussed previously, the @ and ¢ parameters are
updated separately, in different blocks. TIDEz randomly
pairs the 6 and ¢ samples using previous posterior samples.
Equation 14 can then be changed to:

p@isl$,, D) < p(D|6;)p#Bilg,), (18)

where i indexes the current sample, and z indexes a random
previous posterior sample. Likewise, Eq. 15 can then be
changed to:

p(9;10:. D) o p(0:1¢;) p(9;). 19)

Note that we only use previous posterior samples after a
certain number of initial iterations (i.e., not immediately,
when the parameters may be a long way from the posterior),
and we only reach a certain maximum number of iterations
into the past. This introduces two extra “tuning” parameters
that need to be set for the TIDEz algorithm: When the
Z update starts (“zStart”), and the maximum number of
iterations that can be reached into from the past (“zLag”).
In our applications here, we set zStart to 2000, and zLag
to 250.

Algorithm 3 displays pseudo-code for how to implement
hierarchical TIDEz. The algorithm is almost identical to the
hierarchical TIDE in Algorithm 2, with two key exceptions.
Firstly, the iterative process shown here starts at zStart,
as iterations before this work in an identical manner to
hierarchical TIDE. Secondly, in the line before the creation
of the DE proposal, the previous iteration of the individual-
level/group-level parameter to pair with the current group-
level/individual-level update is chosen, based on the zLag
value.

@ Springer

Algorithm 3 Hierarchical TIDEz
:t=1[0,0,...,%—1, 1],y € Ry, data
D =[Dy, ..., Dp], iterations n, rungs k,
number of participants P, Z-update iteration
zStart, initial 01:(:Smrt—l)7 and ¢1:(zStart71)
output: Marginal likelihood estimate w
fori < zStart ton do

for j < 1tok do
Sample ¢; and ¢, without replacement from

{i— 13\ {1}
Sample 6 1.p ; from {0 _;1.ag):(i—1),1:P,}}
¢ <—¢i 1ty —¢,) +e

input

o < min (1’ pO=r 161 p(@") )
POz 1:p.jldi_1 ;)7 p@i_y ;)

ifa > U(0, 1) then

| ¢i,j <~ ¢

else

| ¢i,j <_¢i71,j

end

fors < 1to P do
Sample 6; and 6,, without replacement

from {6; 15} \ {0;-1,,)}
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Examples

Individual subjects

Here, we use TIDE to approximate the marginal likelihood
for a cognitive model. Specifically, we apply TIDE to the lin-
ear ballistic accumulator (LBA; Brown & Heathcote 2008),
a commonly used model of decision-making (Forstmann et
al.,2008, 2011; Brown et al., 2008; Donkin et al., 2009; Ho
et al.,2014; Rae et al., 2014; Evans et al. 2017b, 2018). We
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use the LBA as a running example because it has an analyt-
ically tractable likelihood function, making computation of
TIDE quick enough to allow for estimation to be performed
within a short time-frame, and variances across independent
estimates to be obtained. In addition, the LBA has been the
applied model used in previous manuscripts on estimating
marginal likelihoods (Evans & Brown, 2018; Annis et al.,
2018), allowing a clear comparison to previous research. We
begin by briefly explaining the LBA, before assessing TIDE
in the case of data from an individual subject.

The LBA is a model of decision-making that falls
within a class of models known as evidence accumulation
models (Stone, 1960; Ratcliff, 1978; Ratcliff & Rouder,
1998; Brown & Heathcote, 2008). Evidence accumulation
models propose that decision-making is the result of
the accumulation of evidence for the different choice
alternatives until the evidence for one alternative reaches
a threshold and a decision is triggered. Specifically, the
LBA proposes that this accumulation process involves
independent racing accumulators for each alternative, with
the rate of evidence accumulation being constant within
a decision, but differing between decisions according to
a normal distribution, truncated at 0. Evidence is also
proposed to start at a random point for each accumulator
that differs between decisions, with the starting evidence
being uniformly distributed between 0 and some point less
than the decision threshold. Lastly, the model contains
some amount of time dedicated to processes outside of the
decision, such as perception and motor responding. This
results in the model having five parameters per accumulator:
the mean rate of evidence accumulation over decisions
(v), the standard deviation of evidence accumulation over
decisions (s), the threshold amount of evidence required
to make a decision (b), the upper bound of the uniform
distribution of starting evidence (A), and the time dedicated
to non-decision-related components (#0). However, in many
applications of the LBA all parameters except for the
mean and standard deviation in drift rate are constrained
to have the same value for both accumulators, and the
standard deviation for one accumulator is fixed to 1 to
satisfy a scaling property within the model (Donkin et al.,
2009), meaning that the model is commonly implement with
six total parameters: the mean drift rate for the response
alternative that matches the stimulus (v.c), the mean drift
rate for the response alternative that does not match the
stimulus (v.e), the standard deviation in drift rate for the
response alternative that does not match the stimulus (s.e),
b, A, and 0.

Specifically, we used the same simulated dataset as
Evans and Brown (2018) and Annis et al. (2018). This
dataset had two “within-subjects conditions” simulated,
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Fig. 1 The estimated natural logarithm of the marginal likelihoods
(y-axis) for the “simple” model across different numbers of samples
(x-axis; note that this includes the samples discarded for burn-in)
and different numbers of temperatures used (different plots: known
as “rungs”). The dashed lines display the values obtained through
standard TI, which used a fixed number of samples, and the solid lines
display the values obtained through TIDE. Error bars are standard
deviations based on ten replications

with a generating process that had no parameters differing
between the conditions, which we call a “simple” dataset.
As with Evans and Brown (2018) and Annis et al. (2018),
we fit two models to each of these datasets: a “simple”
model that constrained all parameters to take the same
values over conditions, and a “complex” model that allowed
mean drift rate, threshold, and non-decision time to vary
over conditions. The specific model definition for data
generation and fitting can be found in the Appendix.

The resulting log-marginal likelihood estimates for TIDE
(solid lines) can be seen in Fig. 1 for the simple data set and
Fig. 2 for the complex data set. For TIDE, we discarded the
first 1,500 samples for each chain (i.e., each temperature) as
burn-in, meaning that the x-axis of Figs. 1 and 2 begin at the
end of burn-in. We compare these to the estimates obtained
by standard TI (dashed lines), which used 12 chains for
the simple model and chains 18 chains for the complex
model (i.e., twice the number of free parameters), with
2300 samples per chain and the first 300 samples per chain
discarded as burn-in. In terms of computational workload,
TI used 27,600 samples per temperature for the simple
model and 41,400 samples per temperature for the complex
model, whereas TIDE (at the maximum point of the x-
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Fig.2 The estimated natural logarithm of the marginal likelihoods (y-
axis) for the “complex” model across different numbers of samples
(x-axis; note that this includes the samples discarded for burn-in)
and different numbers of temperatures used (different plots: known
as “rungs”). The dashed lines display the values obtained through
standard TI, which used a fixed number of samples, and the solid lines
display the values obtained through TIDE

axis) used 5000 samples per temperature for each model,?
meaning that TIDE took 5.52 times (simple model) and 8.28
times (complex model) less samples than TI in this example
(see the Appendix [Equation C3] for a more detailed
theoretical comparison of computational workloads). Points
are means based on ten independent replications and
error bars are standard deviations. Each panel of the plot
corresponds to the marginal likelihood estimate obtained
with a given numbers of temperature rungs (10, 20, 35,
and 50). The x-axis provides the number of samples taken
from the power-posterior of each temperature, and the y-
axis is the estimated log-marginal likelihood. When using
35 rungs, TIDE produces log-marginal likelihoods that are
close to those obtained through standard TI and have low
variance estimates (SD < 1) after 3000 to 3500 samples.
When using 50 rungs, this is achieved in roughly 2000
iterations. In addition, when using a small number of rungs
(i.e., 10/20), TIDE more closely matches the marginal
likelihood obtained using a higher number of rungs than
standard TI. Thus, our results suggest that TIDE provides

2Running TIDE for 5000 samples on a single CPU core of a Mac OS
laptop with a 1.7 GHz Intel Core i7 processor and 8 GB 1600-MHz
DDR3 memory took approximately 4 min for ten temperature rungs,
and approximately 19 min for 50 temperature rungs.
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a promising method of performing TI when estimating
marginal likelihoods for models of individual subjects.

Hierarchical example

As with the individual subjects simulations, we defined both
a “simple” and “complex” model. In addition, we defined
two other models commonly of interest in applications of
evidence accumulation models: a “drift-rate only” model,
and a “threshold only” model. Lastly, in addition to defining
a “simple” dataset, we also defined a “drift-rate” dataset,
which had the same parameters varying across conditions
as in the data-generating process of the “drift-rate only”
model. The specific model definition for data generation
and fitting can be found in the Appendix. For each model
fit to each dataset, we used standard TI without random
pairing (i.e., dependent sampling between individual- and
group-level parameters), standard TI with random pairing
(i.e., independent sampling between individual- and group-
level parameters), TIDE (i.e., dependent sampling between
individual- and group-level parameters), and TIDEz (i.e.,
independent sampling between individual- and group-level
parameters).

The results of applying these methods can be seen in
Fig. 3 for the simple dataset, and Fig. 4 for the drift-
rate dataset. In each figure, the left panel displays the
methods that use dependent sampling of individual- and
group-level parameters, and the right panel displays the
methods that use independent sampling. For each method,
we used 35 temperature rungs. For TIDE and TIDEz, we
discarded the first 3500 samples for each chain (i.e., each
temperature) as burn-in, meaning the x-axis of Figs. 3 and 4
begin at the end of burn-in. We also ran these methods
ten independent times, with points representing means and
error bars representing standard deviations. For TI, we
used 12 chains for the simple model, 14 chains for the
“drift-rate only model, 14 chains for the “threshold only”
model, and 18 chains for the complex model (i.e., twice
the number of free parameters), with 1500 samples per
chain and the first 800 samples per chain discarded as burn-
in. In terms of computational workload, TI used 18,000
samples per temperature for the simple model, 21,000
samples per temperature for the drift-rate and threshold
only models, and 27,000 samples per temperature for the
complex model, whereas TIDE and TIDEz (at the maximum
point of the x-axis) used 5000 samples per temperature
for each model,3 meaning that TIDE and TIDEz took 3.6

3Running TIDE/TIDEz for 5000 samples on a single CPU core of a
Mac OS laptop with a 1.7-GHz Intel Core i7 processor and 8 GB 1600-
MHz DDR3 memory took approximately 77 min for 35 temperature
rungs.
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Fig. 3 The estimated natural logarithm of the marginal likelihoods (y-axis) for each of the different models (different lines) across different
numbers of samples (x-axis; note that this includes the samples discarded for burn-in) on the “simple” dataset. The left panel displays TIDE,
which uses dependent sampling between the individual-level and group-level parameters, whereas the right panel displays TIDEz, which uses
independent sampling between the individual-level and group-level parameters. The dashed lines display the values obtained through standard
TI (fixed number of samples), which differ between panels based on sampling dependency, the solid lines with circular points display the values
obtained through TIDE/TIDEz. Note that in the right panel the TI estimate for the drift rate model is partially blocked out by the threshold model,

as these estimates are very close to one another

times (simple model), 4.2 times (drift-rate and threshold
only models), and 5.4 times (complex model) less samples
than TT in this example (see the Appendix [Equation C3]
for a more detailed theoretical comparison of computational
workloads).

First, and perhaps most interestingly, the use of
dependent or independent sampling has a large effect on
the approximated log-marginal likelihood, with dependent
sampling resulting in much larger log-marginal likelihoods.
This suggests that the seemingly minor change to the
dependency of the sampling can have a potentially
large impact on the approximated log-marginal likelihood,
meaning that these sampling assumption should be carefully
considered, and not chosen arbitrarily. However, we believe
that the choice between these sampling assumptions is
complex, and there is currently no clear recommendation
that can be given that covers all potential situations.
Specifically, the independent sampling assumption is
equivalent to placing a zero probability prior on the
correlations between the group and subject level being

greater than zero, which in many situations is probably
false (i.e., subject-level parameters do correlate with group-
level parameters). However, cognitive models often use
simplifying assumptions that are potentially false if they
endow the model with certain practical advantages, and as
discussed previously, the independent-sampling assumption
can have several practical advantages for sampling. As
a practical recommendation, we suggest that researchers
attempt to use the model where correlations between group-
and subject-level parameters are explicitly modeled (i.e.,
dependent sampling). Alternatively, if sampling is poor,
then it is reasonable to switch to a model where these
correlations are no longer considered (i.e., independent
sampling). However, we believe that the potential impact
of these different sampling assumptions should be explored
in more detail in future research in order to find a more
conclusive recommendation.

Second, although all methods (when matched on the
dependency assumption) appear to fairly closely agree in
most situations, there appears to be some large differences
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Fig. 4 The estimated natural logarithm of the marginal likelihoods (y-axis) for each of the different models (different lines) across different
numbers of samples (x-axis; note that this includes the samples discarded for burn-in) on the “drift-rate” dataset. The left panel displays TIDE,
which uses dependent sampling between the individual-level and group-level parameters, whereas the right panel displays TIDEz, which uses
independent sampling between the individual-level and group-level parameters. The dashed lines display the values obtained through standard
TI (fixed number of samples), which differ between panels based on sampling dependency, the solid lines with circular points display the values

obtained through TIDE/TIDEz

in the approximated log-marginal likelihood for standard
TI and TIDE for each of the models in the simple data
(Fig. 3, left panel). Interestingly, the model orderings remain
the same, but the TIDE marginal likelihoods appear to
be some constant factor lower than those obtained from
standard TI (i.e., about 30 on the log scale). However, this
may not necessarily indicate an inaccuracy of TIDE, as
potential sampling problems were the original reason for the
switch from dependent sampling to independent sampling,
meaning that either (or both) method(s) may be inaccurate
with the dependency included. Overall though, TIDE and
TIDEz appear to show good agreement with TI in many
situations, despite TIDE/TIDEz having fewer samples per
temperature than TI, suggesting that TIDE/TIDEz may be
promising methods for approximating marginal likelihoods
with a reduced computational workload. However, we
believe that the discrepancies observed here motivate future
work with a large-scale comparison between TI, TIDE,
and some of the other marginal likelihood approximation
methods (e.g., bridge sampling; Gronau et al., 2017), using
both dependence and independence assumptions about
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the individual- and group-level parameters in order to
assess the agreement between methods that are intended to
approximate the same quantity.

Application to empirical data

Although TIDE and TIDEz appear to produce sensible
results in simulated environments where the generating
process is known, the additional noise and uncertainty of
empirical data can result in greater difficulties in selecting
between competing models (Evans & Brown, 2018). To
see whether empirical data would prove problematic for
TIDE/TIDEz, we applied the method to the data of Rae
et al. (2014), which have been used in the previous papers
of Evans and Brown (2018) and Annis et al. (2018) as a
benchmark. For brevity, we will only provide the essential
details of the Rae et al. (2014) study here, though interested
readers can see more in Rae et al. (2014), Evans and Brown
(2018), or Annis et al. (2018).

In the study of Rae et al. (2014), each participant
completed a perceptual decision-making task under two
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different sets of emphasis instructions: speed and accuracy.
The key finding of the study was that both drift rate and
threshold changed as a function of emphasis, as opposed
to previous assumptions that emphasis only influenced
threshold. Following Annis et al. (2018), we fit four models
to these data: one that allowed no parameters to vary over
emphasis, one that allowed only drift rate to vary, one
that allowed only threshold to vary, and one that allowed
both drift rate and threshold to vary. The exact model
definitions are identical to those of Annis et al. (2018). We
fit each model using 35 parallel chains (i.e., 35 temperature
rungs), with 5000 samples per chain discarded as burn-in,
and 3000 samples per chain used to calculated the mean
log-likelihood for each temperature.

The results of the fits can be seen in Fig. 5 (TIDE) and
Fig. 6 (TIDEz). The x-axis displays different models, and
the y-axis displays the estimated log-marginal likelihood,
with larger numbers suggesting a better model. We ran
ten independent fitting routines for each model, with the
column bars (standard TI) and circle (TIDE/TIDEz) on the
graph represented the mean estimated marginal likelihood
over these ten fits, and error bars being omitted as the
standard deviation in the estimate was smaller than the
circle marker used to display the means. These results
seem to indicate that both TIDE and TIDEz perform well
when applied to empirical data: both methods shows little
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Fig.5 The estimated natural logarithm of the marginal likelihoods (y-
axis) for each of the different models (x-axis) on the dataset of Rae
et al. (2014). Column bars display the standard TI approximation with
dependent sampling between individual- and group-level parameters,
and circles display the TIDE approximation. Error bars for the TIDE
approximation have not been included, as they were smaller than the
circles used to represent the approximation
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Fig. 6 The estimated natural logarithm of the marginal likelihoods
(y-axis) for each of the different models (x-axis) on the dataset of
Rae et al. (2014). Column bars display the standard TI approximation
with independent sampling between individual- and group-level
parameters, and circles display the TIDEz approximation. Error bars
for the TIDEz approximation have not been included, as they were
smaller than the circles used to represent the approximation

variability in the estimated log-marginal likelihood, and
both select the drift rate and threshold model as the best
model, with all models in the same ordering as standard TI.

Discussion

The aim of this article was to provide a simple, computa-
tionally efficient method of calculating Bayes factors for
complex psychological models with correlated parameters.
We proposed TIDE, an extension to TI that integrates the
DE-MCMC method through the logic of Calderhead and
Girolami’s (2009) TI through population MCMC. As dis-
cussed earlier, TI requires many MCMC runs over a set of
power posteriors to obtain the marginal likelihood, whereas
TIDE only requires a single MCMC run, which can reduce
the computational workload. We found that TIDE also
closely matches the TI approximation of the log-marginal
likelihood for when applied to the data of individual subjects
using the LBA (Brown & Heathcote, 2008). However, when
applied to hierarchical models, the methods match some-
what less closely, and in one situation standard T and TIDE
show large differences, though by what appears to be some
constant offset. We believe that TIDE provides a promising
and simple-to-implement method of estimating the marginal
likelihood of complex cognitive models, which will likely
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allow these approximations to be performed with minimal
computational resources, such as personal computers. Our
code for implementing TIDE in R (R Core Team, 2017)
can be found at https://osf.io/ntmgw/, though note that the
implementation of TIDE from a standard DE algorithm is
extremely easy, and only requires assigning a temperature
to each chain. We also include all simulated data sets used
within this manuscript with the code, as a benchmark for those
who wish to check their custom-written TIDE algorithms.

It is also important to note that DE-MCMC contains
some unique limitations based on the crossover step used
to generated proposals (ter Braak & Vrugt, 2008), which
may potentially be solved by TIDE. Specifically, as more
chains arrive at the high-density areas of the posterior
distribution over the course of sampling, the proposed jump
steps more commonly become smaller. When the likelihood
function of the model has many peaks and troughs, as is
often the case in models with correlated parameters, it can
be difficult, or impossible, for a proposal to be made that
would result in the remaining chain(s) moving into the
posterior region. This can result in a few chains getting
“stuck” in regions outside the posterior, meaning that the
sampled posterior distribution would be contaminated with
some samples that are not truly from the posterior. These
problems can be easily spotted through visual inspection of
the chains, or standard convergence statistics (e.g., Ié; see
Gelman & Rubin, (1992)), and can often be overcome with
techniques such as “migration” (attempting to exchange
parameter values between chains; see Turner et al. (2013))
or variable jump steps (ter Braak & Vrugt, 2008). However,
these solutions are not always effective (ter Braak &
Vrugt, 2008), and incorrect use of migration can result
in convergence to a local maxima, or the sampling of
an overly narrow posterior (i.e., not the true posterior
distribution). Interestingly, TIDE also provides a potential
solution to the “stuck” chain problem of DE-MCMC, as
the interaction between temperatures in TIDE produce a
natural variability in the size of jumps proposed with each
chain estimating a different distribution. This eliminates
the need for techniques like “migration” or variable jump
steps, meaning that every proposal is based on the same
algorithm, and therefore, implementation is more straight-
forward. Indeed, we did not use migration for TIDE or
TIDEz in any example within this article, and did not appear
to encounter any problems with sampling from the correct
posterior distributions. Therefore, TIDE may provide some
attractive properties beyond a reduction in computational
workload.

One broader issue that we have not discussed is whether
or not Bayes factors should be the method for selecting
between cognitive models. Many researchers have sug-
gested that the Bayes factor provides the optimal bal-
ance between goodness-of-fit and flexibility in model
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selection (Kass & Raftery, 1995; Myung & Pitt, 1997,
Evans et al., 2017a), and substantial recent research has
gone into developing computationally feasible methods
for calculating Bayes factors (Wagenmakers et al., 2010;
Gronau et al, 2017; Pajor, 2017; Evans & Brown,
2018; Wang et al., 2018). However, the Bayes factor has
also been criticized for the computational burden associated
with calculating the marginal likelihood, and more impor-
tantly for their sensitivity to the specification of the prior
distribution (see Vanpaemel, 2010, Lee & Vanpaemel, 2018
for discussions). The Bayes factor is also only one of
many possible methods for model selection, with alterna-
tives existing such as the deviance information criterion
(DIC; (Spiegelhalter et al., 2002)), the widely applicable
information criterion (WAIC; Vehtari et al., 2017, though
see Gronau and Wagenmakers (2018) for limitations of
leave-one-out cross validation, which WAIC approximates),
normalized maximum likelihood (Myung et al., 2006), and
proper scoring rules (Dawid & Musio, 2015), just to name a
few. However, the aim of our article was only to propose a
new method of estimating the marginal likelihood, and not
to debate which method(s) of model selection are superior
to others. Therefore, we leave debates on which methods
should be used over others to future research.

Lastly, it should be made clear that there were sev-
eral discrepancies, both minor and major, when marginal
likelihoods were approximated for hierarchical models.
Standard TT and TIDE did not show extremely close agree-
ment in the hierarchical cases—in contrast to the assess-
ment of individual subjects—and the use of dependent
vs. independent sampling of individual- and group-level
parameters resulted in large differences in the approx-
imated marginal likelihoods. Therefore, we believe that
future research should aim to perform a detailed com-
parison between different methods of estimating marginal
likelihoods for cognitive models (including other methods,
such as bridge sampling; Gronau et al., 2017), as well
as a more detailed assessment of whether sampling assum-
ptions can make meaningful differences on inferences bet-
ween models, and which assumptions seem most sensible.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

Appendix A: Thermodynamic integration
derivation

Thermodynamic integration (TI; Friel & Pettitt, 2008, Lar-
tillot & Philippe, 2006) represents the marginal likelihood
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as a one-dimensional integral, which can then be esti-
mated using standard numerical integration techniques. In
this section, we show the derivation for TI. To begin, the
likelihood in the posterior is raised to a power, . This leads
to the power posterior:

p(D16) p(8)
p(DIr)
The power posterior has the following marginal likeli-

hood, which we refer to as the power marginal likelihood:

p@|D.1) = (AD)

p(DIt) = p(8|D) p(9) db ,t € [0, 11. (A2)

Given this formulation of the marginal likelihood, it is
possible to write the log of the marginal likelihood as a
difference between log-marginal likelihoods at =1 and ¢ =

0, omitting the notation for the model:
In p(D) =1n p(D|t =1) —1n p(D|t =0), (A3)

where p(D|t = 0) is a prior distribution that integrates to
unity (i.e., is proper) and therefore returns zero when the log
is taken. We then introduce the following identity:

1
In p(D|t = 1) —In p(D|t = 0) =/ % In p(D|t) dt.
0
(A4

Taking the derivative with respect to t we find the following:

d
(Dlt) EP( 9]

d In p(D|t)
— In —
dt P

- p(Dm / p(DI0)" In p(D|0)p(®) db

Z/P(DIOYPW)
p(D|t)
= Egp,; In p(DI0)

In p(D|) d6
(AS)

Substituting this result into Equation A4 we see that the log-
marginal likelihood is the integral of the expected posterior
deviance from O to 1 with respect to the temperature, t:

1
In p(D) =/(; Eg\p,; In p(D|0) dt (A6)

This result indicates that the log-marginal likelihood can be
expressed as a one-dimensional integral, which can be approx-
imated with standard numerical integration techniques.

Hierarchical setting

The derivation for TI in the hierarchical setting is straightfor-
ward. The hierarchical structure assumed is given by:

D, ~ p(Ds|0s)
05 ~ P(03|¢)

¢ ~ p(9), (A7)

where s indexes the participant, ¢ are the group-level
parameters, and @ are the individual-level parameters. The
power posterior is given by an application of Bayes’ rule:

p(DI16,¢) p(0. $)
p(DIt)
The structure of the hierarchical model is such that the data

are conditionally independent of the group-level parameters.
This allows us to write the power posterior as:

p(D16.9) p(6|¢)p()

p@.¢|D.1) =

(A8)

0,¢|D,1) = , (A9)
pe. 9 p(DI)

where the power marginal likelihood is given by:

poin = [ [ pi.0)p6i0p@) 08 (a0

Recall that TI relies on taking the log of the power marginal
likelihood and finding its derivative:

f]np(D|l)—//p(D|0) fD((Tt';/’)p(¢)1 np(DI0)dodé. (All)

This leads to the following expectation:

d
Eln p(D|t) = Eg ¢p,In p(D|0). (A12)

Substituting this result into Equation A4 we have the
following one-dimensional integral representation of the
marginal likelihood:

1
In p(D) :[) E0,¢|D,t In p(D|0) dt. (A13)

This implies the computation of the TI marginal likelihood
estimate involves sampling from the joint power posterior,
p(0,¢|D, ), and then using the individual-level samples,
0, to compute the average log-likelihood.

Appendix B: Model definitions
Individual subjects analysis

The data for this “simple” dataset were generated with the
following parameter values:

v.e = 3.5
ve =1
s.c =1
se =1
b—A =04
A=1
t0 =03

where .c and .e refer to the accumulators for correct and
error responses, respectively.
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The “simple” model had the following prior distributions:

v.c ~ N+(3,3)

v.e ~ Ny(1,1)

s.e ~ Ni(1,1)
b—A ~ Ny(04,04)

A~ Ny(1,1)

t0 ~ N4(0.3,0.3)
where s.c was fixed to 1 to satisfy a scaling property in
the model (Donkin et al., 2009), and N refers to the
normal distribution truncated to only positive values. The
“complex” model had the following prior distributions:

v.cj ~ Ny(3,3)

ve ~ Ni(1,1)

s.e ~ Ny(1,1)
bj—A ~ N;(04,04)

A~ Ni(1,1)
t0; ~ N4(0.3,0.3)

where j indexes the condition.
Hierarchical analysis

The data for the hierarchical analysis were generated using
distributions of parameter values, where each of the 10
simulated subjects had parameter values randomly drawn
from these distributions. For the ‘“simple” dataset, the
following distributions were used:
v.c; ~ N1(3.5,0.35)
v.e; ~ N4i(1,0.1)
s.e; ~ Ny(1,01)
bi — A; ~ N4+(0.4,0.04)
A; ~ N4(1,01)
t0; ~ N4(0.3,0.03)
where i indexes the participant, and for the “drift-only”
dataset, the following distributions were used:
V.Cicondl ~ N4(4,0.4)
V.Ci cond2 ™ N+(3»O3)
v.e; ~ N4+(1,0.1)
s.e; ~ N4 (1,0.1)
bi — A;j ~ N4+(0.4,0.04)
A; ~ N4(1,0.1)
t0; ~ N4(0.3,0.03) (14)

2

where condl and cond2 are the two “within-subjects”
conditions.

@ Springer

All models had the following prior distributions in
common:
v.e; ~ Ni(Uye, Ove)
s.ei ~ Ni(lUse, Os.e)
A;j ~ Ni(na,04)
Mov.es hs.es ta ~ Ny(1,1)
Oves Oser 0 ~ Ni(1, 1)

the “simple” model had the following prior distributions:

v.ci ~ Ni(loe, Ove)
10; ~ Ny (0, 010)
bi — A;j ~ Ny(up, op)
My, Ove ~ Ny (3,3)
M0, 010 ~ N1(0.3,0.3)
Wb, 0p ~ N4(0.4,0.4)

the “drift-rate only” model had the following prior
distributions:

V.G j ™~ N+(Hv.c_/a UU.Cj)
10; ~ N4 (110, 010)
bj — Aj ~ Ni(up, op)
Hv.cjs Ove; ™ N+(@3,3)
0, 010 ~ N4.(0.3,0.3)
Wy, 0p ~ N4(0.4,0.4)

where j indexes the condition, the “threshold only” model
had the following prior distributions:

v.ci ~ Ny(lye, Ove)
10; ~ N (110, 010)
bi.j — Ai ~ Ny(up;, 0p;)
Ho.cy Ope ~ N1(3,3)
10, 010 ~ N4(0.3,0.3)
Mbj»Ob; ~ N4(0.4,04)

and the “complex” model had the following prior distribu-
tions:

v.Cij ~ Ny Ovey)
10;,j ~ N1 (10, 010;)
bi,j — Ai ~ Ni(up;, 0p;)
Mv.cjs Ove; ~ N+(3,3)
10, 010; ~ N1(0.3,0.3)
Up,op ~ N4(0.4,0.4)



Behav Res (2019) 51:930-947

945

Appendix C: Theoretical comparison
of computational workloads of TIDE and TlI

In this section, we compare, in a theoretical manner, the
computational workloads of TIDE and standard TI. The key
advantage of TIDE over standard TI is that it only requires
a single chain per power posterior.

When assuming that TI and TIDE are implemented with
identical MCMC samplers (i.e., DE-MCMC) where each
sample takes an identical time (on average) to evaluate,
and only a single computational core is available (i.e.,
no ability for multi-core parallelization), computational
workload depends on only the number of samples that need
to be taken for each method, and can be calculated by:

[B:i + Sii] x Cri x Ty
[Btide + Stide] X Ctide X Ttide

CW = (C1)
where CW is the computational workload of TI relative to
TIDE, B is the number of burn-in samples per chain, C is
the number of chains per temperature, 7 is the number of
temperatures used, and S is the number of samples required
from the posterior per chain to create the integration curve.
Specifically, CW is how many times less computationally
taxing TIDE is than TI, meaning that values of CW greater
than 1 indicate that TIDE is less computationally taxing than
TI. In the case of TIDE, the method only requires one chain
per temperature (i.e., Ctjge = 1), meaning that Eq. C1 can
be simplified to:

_Bii + 81l x Cyi X Ty

CW =
[Bride + Stidel X Ttide

(€2

When assuming that TI and TIDE are implemented with
an equal number of temperatures, Eq. C2 can be simplified
again:

[Bii + Sl x Cyi
[Btide + Stide]

which essentially means that whenever the total number
of samples in the TI algorithm (i.e., B;; + S;;) is greater
than the ratio of the total number of samples in the TIDE
algorithm to the number of chains in the TI algorithm
(i.e., B’”%ﬁs””“"), then TIDE will be less computationally
taxing than TI. Importantly, the number of chains for
the standard DE-MCMC algorithm (used in TI for this
situation) is commonly set to 3k, where k is the number
of free parameters, meaning that TIDE will become
decreasingly computationally taxing compared to TI when
the dimensionality of the model increases.

Introducing the potential for multiple processing cores,
and therefore, cross-core parallelization, makes the compu-
tational workload calculation somewhat more complicated.
In cases where the number of computational cores is less
than or equal to the number of temperatures used, and the

CW = (C3)

number of temperatures can be equally divided into compu-
tational cores (i.e., no remainder from the equation - CT ;QU,
where nC PU is the number of computing cores), TI pro-
vides the ability for completely independent parallelization,
where parallelization can be used without any cost in com-
putational workload. Although TIDE can be parallelized
across chains within each iteration of the sampling algo-
rithm, this type of parallelization still has some level of
dependency (i.e., only one iteration can be done in parallel
at a time), meaning that there is some cost in computational
workload when using multiple cores for TIDE, which will
differ from situation to situation. This can be reflected by
re-writing Eq. C3 as:

_ ([Bii + 81l x Ci)/nCPU
([Btide + Stide])/(nCPU X Ptide)

where P is a coefficient for how imperfect the TIDE paral-
lelization is, with O reflecting no benefit of parallelization,
and 1 reflecting perfect parallelization. Importantly, when
Pyige is small and nCPU is large, TIDE can be more
computationally taxing than TI, meaning that in situations
where multiple cores are available these factors should be
considered.

Lastly, using a sampler other than DE-MCMC (e.g.,
sampling the model using the software Stan (Gelman et al.,
2015), see Annis et al. (2017) for an example) for the TI
estimate also makes the computational workload calculation
somewhat more complicated. Importantly, we can no longer
assume that samples take the same amount of time to
generate, meaning that computational workload cannot be
purely expressed in terms of the number of samples required
to approximate the integration curve. This can be reflected
by re-writing Eq. C3 as:

cw (4

_ [Bri + Sl x Cyi X ty;
[Btide + Stide] X Iltide

where ¢ is the average time taken to generate a sample in
each of the sampling algorithms. Importantly, this means
that the computational workload of TI can be reduced by
using a sampler that either (1) decreases the number of
chains required without proportional increases to the time
per sample, or (2) decreases the time per sample without
proportion increases to the number of chains required.

cw (C5)

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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