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Abstract: Fundamental pancreatic β-cell function is to produce and secrete insulin in response
to blood glucose levels. However, when β-cells are chronically exposed to hyperglycemia in
type 2 diabetes mellitus (T2DM), insulin biosynthesis and secretion are decreased together with
reduced expression of insulin transcription factors. Glucagon-like peptide-1 (GLP-1) plays a crucial
role in pancreatic β-cells; GLP-1 binds to the GLP-1 receptor (GLP-1R) in the β-cell membrane and
thereby enhances insulin secretion, suppresses apoptotic cell death and increase proliferation of
β-cells. However, GLP-1R expression in β-cells is reduced under diabetic conditions and thus the
GLP-1R activator (GLP-1RA) shows more favorable effects on β-cells at an early stage of T2DM
compared to an advanced stage. On the other hand, it has been drawing much attention to the
idea that GLP-1 signaling is important in arterial cells; GLP-1 increases nitric oxide, which leads to
facilitation of vascular relaxation and suppression of arteriosclerosis. However, GLP-1R expression
in arterial cells is also reduced under diabetic conditions and thus GLP-1RA shows more protective
effects on arteriosclerosis at an early stage of T2DM. Furthermore, it has been reported recently that
administration of GLP-1RA leads to the reduction of cardiovascular events in various large-scale
clinical trials. Therefore, we think that it would be better to start GLP-1RA at an early stage of T2DM
for the prevention of arteriosclerosis and protection of β-cells against glucose toxicity in routine
medical care.

Keywords: pancreatic β-cells; glucose toxicity; arteriosclerosis; GLP-1 receptor agonist; incretin-
based medicine

1. Introduction

The number of patients with type 2 diabetes mellitus (T2DM) has been increasing
all over the world and T2DM is recognized as one of the most prevalent and serious
metabolic diseases. In addition, economic and healthcare burden due to T2DM is a matter
of concern at present. Therefore, it is very important to clarify the molecular mechanism
for the pathophysiology of T2DM. Two main characteristics of T2DM are the pancreatic
β-cell dysfunction and insulin resistance in various insulin target tissues such as the liver,
skeletal muscle and adipose tissues. Normal β-cells can compensate for insulin resistance
by increasing insulin secretion or β-cell mass, but insufficient compensation leads to the
onset of T2DM. After then, once hyperglycemia becomes apparent, the β-cell function
gradually deteriorates and insulin resistance aggravates.

It is well known that incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP) have pleiotropic effects on a variety of tissues including
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pancreatic β-cells, artery, heart, liver, neuron and adipose tissues. While there are various
GLP-1 target tissues, GLP-1 plays a crucial role in pancreatic β-cells; GLP-1 binds to the
GLP-1 receptor (GLP-1R) in the β-cell membrane and thereby enhances insulin secretion,
suppresses apoptotic cell death and increases the proliferation of β-cells. However, GLP-1R
expression is reduced under diabetic conditions (Figure 1). The glucagon-like peptide-1
receptor agonist (GLP-1RA) and dipeptidyl peptidase-IV (DPP-IV) inhibitor are very often
used in subjects with type 2 diabetes mellitus (T2DM). The DPP-IV inhibitor suppresses
activity of DPP-IV, which is a splitting enzyme of incretin and increases serum levels of
GLP-1 and GIP. Both incretins stimulate insulin secretion in a glucose-dependent manner
and GLP-1 suppresses glucagon secretion, leading to the amelioration of glycemic control.
Furthermore, the GLP-1RA and DPP-IV inhibitor do not usually bring about hypoglycemia
and/or weight gain. GLP-1RA markedly increases circulating GLP-1 levels and functions
at very high concentrations. Thereby, GLP-1RA has more potent glucose-lowering effects
compared to the DPP-IV inhibitor. In addition, GLP-1RA reduces body weight by increasing
central satiety and delaying gastric emptying. On the other hand, it has been drawing
much attention to the idea that GLP-1 signaling is important in arteries as well. Indeed,
it has been reported recently that administration of GLP-1RA leads to the reduction of
cardiovascular events.
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Figure 1. Reduction of GLP-1RA effects on pancreatic β-cells under diabetic conditions. GLP-1 binds to its receptor in
pancreatic β-cells, which leads to the enhancement of insulin secretion, reduction of apoptotic cell death and increase of
β-cell proliferation. After chronic exposure to hyperglycemia, however, GLP-1 receptor expression in β-cells is reduced,
which weakens the protective effects of GLP-1 and GLP-1RA against β-cells glucose toxicity.

2. Incretin and Pancreatic β-Cells

T2DM is characterized by pancreatic β-cell dysfunction and insulin resistance. It has
been shown that chronic hyperglycemia leads to the decrease of insulin biosynthesis and
secretion due to β-cell glucose toxicity [1–12] and that the reduction of insulin mRNA
expression is accompanied by decreased nuclear expression of insulin transcription factors
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such as MafA and PDX-1 [13–21]. Such phenomena are known as β-cell glucose toxicity. It
has been shown, however, that β-cell function is recovered by the treatment with various
antidiabetes medicine at an early stage of T2DM to some extent [22–27].

In response to the ingestion of food, GLP-1 and GIP are secreted from the gastrointesti-
nal tract and stimulate insulin secretion from pancreatic β-cells. Both incretin hormones
bind to each receptor in the β-cell membrane, which leads to enhancing insulin secretion,
reducing β-cell apoptosis and promoting β-cell proliferation. Such an action of incretin
hormones, however, is significantly reduced under diabetic conditions in humans and ro-
dents such as mice and rats. It has been reported that expression levels of incretin receptors
are reduced under diabetic conditions, which is probably involved in the impaired incretin
effects and the development of β-cell failure found in T2DM [28–30]. For example, such
downregulation of incretin receptor expression has been shown in obese type 2 diabetic
mice (at 16 weeks of age, non-fasting blood glucose levels were about 500 mg/dL) and
90% partial pancreatectomized rats (4 weeks after the operation, fasting blood glucose
levels were about 200 mg/dL). The precise mechanism for reduction of GLP-1 and GIP
receptor levels under diabetic conditions remained unraveled. It has been shown recently,
however, that the reduction of the transcription factor 7-like 2 (TCF7L2) expression level,
which is a transcription factor and plays a crucial role in the maintenance of β-cell function,
is involved in the downregulation of incretin receptor expression in β-cells [31–33]. It has
been reported that TCF7L2 is involved in insulin biosynthesis, secretion and preservation
of β-cell mass through the AKT and mTOR pathway [31–37]. Indeed, it is known that
inactivation of TCF7L2 leads to the impairment of insulin secretion and glucose tolerance.
Since TCF7L2 is a downstream factor transcription of the β-catenin signaling pathway,
TCF7L2 is physiologically regulated by β-catenin. In addition, TCF7L2 is regulated by
its genetic variation. Indeed, it is known that common genetic variations of TCF7L2 are
associated with T2DM and that the subjects with the high-risk allele of TCF7L2 show
impaired insulin secretion [38–42].

3. GLP-1-Stimulated Insulin Secretion

Insulin secretion is regulated by various intracellular signals in β-cells. Among them,
cyclic adenosine monophosphate (cAMP) is particularly important for amplifying insulin
secretion. While GLP-1RA and DPP-IV inhibitors have been often used in clinical practice,
such incretin-based drugs function through the cAMP signaling. It is thought that cAMP
potentiates insulin secretion through protein kinase A (PKA) phosphorylation of factors,
which are associated with insulin secretory process. However, it has been proposed
that there is another pathway for cAMP-induced insulin secretion; it was shown that
cAMP had another target named Epac (also called as cAMP-GEF) in β-cells [43–46]. It is
known that Epac signaling regulates cAMP-induced insulin granule exocytosis through
the enlargement of the size of a readily released pool.

In addition, it was reported recently that a physiologically low concentration of GLP-1
activated protein kinase C (PKC) without a significant increase of intracellular cAMP, which
also led to the enhancement of insulin secretion [47,48]. Thereby, it is likely that GLP-1
stimulates insulin secretion in a PKC-dependent or PKA-dependent manner, depending
on its concentration. They showed that GLP-1 increased intracellular diacylglycerol and
Ca2+ and activated PKC, leading to membrane depolarization and subsequent stimulation
of insulin secretion. They also showed that the depolarizing effect of GLP-1 on electrical
activity was mimicked by a PKC activator without activation of the PKA pathway. These
new findings clearly indicate that circulating physiological concentration of GLP-1 directly
stimulates insulin secretion from pancreatic β-cells.

4. GLP-1RA and Pancreatic β-Cells

Incretin-based medicine such as the GLP-1RA and DPP-IV inhibitor ameliorate
glycemic control and mitigate the progression of β-cell dysfunction in human subjects and
animal models. It has been reported that GLP-1RA preserves pancreatic β-cells in various
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types of T2DM rodents [49–55]. For example, it was shown that when T2DM db/db mice
at 10 weeks old were treated with GLP-1RA (liraglutide) for 2 weeks, metabolic variables
and insulin sensitivity were improved. GLP-1RA also increased glucose-stimulated in-
sulin secretion (GSIS) and islet insulin content and reduced triglyceride content in islets.
Furthermore, expression levels of various genes related to proapoptosis, ER stress and
lipid synthesis were downregulated whereas those related to antiapoptosis and antioxida-
tive stress were upregulated. GLP-1RA treatment for 2 days slightly improved metabolic
variables in db/db mice, but GSIS, insulin and triglyceride content were not affected.
Such treatment increased gene expression related to cell differentiation, proliferation and
antiapoptosis and suppressed gene expression involved in proapoptosis, although there
was no effect on oxidative stress- or ER stress-related factors [49]. Taken together, GLP-1RA
increases β-cell mass not only by directly regulating cell kinetics, but also by suppressing
oxidative and ER stress, secondary to the amelioration of glucolipotoxicity.

Protective effects of GLP-1RA on β-cells were reported in another type of diabetic
mice [52–55]. For example, it was shown that GLP-1RA improved pancreatic β-cell mass
and function in alloxan-induced diabetic mice [52]. They examined the effects of GLP-
1RA on β-cell fate and function by using an inducible Cre/loxP system. In the results,
chronic GLP-1RA treatment for 30 days improved glucose tolerance and insulin response
to oral glucose load. Additionally, GLP-1RA treatment doubled β-cell mass compared
to the vehicle group by increasing the β-cell proliferation rate and reducing apoptotic
cell death. Interestingly, however, there was no or little contribution of neogenesis to
such an increase in β-cell mass based on the data obtained with the Cre/loxP system. In
addition, GLP-1RA reduced oxidative stress in pancreatic islets. Furthermore, the beneficial
effects of GLP-1RA in these mice were maintained 2 weeks after drug withdrawal [52].
In another study, it was shown in more detail how GLP-1RA preserved β-cell mass [54].
They showed that GLP-1RA protected mouse pancreatic β-cell line βTC6 cells from serum
withdrawal-induced apoptosis through the inactivation of caspase-3. They also showed
that PI3-kinase-dependent AKT phosphorylation, inactivation of the proapoptotic protein
BAD and inhibition of the FoxO1 transcription factor were involved in antiapoptotic action
of GLP-1RA [54].

It has been reported that GLP-1RA shows more favorable effects at an early stage of
T2DM compared to an advanced stage [50,51]. T2DM db/db mice were treated with GLP-
1RA (liraglutide) and/or pioglitazone for 2 weeks at an early (7 weeks old) and advanced
stage (16 weeks old). At an early stage, insulin biosynthesis and secretion were markedly
increased by such a treatment, which was not observed at an advanced stage. Expression
levels of various β-cell-related factors such as MafA and PDX-1 were upregulated by
such a treatment only at an early stage. It is likely that the recovery of MafA expression
after such treatment is particularly important for the recovery of the β-cell function and
amelioration of glycemic control, because MafA regulates not only insulin but also various
factors related to GSIS. The increased expression of GLUT2 and glucokinase could also
explain the augmentation of GSIS observed at an early stage. In addition, the expression
level of GLP-1R was reduced at an advanced stage, which we think explains the reason
why GLP-1RA showed more favorable effects at an early stage. Furthermore, β-cell mass
and proliferation were increased by the treatment only at an early stage. [51]. Similarly, it
was shown that DPP-IV inhibitor together with the SGLT2 inhibitor exerted more favorable
effects on the β-cell function and mass at an early stage of T2DM compared to an advanced
stage [56]. It is well known that GLP-1 binds to its receptor in the β-cell membrane and
activates adenylate cyclase and the cAMP/PKA signaling pathway [43–46]. In addition,
a low concentration of GLP-1 activates PKC without a significant increase of intracellular
cAMP, which also leads to the enhancement of insulin secretion [47,48]. It is known that
the activation of such kinases is involved in the reduction of β-cell apoptosis, proliferation
of β-cells and maintenance of β-cell function. In this study, expression of the GLP-1R level
was downregulated at an advanced stage compared with an early stage. Therefore, we
think that the downregulation of signal pathways such as PKA or PKC is, at least in part,
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involved in the ineffectiveness of GLP-1RA on the β-cell function at an advanced stage.
Taken together, the usage of incretin-based medicine at an early stage of T2DM would be
useful and promising for the preservation of the β-cell function and mass.

On the other hands, it is well known that chronic exposure to a large amount of
ligand leads to the downregulation of its receptor. In addition, it is known that the serum
GLP-1 level becomes very high after the usage of GLP-1RA, which is a ligand of GLP-1R. It
remained unknown, however, whether the long-time usage of GLP-1RA downregulates its
receptor. It was reported that GLP-1R expression was reduced after long-term exposure to
GLP-1RA (dulaglutide) in non-diabetic and diabetic mice. Obese type 2 diabetic db/db
mice and non-diabetic db/m mice were treated with GLP-1RA or the control vehicle
for 17 weeks (from 7 to 24 weeks of age). Various metabolic parameters such as GSIS,
insulin and triglyceride content in islets and β-cell-related gene expression were evaluated
after the intervention. In db/m mice, GLP-1R expression in β-cells was not decreased
even after long-term administration of GLP-1RA. In db/db mice, GLP-1R expression at
24 weeks of age was significantly lower compared to that at 7 weeks probably due to
glucose toxicity [57]. Furthermore, GLP-1R expression in 24-week-old db/db mice treated
with GLP-1RA was higher, rather than downregulated, compared to 24-week-old untreated
diabetic mice, which was probably due to the amelioration of glycemic control. Food
intake and blood glucose levels in db/db mice treated with GLP-1RA were lower until
24 weeks of age compared to untreated db/db mice. Expression levels of various β-cell-
related genes, insulin biosynthesis and secretion were enhanced after GLP-1RA treatment
in db/db mice. In contrast, oxidative and endoplasmic reticulum stress, inflammation,
fibrosis and apoptosis were suppressed after GLP-1RA treatment [57]. Taken together,
GLP-1RA shows favorable effects on glycemic control and protective effects on pancreatic
β-cells for a long period without reducing the GLP-1R expression level.

GLP-1R is one of the G protein-coupled receptors (GPCRs). GLP-1 binds to its receptor
on the cell membrane and the complex of GLP-1 and its receptor GPCR is internalized into
cells. In general, it is thought that the internalized receptor preserves its expression level
compared to a non-internalized receptor. Consequently, we think that such characteristics of
GLP-1R could explain the reason why GLP-1R expression was not decreased even after long-
term administration of GLP-1RA. In addition, some drug therapy has been developed by
utilizing the phenomena that chronic exposure to a large amount of ligand downregulates
its receptor expression. For example, in the treatment for endometriosis, the gonadotropin
releasing hormone (GnRH) agonist suppresses the production of the downstream hormone
through downregulation of its receptor by continuous administration of a large amount of
ligand [58–61].

5. GLP-1RA and Arteriosclerosis
5.1. Incretin Signaling and Arterial Cells

GLP-1R expression is observed in endothelial and smooth muscle cells. In endothelial
cells, incretin signaling improves the vascular relaxation response through eNOS expression
and activity and retards the development of arteriosclerosis (Figure 2) [62–64]. Activation
of GLP-1 signaling in arteries leads to the mitigation of inflammatory cytokines. In arterial
cells, GLP-1 signaling improves the wall disorder induced by various factors including
hyperglycemia and inflammatory cytokines. In vascular smooth muscle cells, GLP-1R
stimulation prevents the development of arteriosclerosis. In addition, although GLP-1R
is expressed in various cell types, it was not clearly elucidated how GLP-1RA can retard
the progression of arteriosclerosis. However, recently the vasoprotective mechanism of
GLP-1RA was clearly demonstrated at the cellular level by using global GLP-1R knockout
mice, endothelial cell-specific GLP-1 knockout mice and myeloid cell-specific GLP-1R
knockout mice. As the results, it was shown that GLP-1RA treatment normalized blood
pressure, cardiac hypertrophy, vascular fibrosis, endothelial dysfunction, oxidative stress
and vascular inflammation in an endothelial GLP-1R-dependent manner [65]. We think that
these novel findings are strong evidence showing that endothelial GLP-1R expression is
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critical for GLP-1 to fully show their effects in arteries. Incretin-based therapy substantially
ameliorates glycemic control without hypoglycemia and/or weight gain, which leads one
to the prevention of diabetic macroangiopathy. In addition, GLP-1 has direct protective
effects on vascular cells via GLP-1R. Therefore, it is likely that incretin-based therapy shows
favorable effects on the development of arteriosclerosis through the reduction of blood
glucose levels and their direct effects on arterial cells via GLP-1R.
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Figure 2. Reduction of GLP-1RA effects on arterial cells under diabetic conditions. GLP-1 binds to its receptor in arterial
cells, which leads to the enhancement of vascular relaxation and the prevention of arteriosclerosis. After chronic exposure
to hyperglycemia, however, GLP-1 receptor expression in arterial cells is reduced, which weakens the protective effects
GLP-1 and GLP-1RA against arteriosclerosis.

5.2. Downregulation of GLP-1R Expression in Arterial Cells under Diabetic Conditions

GLP-1R expression in pancreatic β-cells is reduced under diabetic conditions and
TCF7L2 is known to function as a transcription factor for GLP-1R at least in β-cells. Incretin
signaling is known to prevent the development of arteriosclerosis by the relaxation response
in endothelial cells via the GLP-1R. It was reported recently that GLP-1R and TCF7L2
expression levels in endothelial and smooth muscle cells were significantly lower in obese
type 2 diabetic db/db mice compared to non-diabetic db/m mice [66]. Furthermore,
reduction of the TCF7L2 level using siTCF7L2 resulted in the downregulation of GLP-1R
expression in cultured vascular endothelial cells. In addition, when the TCF7L2 level
was enhanced using the TCF7L2 expressing adenovirus, the GLP-1R expression level was
substantially augmented [67]. In conclusion, the GLP-1R expression level was substantially
reduced under diabetic conditions together with the decrease of the TCF7L2 level (Figure 2).
Furthermore, it was shown that the TCF7L2 is a possible regulator of the GLP-1R expression
in the artery as reported in β-cells.
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5.3. Favorable Antiarteriosclerotic Effects of GLP-1RA

It was not known so far whether or not there was some difference in effectiveness
of GLP-1RA between an early and an advanced stage of T2DM. Recently, however, to
address such questions, either GLP-1RA (dulaglutide) or the vehicle was administered to
streptozotocin-induced diabetic ApoE knockout mice from 10 to 18 weeks of age as an early
stage and from 18 to 26 weeks as an advanced stage. In the results, in an early stage group,
the arteriosclerotic lesion in the aortic arch and Mac-2 and CD68-positive areas in the
aortic root were significantly smaller in the GLP-1RA group [68]. In the abdominal aorta,
expression levels of various inflammation markers were lower in the GLP-1RA group.
In an advanced stage group, there were no immunohistological differences in the aortic
root and expression levels of various factors between the GLP-1RA and vehicle group [68].
Taken together, GLP-1RA shows more favorable antiarteriosclerotic effects at an early stage
of T2DM compared to an advanced stage.

5.4. Protective Role of GLP-1RA against Cardiovascular Events in Subjects with T2DM

While cardiovascular events sometimes bring about serious and lethal situations, it has
been shown recently that GLP-1RAs reduce cardiovascular events [69–74]. The LEADER
trial showed the effects of a once-daily injection of GLP-1RA liraglutide on cardiovascular
events. The primary composite cardiovascular outcome was observed in significantly fewer
patients in the treatment group (hazard ratio (HR): 0.87). Additionally, fewer patients died
from cardiovascular causes in the treatment group (HR: 0.78). The rate of the all-cause
death was also lower in the treatment group (HR: 0.85) [69,70]. The REWIND trial showed
the effects of a once-weekly injection of dulaglutide on cardiovascular events. HR in the
primary composite cardiovascular outcome was 0.88 and that in the all-cause death was
0.90 [71,72]. The SUSTAIN-6 trial showed the effects of a once-weekly injection of semaglu-
tide on cardiovascular events. The occurrence of the primary composite cardiovascular
outcome was lower in the treatment group (HR: 0.74). HR in nonfatal myocardial infarction
and nonfatal stroke was 0.74 and 0.61, respectively [73,74]. Taken together, a once-daily
injection of liraglutide and once-weekly injection of dulaglutide and semaglutide are
expected to prevent major adverse cardiovascular events. The above-mentioned three
large-scale clinical trials strongly support the idea that GLP-1RAs show a protective role
against cardiovascular events in subjects with T2DM. Therefore, in routine medical care we
should willingly use GLP-1RA in subjects with T2DM especially in subjects with a large
risk of cardiovascular events.

6. Conclusions

In this review article, we featured roles of GLP-1 signaling in pancreatic β-cells and
arteries. In addition, we described the usability of GLP-1RA based on the molecular
mechanism for β-cell glucose toxicity and for the development of arteriosclerosis.

Our current ideas about pancreatic β-cell glucose toxicity are as follows. First, chronic
hyperglycemia leads to a decrease of insulin biosynthesis and/or secretion in the diabetic
state, which is accompanied by decreased expression of insulin transcription factors. In
routine medical care, it is very important to alleviate such β-cell glucose toxicity in order
to prevent the aggravation of T2DM. Second, incretin signaling plays crucial roles in
pancreatic β-cells and we believe that GLP-1RA is a promising medicine to protect β-cells
against glucose toxicity. However, incretin sensitivity in β-cells is weakened under diabetic
conditions, at least in part, due to downregulation of GLP-1R expression, which we think
may be associated with the aggravation of β-cell glucose toxicity.

Our current ideas about the usability of GLP-1RA are as follows. First, as described
above, GLP-1R expression in pancreatic β-cells is downregulated under diabetic conditions.
The data also suggest that it would be better to use incretin-based medicine at an early
stage of T2DM. Indeed, GLP-1RA showed more favorable effects on β-cells at an early
stage in T2DM mice. Second, incretin signaling plays a crucial role against arteriosclerosis,
but incretin sensitivity in arteries is also weakened, at least partially, due to downregulation
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of GLP-1R expression, which we think may facilitate the development of arteriosclerosis.
Consequently, we think that it would be better to use incretin-based medicine at an early
stage of T2DM for the prevention of arteriosclerosis. Indeed, GLP-1RA showed more favor-
able effects against the progression of arteriosclerosis at an early stage. Third, a series of
large-scale clinical trials have shown that GLP-1RAs have favorable effects against the onset
of cardiovascular events. Taken together, incretin signaling plays crucial roles in various
kinds of cells such as pancreatic β-cells and arterial cells and GLP-1RAs are promising
from the clinical points of view and basic research area.
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