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Abstract: A two-step method involving continuous screw-extrusion steam explosion (CSESE)
pretreatment and esterification in supercritical carbon dioxide (scCO2) is used to prepare long-chain
fatty acid-modified jute fiber. The weight gain percentage (WG %) of CSESE-pretreated jute laurate
(JL) was 110.7% when esterification was carried out in scCO2 at 14 MPa and 100 ◦C for 2 h. The
corresponding WG % was 105.5% when esterification was instead carried out in pyridine at 100 ◦C for
2 h. Scanning electron microscopy and X-ray diffraction indicated that CSESE pretreatment enhanced
the reactivity of jute fiber, with esterification in scCO2 simultaneously occurring on the fibers surface
and internal walls. The glass transition temperature of esterified jute was approximately 119 ◦C,
indicating that it could be hot processed over a wide temperature range. The esterified jute had an oil
absorption ratio of 17.01 g/g, so it can be used as an oil absorption material.

Keywords: continuous screw-extrusion steam explosion; supercritical carbon dioxide; jute fiber;
plasticization; hydrophobicity

1. Introduction

Cellulose is composed of β(1→4) linked D-glucose units, and is one of the most abundant natural
polymers on earth. Cellulose is an important raw material and has many uses, such as in textiles, papers,
foods, cosmetics, and biomaterials [1,2]. Hydroxyl groups of cellulose form strong intermolecular and
intramolecular hydrogen bonds, and van der Waals interactions form a resistant microfibril network
that gives cellulose its natural strength and reactivity [3].

Cellulose has strong hydrogen bonding and a high degree of crystallinity, so it is neither
meltable nor soluble in conventional organic solvents. These factors limit its application. Cellulose
derivatives with tailored properties can be obtained by introducing different substituent groups.
Chemical modification such as esterification [4–8] allows the broad application of cellulose
derivatives. The esterification of cellulose includes homogeneous and heterogeneous esterification.
Solvents are essential for the homogeneous esterification of cellulose. A limited number of
solvent systems have shown promise as cellulose solvents, including N,N′-dimethylacetamide/
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lithium chloride (DMAc/LiCl), 4-methylmorpholine-N-oxide (NMMO), 1-allyl-3-methylimidazolium
chloride [Amim]Cl, tetrabutylammonium fluoride/dimethyl sulfoxide (TBAF/DMSO), and sodium
hydroxide/urea [7,9–11]. These solvent systems have many obvious shortcomings, such as their poor
environmental-friendliness, complicated and time-consuming preparation involving multiple steps,
toxicity, and their low solubility of cellulose [12–14]. The heterogeneous esterification of cellulose
also has drawbacks, such as the low degree of substitution and poor control over the reaction [15].
A more efficient, controllable, and environmentally-friendly method for cellulose esterification is
therefore desirable.

Lignocellulose is one of the main sources of cellulose. The main components of lignocellulose are
cellulose, lignin, hemicellulose, etc. Different lignocellulosic materials have different percentages of
cellulose, lignin, and hemicellulose due to their species and origin. In lignocellulose, the three major
components are strongly bonded by chemical bonds or non-covalent bonds, which makes it difficult to
separate, transform, and modify lignocellulose. Jute fiber is a kind of lignocellulose with high cellulose
content, and is naturally resistant to biological and chemical decomposition [16–19]. It is necessary
to pretreat lignocellulose before use to improve its availability to reagents and therefore reactivity.
Pretreatment methods for lignocellulose can be categorized as physical, physic-chemical, chemical,
biological, or any combination of these [20]. Steam explosion (SE) pretreatment is a physical-chemical
method that is efficient and non-polluting, so has attracted much attention. However, most steam
explosions are batch processes with a short blasting time and thus are unsuitable for industrialization,
have low efficiency, high energy consumption, etc. [21]. So, developing improved continuous steam
explosion processes is important for the effective pretreatment of lignocellulosic materials. Continuous
screw-extrusion steam explosion (CSESE), our laboratory-designed experimental device, has low
energy consumption, no pollution, suitable for industrialization, etc., and is a continuous high-efficiency
pretreatment method that dramatically decreases the fiber size, which improves accessibility and
subsequent reactivity [22]. Moreover, the intensity of the CSESE pretreatment process could be adjusted
by increasing/decreasing the number of pretreatment cycles for different biomass feedstocks, depending
on application requirements, and the output reached 100–150 kg/h. And our research group has used
this method to pretreat eulaliopsis binata, eucalyptus, sisal, sugar beet pulp, bagasse, corn cob, etc.,
and the CSESE process was feasible. Therefore, it is useful to pretreat jute fiber by CSESE before it is
chemically modified.

An environmentally-friendly medium is also desirable for carrying out chemical reactions. Carbon
dioxide is the most commonly used supercritical fluid due to its moderate critical constants (Tc = 31.1 ◦C,
Pc = 7.38 MPa), nonflammability, nontoxicity, low cost, and chemical inertness. The removal of
supercritical CO2 (scCO2) after carrying out the chemical transformation is not energy consuming,
and the scCO2 can be readily recycled. These attributes make scCO2 an environmentally-friendly
replacement for organic solvents in many applications, especially chemical reactions [23–25]. Various
studies have reported the esterification of biomass in scCO2, such as the acetylation of cellulose [26],
synthesis of cellulose carbamate [25,27], and esterification of starch [28,29]. However, the esterification
of jute fiber treated by CSESE in scCO2 has not been reported.

Recent high-profile oil spills have resulted in widespread attention about water pollution, so
developing oil absorption materials has important practical significance. Current oil absorption
materials are mostly non-degradable [30–32]. The esterification of jute fiber treated by CSESE is an
effective way to improve its oil absorption performance, and the esterification products have better
biodegradability than synthetic polymer based oil absorption material.

Cellulose is also difficult to plasticize and process, because of its high crystallinity and melting
temperature. Esterification is an effective method for improving the plasticization of cellulose. The
plastic modification of cellulose has mainly been carried out by homogeneous esterification [33–35].
Cellulose laurate was prepared in LiCl/DMAc and its tensile strength was reportedly 4.84 MPa [36].
There have been very few such reports exploiting heterogenous esterification, and the mechanical
properties of cellulose esterification products have rarely been reported.
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In the current study, long-chain fatty acid-modified jute fiber was prepared in a two-step process
involving CSESE pretreatment and subsequent esterification in scCO2. Specifically, jute fiber was
treated by CSESE, then reacted with lauroyl chloride in scCO2. The structure and morphology of the
obtained products were analyzed by Fourier-transform infrared (FTIR) spectroscopy, solid-state 13C
nuclear magnetic resonance (13C NMR) spectroscopy, and scanning electron microscopy (SEM). The
degree of reaction was then investigated by varying the scCO2 pressure and the reaction temperature
and time. The obtained products were investigated using contact angle (CA) measurements, X-ray
diffraction (XRD), thermogravimetric analysis (TGA), mechanical property measurements, and dynamic
thermo-mechanical analysis (DMA). Finally, the plasticization and oil absorption properties of the
esterification products were investigated.

2. Materials and Methods

2.1. Materials

Jute fiber was obtained from Nanjing Xinhe Textile Co., Ltd. (Nanjing, China). Prior to use,
jute fiber was pretreated by CSESE as described previously [22]. Briefly, Jute fiber was cut into
short fibers with lengths of approximately 10 mm. The screw continuously conveyed the jute fiber
chips with about 50% moisture content forward, where they were squashed and compacted by the
screw, and gradually heated due to friction between the chips, screw, and barrel. The pressure and
temperature of the compacted jute fiber reached approximately 1–1.5 MPa and 120–150 ◦C, respectively,
the screw speed was about 300 rpm, when they conveyed to the die. The compacted jute fiber was
continuously discharged from the die, with a slit width of 1 mm. Pressurized water in the fiber
bundles was instantaneously vaporized, which resulted in destruction of the tissue structure of the
fiber bundles. This pretreatment process was repeated three times to obtain pretreated jute fiber,
and the output reached 100–150 kg/h. Then the pretreated jute fiber was washed with tap water
and dry naturally [37,38], CSESE pretreated jute fiber is hereafter referred to as JSE. Analytical grade
lauroyl chloride, pyridine, and anhydrous ethanol were purchased from Aladdin (Shanghai, China),
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China), and Nanjing Chemical Reagent Co., Ltd.
(Nanjing, China), respectively. High purity CO2 (≥99.9% by volume) was used. All chemicals were
used without further purification.

2.2. Reactor Setup

The reactor was purchased from Haian Oil Scientific Research Apparatus Co., Ltd. (Nantong,
China). The high pressure setup includes a carbon dioxide cylinder, external circulation refrigeration
unit, high pressure pump, temperature control unit, and a high temperature autoclave reactor with a
volume of 300 mL (Figure 1). The reactor is equipped with an overhead stirrer. The high pressure
pump unit consists of a membrane pump with a capacity of 6 L/h at a maximum pressure of 40 MPa.
To prevent cavitation in the pump, CO2 is first cooled to 0 ◦C in a heat exchanger attached to the
external circulation refrigeration unit. The temperature control unit is then used to heat the CO2 to the
desired temperature.
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2.3. Experimental Procedure

2.3.1. Esterification of JSE in scCO2

Dried JSE (2.0 g), pyridine (2.25 mol/mol of anhydroglucose units (AGU)) and lauroyl chloride
(3 mol/mol of AGU) were stirred in a 100 mL polytetrafluoroethylene-lined autoclave, which was then
transferred into the CO2 reactor. The autoclave was then sealed and heated to the desired temperature.
CO2 was added to increase the pressure to the desired level. The reaction contents were stirred at
200 r/min for a predetermined time. After reaction, the pressure was slowly decreased to standard
atmospheric pressure, and the autoclave was naturally cooled to room temperature. The reaction
mixture was then transferred to a beaker, and the product was precipitated with ethanol, collected by
filtration, washed with ethanol, water, and ethanol again, followed by drying at 60 ◦C in an oven. The
obtained product was JSE laurate and is hereafter abbreviated as JL. The synthesis of JL in scCO2 is
shown in Figure 2.
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Figure 2. Synthesis of continuous screw-extrusion steam explosion (CSESE) pretreated jute fiber (JSE)
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2.3.2. Esterification of Jute Fiber in scCO2

The esterification of jute fiber in scCO2 was carried out similarly to the esterification of JSE, at
14 MPa and 100 ◦C for 2 h. The esterification product is hereafter abbreviated as R-JL.

2.3.3. Esterification of JSE in Pyridine

Dried JSE (2.0 g), pyridine (30 mL), and lauroyl chloride (3 mol/mol of AGU) were placed in
a 250 mL round bottomed flask with attached reflux condensation and agitation. The reaction was
carried out at 100 ◦C for 2 h. Afterwards, the reaction mixture was transferred to a beaker, and the
product was precipitated with ethanol, collected by filtration, washed with ethanol, water, and ethanol
again, followed by drying at 60 ◦C in an oven. The obtained product is hereafter abbreviated as JL-Py.

2.4. Characterization

2.4.1. FTIR Spectroscopy

Dried JSE or JL was cut into small particles, then mixed with dried potassium bromide powder in
an agate mortar. The mixture was ground to a fine powder, which was pressed into a disc and then
dried for 30 min in an infrared box. The dried discs prepared from JSE and JL were then used to collect
FTIR spectra using a Nicolet-Nexus 670 infrared spectrophotometer (Thermo Nicolet Corporation,
Madison, WI, USA).

2.4.2. 13C NMR Spectroscopy

13C (CP/MAS) NMR spectra of samples were recorded using a superconducting Fourier- transform
nuclear magnetic resonance spectrometer (AVANCE III HD 400 spectrometer, Bruker, Karlsruhe,
Germany) in dual resonance MAS Mode, with a standard 4-mm-diameter probe. Chemical shifts were
referenced to the signal of tetramethylsilane (TMS, 0 ppm).
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2.4.3. SEM

Images of the morphologies of JSE and JL were obtained using a scanning electron microscope
(model FEI Quanta FEG 250, Hillsboro, OR, USA) operated in secondary electron mode, with a beam
current of 100 mA and an accelerating voltage of 20 kV. Prior to analysis, samples were coated with a
thin layer of gold using as a vacuum coater to prevent charging.

2.4.4. XRD

XRD patterns of JSE and JL were obtained using a Bruker D8 ADVANCE (Bruker) diffractometer
(40 kV, 40 mA) by the refraction method, using nickel-filtered Cu Kα radiation (λ = 1.54 Å). Scans were
performed from 4◦ to 60◦ 2θ in increments of 0.04◦ and a scan rate of 0.2 s per step. The collected data
were analyzed using MDI Jade (6.0, Materials Data Incorporated, Berkeley, CA, USA). The peaks of
crystalline and amorphous fractions were obtained by means of XRD-peak- different-imitating analysis
with parameters for all samples. The error in the data fitting was approximately 3%.

2.4.5. TGA

The thermal stabilities of JSE and JL were studied using a thermogravimetric analyzer (TG209 F3,
Netzsch, Selb, Germany). Approximately 6 mg of sample was heated from 30 to 700 ◦C at a heating
rate of 10 ◦C/min. Nitrogen gas at a flow rate of 50 ml/min was used to protect samples from oxidation.

2.4.6. Static Water CA Measurements

CA values of 3 µL water droplets on the molded films were measured using an automatic video
microcontact angle measuring instrument (DATA physics, DCa40 MICRO, Stuttgart, Germany).

2.4.7. Mechanical Properties

The mechanical properties of the molded samples were measured using a universal material
testing machine (Instron 5566, Boston, MA, USA) at room temperature. The specific test procedure is
according to the literature [35].

2.4.8. Dynamic Thermomechanical Analysis (DMA)

A dried sample was ground to a powder, which was pressed into a slice with a diameter and
thickness of approximately 15 mm and 2 mm, respectively, using a purpose-built molding apparatus
(TA Instruments, Wilmington, DE, USA). The resulting disc was then subjected to testing in compression
mode, using a frequency of 10 Hz, amplitude of 10 µm, heating rate of 3 ◦C/min, and temperature
range of −80 ◦C to 180 ◦C.

2.4.9. Oil Absorption Performance

Dried JSE or JL (0.1 g) was accurately weighed onto a stainless-steel wire mesh, which was then
immersed in 250 mL of soybean oil. After 15 min, oil was removed and it is allowed to drain for 5 min.
The sample was then weighed, and the oil absorption ratio was calculated from [39]:

Q = (mw −m0)/m0, (1)

where Q is the oil absorption ratio, and m0 and mw are the weight of the material before and after oil
absorption, respectively.

2.5. Determination of Weight Gain Percentage

The weight gain percentage (WG %) was calculated according to Equation (2) [4]:

WG % = (m1 −m0)/m0 × 100%, (2)
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where m0 is the weight of JSE, and m1 is the weight of JSE after esterification (i.e., the mass of JL).
The cellulose content of jute is high, so cellulose can be used to estimate the degree of substitution

of lauroyl chloride. The molecular weight of C6H10O5 (i.e., the AGU) on the macromolecule chain of
cellulose is 162 g/mol. The molecular weight of the lauroyl chloride is 218.5 g/mol. The hydrogen of a
free hydroxyl group on the AGU is substituted by a lauroyl group. After esterification, the unit has a
molecular weight of 182 g/mol. The WG % of JL is therefore 182/162, so the relationship between the
degree of substitution (DS) and the WG % of JSE can be estimated. The DS was therefore estimated
according to Equation (3):

DS = WG %/(182/162). (3)

3. Results and Discussion

3.1. Esterification of JSE and Jute Fiber

FTIR spectra of JSE and JL are shown in Figure 3a. The spectrum of JSE has an absorption band
at 2901 cm−1, and the spectrum of JL has two additional absorption bands at 2925 and 2852 cm−1

(antisymmetric and symmetric stretching vibrations of –CH2– and –CH3 groups), which collectively
indicate the presence of long aliphatic chains. Compared to JSE, two new bands are observed in the
spectrum of JL. The first at 1748 cm−1 (–C=O stretching vibration) [2] corresponds to the vibration
of carbonyl ester groups. The second at 720 cm−1 is attributed to four or more linearly connected
–CH2– groups (–(CH2)4-rocking vibration) [36]. This indicates that fatty substituents have been linked
directly to cellulose in JSE. The absence of absorptions at 1800 cm−1 indicates the absence of free lauroyl
chloride in JL [4]. In summary, these spectra are consistent with JL being synthesized from JSE and
lauroyl chloride.Materials 2019, 12, x FOR PEER REVIEW 7 of 14 
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13C NMR spectra of JSE and JL are shown in Figure 3b. The synthesis of JL in scCO2 is shown in
Figure 2. Signals at 50–110 ppm are predominantly attributed to the different carbons of cellulose in
JSE and JL [2,5,6,40]. Signals in the spectrum of JSE are assigned as follows: 104.1 ppm (C-1), 87.6 ppm
(C-4 crystalline), 82.3 ppm (C-4 amorphous), 73.6 ppm (C-5, C-3), 71.1 ppm (C-2), and 63.9 ppm (C-6)
in the AGU structure. Signals in the spectrum of JL are assigned as follows: 104.1 ppm (C-1 crystalline),
101.3 ppm (C-1 amorphous), 88.8 ppm (C-4 crystalline), 83.9 ppm (C-4 amorphous), 82.5 ppm (C-4
amorphous), 72.1 ppm (C-5, C-3, C-2), and 64.3 ppm (C-6). The signal at 55.6 ppm is assigned to
the methoxyl peak of lignin [4]. Compared with spectrum of JSE, new peaks at 14.4, 23.2, 25.2, 30.2,
101.3, and 172.4 ppm are present in the spectrum of JL. These are attributed to the –CH3 group, –CH2–
groups (20–40 ppm), C-1 (amorphous), and ester carbonyl carbon of the lauroyl group introduced
into JSE [7]. The signals of the incorporated aliphatic carbons occur at high magnetic fields and are
sufficiently separated from those of saccharide moieties. Therefore, the 13CNMR results are consistent
with lauroyl groups introduced into JSE chains through reaction with the hydroxyl groups of cellulose.
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Compared with the spectrum of JSE, the increased intensities of cellulose peaks at 101.3, 83.9, and
72.1 ppm indicate that the crystalline region of cellulose is partially destroyed and that it participates
in the esterification reaction. As a result of this, the proportion of the amorphous fraction increases.
These results are consistent with esterification between cellulose and lauroyl chloride in scCO2, and
the introduction of acyl groups into cellulose.

3.2. Optimization of Esterification Conditions

scCO2 is highly compressible and its solvent properties can be tuned over a wide range by varying
the pressure and temperature [27]. Varying the scCO2 pressure, reaction temperature, and duration
affects the ability of reactants to penetrate the fiber. Reactions were carried out at varying scCO2

pressures and reaction temperatures and durations, to optimize the reaction conditions (Figure 4). The
influence of the reaction temperature on the WG % was first investigated from 70 to 110 ◦C. Figure 4a
shows that the WG % increases with increasing temperature, which reflects the increasing reaction rate.
The higher temperature promotes the esterification reaction, so enhances the degree of esterification of
cellulose in JSE. Thus, the WG % increases with increasing reaction temperature. When the reaction
temperature is >100 ◦C, a black product is obtained as a result of degradation of the JSE matrix and its
derivatives. At high temperature, HCl bound to pyridine can be released, and the presence of HCl
also accelerates the degradation of the JSE matrix and its derivatives. An esterification temperature of
100 ◦C is therefore considered appropriate.

The effect of scCO2 pressure on the WG % is shown in Figure 4b. The WG % first increases from
74.3% to 110.7%, reaching a maximum at a pressure of 14 MPa. The WG % slightly decreases with
further increase in scCO2 pressure. This is related to many factors such as the solubility of lauroyl
chloride and pyridine in scCO2, the swelling effect and compressive effect of scCO2, the capability
of scCO2 as a carrying agent, or a combination of several competing factors [25,27,41,42]. At low
pressure, the solvent intensity of CO2 is insufficient to swell the JSE substrate enough to permit the
rapid penetration of lauroyl chloride and pyridine. At high pressure, scCO2 is a much better solvent
and carrying agent for lauroyl chloride and pyridine. The swelling effect of scCO2 on the JSE matrix
can enhance the diffusion rate of the reaction reagent into JSE, leading to higher WG %. The most
favorable combination of these factors for the esterification of JSE is reached at 14 MPa. The WG %
decreases with further increase of scCO2 pressure. This may reflect a lower free volume in the JSE
matrix due to compression, which would reduce the diffusion of reactants into JSE, lower the reaction
rate, and lead to a lower WG %. Another factor could be that JL is more prone to degradation in the
presence of a small amount of free HCl at higher pressure, which would also decrease the WG %. At
high pressure, a fraction of the extracts and lignin from the JSE matrix can be extracted by scCO2 and
lost during pressure relief, which would also decrease the WG %. Therefore, an scCO2 pressure of
14 MPa is considered optimum and is used for subsequent experiments.Materials 2019, 12, x FOR PEER REVIEW 8 of 14 
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Figure 4. Change in WG % with reaction temperature (a), scCO2 pressure (b), and reaction time (c).
In (a), the scCO2 pressure is 8 MPa and the reaction time is 2 h. In (b), the reaction time is 2 h and the
reaction temperature is 100 ◦C. In (c), the scCO2 pressure is 14 MPa and the reaction temperature is
100 ◦C.
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The effect of reaction time on the WG % was then studied. Figure 4c shows that the WG %
also increases with increasing esterification time. A longer time promotes the esterification reaction
and enhances the degree of esterification for cellulose in JSE. A maximum WG % occurs when the
esterification time is approximately 4 h, and the WG % decreases with further increase in reaction time.
This could be because of the partial pyrolysis of components of the JSE matrix (i.e., hemicellulose and
extracts) and its derivatives. An esterification time of 4 h is therefore considered suitable.

A maximum WG % of 123.5% is obtained at an optimum reaction temperature of 100 ◦C, scCO2

pressure of 14 MPa, and reaction duration of 4 h. The DS is estimated to be 1.10 according to Equation (3).
This is higher than reported values [43–45] in the heterogeneous esterification of long chain fatty esters
of plant fibers. The degree of esterification between JSE and lauroyl chloride can be readily controlled
by changing the temperature and/or scCO2 pressure.

3.3. Contrast Experiment

For comparison, the reaction of JSE with lauroyl chloride in pyridine was carried out at a
temperature of 100 ◦C and reaction time of 2 h. The WG % of JL-Py is 105.5%. The WG % of JL in
scCO2 (100 ◦C, 2 h) is higher at 110.7%. This is because scCO2 acts as a swelling agent for JSE and
carrying agent for lauroyl chloride and pyridine, which promotes the esterification reaction.

The reaction of jute fiber with lauroyl chloride was then carried out in scCO2 (100 ◦C, 14 MPa,
2 h), and the resulting WG % of R-JL is 93.5%. The higher WG % of JL is attributed to CSESE
pretreatment providing a smaller fiber diameter and larger specific surface area, both of which promote
the esterification reaction.

3.4. Morphological Structure

The microstructures of jute and R-JL are shown in Figure 5. Figure 5a,f shows that jute has a
fibrous structure with a relatively smooth surface and protrusions created by cell cavities. The surface
contains debris left during the preparation of the jute fiber. The surface of R-JL is significantly different,
as shown in Figure 5b,g. Fiber bundles of R-JL undergo significant splitting, and bundles are destroyed
by the swelling of scCO2 and the rapid release of pressure after reaction. While separation is observed
in the intercellular layer, there is no obvious damage to the cell wall, so the cell diameter does not
change significantly. Therefore, the esterification product is produced mainly on the fiber surface.
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Figure 5. SEM images of jute (a,f), Jute laurate (R-JL, b,g), pretreated jute (JSE, c,h), JSE laurate prepared
in Pyridine (JL-Py, d,i), and JSE laurate (JL, e,j).

Figure 5c,h shows that the surface of JSE is rough and partly fractured as a result of CSESE
pretreatment [22,38,46]. CSESE damages and fractures the fiber bundles of jute fiber, generating small
irregular particles with rough and partly fractured surfaces.

The surface morphologies of JL-Py in Figure 5d,i and JL in Figure 5e,j differ significantly from
that of JSE. The surfaces of JL-Py and JL are rougher and are covered with a layer of material which
could be products of the reaction between JSE hydroxyl groups and lauroyl chloride. The surface
layer material of JL appears denser than that of JL-Py, indicating that the degree of esterification of
JSE in scCO2 is greater than that in pyridine. This is consistent with the result of the above contrast
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experiment. The average fiber diameter of JL is much larger than those of JL-Py and JSE. This could
be due to the swelling effect of scCO2 and the introduction of acyl substituents onto the internal cell
wall of cellulose. Thus, hydroxyl groups on both the JSE surface and internal wall are proposed to
be involved in the esterification reaction with lauroyl chloride. This leads to the high DS (1.10). The
swelling of JSE in scCO2 and esterification of the surface and interior hydroxyl groups of JSE also
disrupts partially crystalline regions and forms amorphous regions. This conclusion is consistent with
the 13CNMR results showing that crystalline regions of cellulose are partially destroyed and participate
in esterification. Compared with jute, JSE has a relatively small fiber diameter, a large specific surface
area, and higher accessibility, so the WG % of JL is higher than that of R-JL.

The surface morphologies of R-JL (Figure 5b,g) and JL (Figure 5e,j) also significantly differ. The
surface of fiber bundles in R-JL is covered with reaction products. JL has esterification products on the
surface and internal cell walls. This indicates that the degree of esterification in JSE should be higher
than that in jute, i.e., the WG % of JL is higher than that of R-JL. This is because the internal cell walls in
JL are also involved in esterification, so the diameter of fiber bundles in JL is larger. This is consistent
with the above control experiment results.

3.5. Crystallization Properties

XRD patterns of JSE and JL are shown in Figure 6a. JSE exhibits the typical diffraction pattern of
cellulose type I, with the main diffraction peaks at 2θ = 16.0◦, 22.6◦, and 34.6◦ [30]. The XRD pattern
of JL differs to that of JSE. The former contains an additional peak at 2θ = 19.86◦, which is due to
ordering of the long-chain fatty acyl groups of the cellulose chains [2,47]. This result is consistent
with the conclusion that JSE is esterified with lauroyl chloride. The relative weakening of cellulose
diffraction peaks (2θ = 22.6◦) after esterification is attributed to the reduction of hydroxyl groups. This
is because crystalline regions of cellulose are partially destroyed and participate in esterification. This
result is consistent with the above 13CNMR result. The intensity of the 2θ = 19.86◦ peak increases with
increasing scCO2 pressure. This demonstrates that the degree of reaction increases with increasing
scCO2 pressure, so the amount of hydroxyl groups on cellulose decreases, while the amount of long
chain fatty ester groups on cellulose increases. This is because the degree of esterification increases
with increasing scCO2 pressure, i.e., the degree of substitution of lauroyl groups increases. However,
the WG % of JL decreases with increasing scCO2 pressure. This may be due to a reduction in free
volume, and/or the degradation of JL caused by a small amount of free HCl, and/or a fraction of extracts
and lignin from the JSE matrix being extracted by scCO2 at high pressure (16MPa).
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Figure 6. X-ray diffraction (XRD) patterns (a), thermogravimetric (TG) curves (b), and differential
thermogravimetric (DTG) curves (c) of pretreated jute (JSE) and JSE laurate (JL).

3.6. Thermal Properties

Substituents have a greater impact on the thermal stability of cellulose and its derivatives [48].
Therefore, the thermostabilities of JSE and JL were investigated using thermogravimetric (TG) and
differential thermogravimetric (DTG) analyses. The results are shown in Figure 6b and c, respectively.
The initial decomposition temperatures of JSE and JL are 355.2 and 289.8 ◦C, respectively. The
temperatures at the maximum rate of weight loss for JSE and JL are 370.1 ◦C and 311.3 ◦C, respectively.
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These results show that the thermal stability of JL is lower than that of JSE. This is attributed to the
introduction of less stable side chains (lauroyl groups). It is also attributed to the reduction of hydroxyl
groups, which leads to disruption of intermolecular and intramolecular interactions such as hydrogen
bonds of JSE chains. Crystalline regions of cellulose are partially destroyed during esterification, so JL
with a looser and more disordered structure is more easily thermally decomposed. The decomposition
temperature range of JL is also narrower than that of JSE. This may be caused by two reasons. The
first is the "inducing" effect of the lauroyl groups. Lauroyl groups have a lower thermal stability
than hydroxyl groups. Introducing lauroyl groups into the molecular chain of cellulose induces the
degradation of cellulose. The temperature of the maximum thermal degradation rate decreases, and
the temperature range of thermal degradation becomes narrower. The second reason is that hydroxyl
groups (–O–H) of cellulose chains are replaced by ester bonds (–O–C) during the esterification of JSE.
The –O–H bond energy (463 kJ/mol) is greater than that of –O–C (326 kJ/mol). Therefore, the thermal
stability decreases during esterification, and the temperature range of the thermal degradation of JL is
narrower than that of JSE.

3.7. Hydrophobic Properties

CA measurements were carried out for JSE and JL to evaluate their hydrophobicity. Water droplets
spread and are quickly absorbed by JSE, so the CA is difficult to measure. This occurs because the
individual fibers are not tightly integrated, and the water droplet readily penetrates into the fiber
which indicates that JSE is highly hydrophilic, and is expected because of the high hydroxyl group
content of its cellulose fibers. Water droplets on JL samples prepared at various scCO2 pressures all
have similar appearances. An optical image of a water droplet on JL is shown in Figure 7a, and CA
values for specific samples are given in Table 1. The CA of JL increases with increasing scCO2 pressure,
and all CA values are >90◦. This indicates that JL is hydrophobic. The maximum CA is 118.1◦, which is
higher than values from reported studies [30,31]. There are two possible reasons for this. Hydrophobic
lauroyl groups are introduced into the macromolecular chains of cellulose in JSE during esterification.
Lignocellulose also significantly swells in scCO2, which increases the DS (up to 1.10) and increases
the hydrophobicity of JL. The CA first increases and then decreases with increasing scCO2 pressure,
reaching a maximum at 14 MPa (JL-14). This is because the degree of esterification first increases
and then decreases with increasing pressure, and the degree of esterification is highest at 14 MPa.
Lauroyl groups are hydrophobic, so the CA of JL-14 reaches its highest among the tested samples. This
conclusion is consistent with the XRD results and effect of scCO2 pressure on the WG %.
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Table 1. Water contact angles of the various samples.

Sample JL-8 JL-10 JL-12 JL-14 JL-16

Contact Angle (◦) 105.4 106.4 107.1 118.1 109.8

Note: JL: JSE laurate prepared in supercritical carbon dioxide, the number represents the pressure of scCO2.
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3.8. DMA

Figure 7b,c shows the storage modulus (E′) and loss factor (tan δ) of JSE and JL as a function of
temperature. It can be seen from the figure that as the temperature increases, the storage modulus (E′)
of JSE slowly decreases, when the temperature reaches 60 ◦C, E′ begins to rise rapidly, and then E′

drops rapidly again, a loss tangent peak was observed at about 90 ◦C, and this mechanical state change
behavior may be a glass transition caused by lignin [38]. Compared to JSE, the DMA curve of JL is
significantly different. JL exhibits a first relaxation at below room temperature, as revealed by a first
drop in E′ associated with a loss tangent peak. The first loss peak (tanδ1, –26 ◦C) is attributed to the alkyl
side chain fraction not involved in the crystalline phase [36]. When the length of the side-chain alkyl
group is greater than or equal to 12 carbon atoms, the side chain of the long-chain fatty ester of cellulose
is partially crystalline [31]. When the temperature increases, a slow drop of E′ is observed accompanied
by a broad loss tangent peak, which is caused by the overlap of the two loss peaks. The temperature of
the two loss peaks is 119 ◦C and 151 ◦C, respectively. This mechanical relaxation behavior may be
caused by the skeleton movement of the molecular chain and the "boat-chair" conformational structure
of the glucose ring or the movement of the side chain oxycarbonyl group [28,29,33], that is, the change
in mechanical state caused by modification of cellulose. The glass transition temperatures of cellulose,
hemicellulose and lignin are 220–250 ◦C, 150–220 ◦C, and 130–205 ◦C [49], respectively. Compared
with the three main components, JL has a lower mechanical relaxation temperature, and the storage
modulus E′ of JL shows the characteristics of thermoplastic materials. This means that JL has certain
thermoplastic characteristics, and the thermoplastic properties of JL is improved.

3.9. Mechanical Properties

JSE has a large amount of hydrogen bonding and high crystallinity, so is difficult to plasticize
and process. JL has a tensile strength of 5.37 MPa and a fracture strain of 4.65%, indicating that it
has better thermoplastic properties than JSE. The tensile strength of JL is higher than the reported
previously [36]. This is because a large amount of lauroyl groups are grafted onto the cellulose chains in
JSE. Lauroyl groups exhibit good thermoplasticity, so JL also exhibits relatively good thermoplasticity.
The preparation of JL involves full-component jute fiber, so the JL matrix contains a certain amount of
lignin and other components. The presence of lignin with its lower Tg promotes the plasticization of
JL. Therefore, JL exhibits better thermoplasticity than JSE.

3.10. Oil Absorption Performance

To investigate the oil absorption performance before and after the esterification of JSE, the oil
absorption ratios of JSE and JL were tested using soybean oil. The oil absorption ratios of JSE and JL are
8.42 and 17.01 g/g, respectively, which is explained by the higher surface roughness after esterification,
as shown in Figure 5. After esterification, a large amount of laurate groups are introduced into JL,
and the hydrophobicity of these groups increases the oil absorption ratio. The esterification of JSE
also lowers the surface energy, which promotes the wetting of JL by the soybean oil. Therefore, the oil
absorption ratio of JL is higher than that of JSE.

4. Conclusions

A two-step method involving CSESE pretreatment and subsequent esterification in scCO2 is
used to prepare JL. Compared with esterification without CSESE pretreatment or esterification carried
out in pyridine, the two-step method is favorable in modifying the jute fiber. CSESE pretreatment
enhances the fiber reactivity, and scCO2 can then transport reagents to the fiber interior because
of its high permeability. These factors lead to a high modification efficiency, with the degree of
substitution reaching 1.1. JL prepared through the two-step method has a tensile strength of 5.37 MPa
and a fracture strain of 4.65%, so JL has better thermoplastic properties. And the glass transition
temperature of JL is 119 ◦C, indicating JL has a wide plasticizing processing window. In addition,
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JL has a better oil absorption ratio of 17.01 g/g and can be used as a biodegradable oil absorption
material. Besides, the CSESE pretreatment is low energy consumption, no pollution, suitable for
industrialization, and the esterification modification method is environmentally friendly, low energy
consumption and high efficiency. Therefore, this method can be widely applied to plasticize and
hydrophobicize of lignocellulose.
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