
Research and Applications

Automatic gender detection in Twitter profiles for health-

related cohort studies

Yuan-Chi Yang1,, Mohammed Ali Al-Garadi1, Jennifer S. Love2, Jeanmarie Perrone3,

and Abeed Sarker1,4

1Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA2Department of Emergency

Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA3Department of Emergency Medicine,

Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA and 4Department of Biomedical Engi-

neering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA

Corresponding Author: Yuan-Chi Yang, PhD, Department of Biomedical Informatics, School of Medicine, Emory University,

101 Woodruff Circle, 4th Floor East, Atlanta, GA 30322, USA; yuan-chi.yang@emory.edu

Received 21 January 2021; Revised 27 April 2021; Editorial Decision 3 May 2021; Accepted 4 May 2021

ABSTRACT

Objective: Biomedical research involving social media data is gradually moving from population-level to tar-

geted, cohort-level data analysis. Though crucial for biomedical studies, social media user’s demographic infor-

mation (eg, gender) is often not explicitly known from profiles. Here, we present an automatic gender classifica-

tion system for social media and we illustrate how gender information can be incorporated into a social media-

based health-related study.

Materials and Methods: We used a large Twitter dataset composed of public, gender-labeled users (Dataset-1)

for training and evaluating the gender detection pipeline. We experimented with machine learning algorithms

including support vector machines (SVMs) and deep-learning models, and public packages including M3. We

considered users’ information including profile and tweets for classification. We also developed a meta-

classifier ensemble that strategically uses the predicted scores from the classifiers. We then applied the best-

performing pipeline to Twitter users who have self-reported nonmedical use of prescription medications (Data-

set-2) to assess the system’s utility.

Results and Discussion: We collected 67 181 and 176 683 users for Dataset-1 and Dataset-2, respectively. A

meta-classifier involving SVM and M3 performed the best (Dataset-1 accuracy: 94.4% [95% confidence interval:

94.0–94.8%]; Dataset-2: 94.4% [95% confidence interval: 92.0–96.6%]). Including automatically classified infor-

mation in the analyses of Dataset-2 revealed gender-specific trends—proportions of females closely resemble

data from the National Survey of Drug Use and Health 2018 (tranquilizers: 0.50 vs 0.50; stimulants: 0.50 vs 0.45),

and the overdose Emergency Room Visit due to Opioids by Nationwide Emergency Department Sample (pain

relievers: 0.38 vs 0.37).

Conclusion: Our publicly available, automated gender detection pipeline may aid cohort-specific social media

data analyses (https://bitbucket.org/sarkerlab/gender-detection-for-public).
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INTRODUCTION

Social media data are increasingly being used for health-related re-

search.1,2 Users often discuss personal experiences or opinions re-

garding a variety of health topics, such as health services or

medications.1–3 Such information can be categorized, aggregated

and analyzed to obtain population-level insights,4–8 at low cost and

in close to real time. It has thus been used as a resource for popula-

tion health tasks such as influenza surveillance, pharmacovigilance,

and toxicovigilance.9–11 While early research mostly attempted to

conduct observational studies on entire populations (eg, Twitter

users discussing flu),12 some recent studies have been moving to tar-

geted cohorts (eg, pregnant women,13 people in certain geo-loca-

tions,14 cancer patients,15 and people suffering from mental health

issues16–19). Demographic information about such cohorts can help

researchers investigate what roles demographics have in a given

study, understand if social media is biased toward specific cohorts,

and explicitly address these biases.20,21 Due to the importance of ex-

plicitly considering biological sex or gender in health research, fund-

ing agencies, including the National Institutes of Health, have

emphasized the necessity to describe sex/gender information of the

cohorts included in research studies (eg, through inclusion of

women).22 This, however, presents a challenge for social media-

based studies because the demographic information of the users are

often not explicitly known.

One solution is to infer the demographic information from the

users’ metadata. In the past two decades, researchers have developed

various automatic methods for characterizing users. Taking gender

detection on Twitter as an example, researchers have investigated

classification schemes based on the users’ (screen) names, profile

descriptions, tweets, profile colors, and even images, with machine

learning algorithms such as support vector machine (SVM), Naive

Bayes, Decision Tree, Deep Neural Network, and Bidirectional En-

coder Representations from Transformers (BERT).23–33 Some have

made their pipelines publicly available and have since been applied

to social media mining tasks. For example, Sap et al26 released a lex-

icon for gender and age detection and it was applied for mental

health research.16–18 Knowles et al28 released a package named De-

mographer to infer gender based on users’ first names and it was

later employed to infer gender in studies for influenza vaccination34

and mental health.19 Wang et al31 also released a multimodal deep

learning system (M3) to infer gender based on users’ profile infor-

mation, including pictures, (screen) names, and descriptions.

Though these existing pipelines can be directly applied to biomedical

tasks, there is still room for improvement, particularly for Twitter

data. First, none of these pipelines used all four of the users’ textual

attributes—names, screen names, descriptions, and tweets. This is a

missed opportunity and there is thus the possibility to further im-

prove upon these models by developing a pipeline capable of incor-

porating these four attributes or more. Second, these experiments

have not been validated on the same data, making it impossible to

perform direct comparisons of their performances. Third, to the best

of our knowledge, these pipelines were developed based on general

users, but have not been tested on gender-labeled, domain-specific

datasets. Benchmarking the performance variations due to domain

change can inform researchers about the applicability of these pipe-

lines on their specific tasks.

In this work, we aimed at developing a high-accuracy, automatic

gender classification system and evaluated its performance and util-

ity on a domain-specific dataset. In the following sections, we first

describe our experiments with various unimodal and multimodal

strategies and existing pipelines, and compare their performances on

a unified platform. We then discuss the benchmarking of the best

strategies on our domain-specific (Toxicovigilance) dataset, consist-

ing of a Twitter cohort of self-reported nonmedical consumers of

prescription medications (PMs). The benchmarking involves evalu-

ating performance scores on an annotated subset. To illustrate the

utility of this pipeline, we applied the best-performing approach to

compare the inferred gender proportions of a Twitter cohort with

traditional, trusted sources.35,36 The source code for gender detec-

tion experiments described will be made open source (https://bit-

bucket.org/sarkerlab/gender-detection-for-public).

MATERIALS AND METHODS

This study was approved by the Emory University institutional re-

view board (IRB00114235).

Gender detection pipeline development
Data collection

We collected gender-labeled datasets for general Twitter users, re-

leased by previous work.25,33 The data from Liu and Ruths25 con-

sists of 12 681 users with binary annotations obtained via

crowdsourcing through Amazon Mechanical Turk.37 Each instance

was coded by three annotators and a label was accepted only if all

three annotators agreed. The data from Volkova et al33 consists of 1

000 000 tweets, randomly sampled from the data in Burger et al,23
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which is labeled using users’ self-specified genders on Facebook or

MySpace profiles linked to their Twitter accounts. Both datasets

provide the users’ IDs and gender labels. Our focus is to develop the

informatics infrastructure to detect gender as Twitter users self-

identify themselves on the social media platform and we consider

the two annotation methods to fall within this definition. We com-

bined the two datasets and extracted users’ publicly available data

using Twitter API, including profile meta-data, such as handle

names, descriptions, and profile colors, as well as the users’ time-

lines (only English tweets were collected, while the retweets were ex-

cluded; users who had no original English tweets were dropped). We

called this dataset as Dataset-1 and split it into training (60%), vali-

dation (20%), and test (20%) sets for pipeline development.

Classification

We first developed classifiers based on single attributes (ie, unimo-

dal), including names and screen names, descriptions, tweets, and

profile colors. We then experimented with building meta-classifiers

based on the predicted scores from these classifiers (ie, multimodal).

The flowchart in Figure 1 illustrates our processing pipeline. In the

experiments, we considered machine learning algorithms including

SVMs,38,39 Random Forest (RF),40 Bi-directional Long Short-Term

Memory (BLSTM),41,42 and BERT,43,44 as well as existing resources

including the lexica released by Sap et al,26 the Demographer system

by Knowles et al28 and the M3 system (without profile picture) by

Wang et al31 Below we briefly outline each experiment, with further

details in the Supplementary Table S1.

Name and screen name. We applied package Demographer28 (DG)

on the users’ names. DG attempts to identify gender using character

n-grams of user’s first name, trained using the list of given names

from US Social Security data. Similar to DG, we trained an SVM

classifier for screen names using character n-grams.

Description. To classify gender using a user’s description, we experi-

mented with SVM, BLSTM, and BERT, approaches suited for free

text data. BERT is a transformer-based model that produces contex-

tual vector representations of words and achieves state-of-the-art

performance on many tasks.43,45 Many models with similar archi-

tecture have then been implemented and released.46,47

Each description was pre-processed by lowercasing and anonym-

izing URLs and user names. For SVM, the features are the normal-

ized term frequency of unigrams. For BLSTM and BERT, each word

or character sequence was replaced with a dense vector, and the vec-

tors were fed into the algorithms for training.

Tweets. Focusing on users who have a substantial number of tweets,

we selected users in the training data with at least 100 tweets and

merged all collected tweets as the training texts for experiments on

SVMs. The pre-processing is the same as that for the SVM classifier

using description. The regularization parameter was optimized

according to the validation accuracy.

Colors. We utilized 5 features associated with profile colors, includ-

ing background color, link color, sidebar border color, sidebar fill

color, and text color. Each profile color is represented using RGB

values, each ranging from 0 to 255. We collapsed each value into 4

groups, yielding 64 groups for each color. We then experimented

with SVM and RF.

Meta-classifier. We experimented with building SVM models on the

predicted scores from 4 different combinations of the classifiers:

• meta-1: SVM on tweets and M3.
• meta-2: SVM on tweets, M3, Demographer on name, and BERT

on description.
• meta-3: SVM on tweets, M3, and SVM on colors.
• meta-4: DM on names, SVM on screen names, BERT on descrip-

tion, and SVM on tweets.

Classification performance evaluation. The classification perfor-

mance evaluation is based on class-specific precision, recall, and F1

score, as well as accuracy (male and female combined). These met-

rics are defined as the follows:

Figure 1. Gender classification pipeline, from user profile to gender label.
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precision ¼ numberoftruepositiveinstances

numberofpositiveinstances

recall ¼ numberoftruepositiveinstances

numberofrelevantinstances

F1score ¼ 2

1=precisionþ 1=recall

accuracy ¼ numberofcorrectlyclassifiedinstances

numberofinstances

where F1 score is the harmonic mean of precision and recall. We

also calculate the area under the receiver operating characteristic

curve (AUROC). The receiver operating characteristic curve presents

the relationship between the true positive rate and the false positive

rate under different threshold and the AUROC provides a measure

for the performance. The range of AUROC is from 0 to 1, with 1 be-

ing the best.

Coverage. Some users have missing profile information such as

name or description or use non-English characters in the name field.

This may make the inference using the specific information impossi-

ble. Therefore, for each classifier, we show the percentage of users

whose genders can be inferred from the relevant profile information

(as “coverage”) while the performance is evaluated using this subset

of users.

Application on Toxicovigilance dataset
Data collection

To conduct Toxicovigilance research using social media, we had col-

lected publicly available, English tweets mentioning over 20 PMs

that have the potential for nonmedical use or misuse. The lists of

PMs can be found in Supplementary Table S2. In our prior work,

we have developed annotation guidelines with our domain expert

(JP) and have annotated a subset consisting of 16 433 tweets.48 A

brief description of annotation guideline and example tweets are

given in Supplementary Tables S3 and S4, respectively. Based on this

set, we then developed automatic classification schemes to detect if

the tweets are describing self-reported nonmedical use (referred as

“misuse tweets” in the following).49 In this work, we used this clas-

sifier to classify a dataset collected from March 6, 2018 to January

14, 2020 and extracted the users’ publicly available data. We re-

ferred to this set as Dataset-2. We also grouped users whose misuse

tweets could be geo-located in the United States as a subset (Data-

set-2-US).50

Since Dataset-2 did not have manual binary annotations, we re-

lied on a secondary source to identify a user’s gender—their self-

identified gender information on the linked public Facebook pro-

files—whenever possible. These users make up the test set of

Dataset-2 for benchmarking.

Classification performance

We applied the best-performing classification strategies on the test

set of Dataset-2 to evaluate their performances. This serves not only

as a benchmarking of how those pipelines perform on the Toxicovi-

gilance dataset (Dataset-2) but also provides a measure of the trans-

ferability of our pipelines across research problems.

Gender distribution inference

To assess the utility of our cohort characterization pipeline on a

health surveillance related task, we applied the best-performing clas-

sification pipeline on Dataset-2 (and Dataset-2-US) and analyzed the

gender distributions of the users who had self-reported misuse/abuse

on one of the three abuse-prone PM categories—stimulants (eg,

AdderallV
R

), which can increase alertness, attention, and energy and

are mostly prescribed to treat Attention Deficit Hyperactivity Disor-

der, tranquilizers (eg, alprazolam/XanaxVR ), which slow brain activ-

ity and are mostly used to treat anxiety, and pain relievers (eg,

Oxycodone/OxyContinVR ), specifically for those containing

opioids.35,51 We then compared the distributions with metrics from

the 2018 NSDUH,35 as well as the overdose-related Emergency De-

partment Visits (EDV) in 2016 from the Nationwide Emergency De-

partment Sample (NEDS).36 The details of the calculation are given

in the Supplementary Materials. We performed Pearson’s Chi-

squared test for contingency table to determine if the differences in

the proportions of females inferred from the different sources (Twit-

ter vs survey data) are statistically significant, defined as P-value <

0.05.

RESULTS

Gender detection pipeline development
Data Collection (Dataset-1)

In total, we were able to retrieve the user data from 67 181 users,

consisting of 35 812 (53.3%) females (F) and 31 369 (46.7%) males

(M), which is close to the distribution estimated by Burger et al23

and Heil and Piskorski52 (55% female and 45% male) but deviate

from the distribution estimated by Liu and Ruths25 (65% female

and 35% male). The distribution is presented in Table 1.

Classification

The performance (F1-score, accuracy, and AUROC) for each classi-

fier and meta-classifier is presented in Table 2, while the precisions

and recalls are presented in the Supplementary Table S5. We now

highlight the main findings.

The best performing classification schemes were the meta-

classifiers using predicted scores from M3 and SVM on tweets

(meta-1, 2, 3), with accuracies around 94.4%. The second best

scheme was meta-4, with an accuracy of 92.5%. These all per-

formed better than existing pipelines, including the lexicon (86.5%),

the Demographer (80.2%), and M3 (90.0%), and other unimodal

classifiers.

Application on toxicovigilance dataset
Data Collection (Dataset-2)

We were able to retrieve past data from 176 683 users for Dataset-2

(63 306 users for Dataset-2-US). Less than 0.3% of the users (412)

had publicly available gender information from linked Facebook

Table 1. Data distributions for the training, validation and test sets

from Dataset-1

Dataset F M Total

Training (Dataset-1) 21 521 18 788 40 309

Validation (Dataset-1) 7133 6303 13 436

Test (Dataset-1) 7158 6278 13 436

Total (Dataset-1) 35 812 31 369 67 181
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profile pages. One hundred fifty-five out of 412 users in this subset

were female (37.6%), while 257 users were male (62.4%).

Classification performance

The performances of the pipelines on the test set of Dataset-2 are

shown on Table 3 (precisions and recalls are on Supplementary Ta-

ble S6). The best performing pipeline was meta-1 (accuracy 94.4%).

Besides M3 and meta-1, all the classifiers experience performance

drops possibly due to domain change. Here, we left out meta-2 and

meta-3 because meta-1 provides comparable performance while be-

ing simpler. We also note that the accuracy of meta-1 is 95.8%

(95% confidence interval 93.3–98.3%) when restricted to users

whose misuse tweets could be geo-located in the United States (239

users with 103 females and 136 males).

Gender distribution inference

We applied meta-1 on all the users and analyzed the gender distribu-

tions for the users who have self-reported abuse/misuse of tranquil-

izers, stimulants, or pain relievers (opioids). In Table 4, we report

the number of users for each category, and the percentage of males

and females, inferred through the classification results (meta-1), and

reported by NSDUH 2018.35

Although the users in Dataset-2-US are only roughly one-third of

all users in Dataset-2, the gender proportions are close to each other.

For tranquilizer and stimulants users, the gender proportions in-

ferred from Twitter are very close to the comparator from NSDUH

2018 (with no statistically significant difference for tranquilizer

users). In contrast, the gender proportions of pain reliever users are

quite different from the comparator from NSDUH 2018, but much

closer to the overdose EDV from NEDS.36 This suggests that Twitter

data could be an indicator of the gender distribution of opioid over-

doses and might provide complementary information to better un-

derstand the discrepancies between the aforementioned two

traditional data sources.

DISCUSSION

Model performance and improvement
Meta-1 performs with high accuracy consistently across Dataset-1

(94.4%) and Dataset-2 (94.4%), better than all the existing pipe-

lines and other classifiers on this platform. This shows building the

gender detection pipeline based on the four prominent textual fea-

tures (name, screen name, description, and tweets) can improve per-

formance over existing approaches. Also, except meta-1 and M3, all

classifiers performed worse on the domain-specific data. This illus-

trates the importance of benchmarking the existing machine learn-

ing systems on the targeted cohorts, in order to evaluate their

applicability on the desired tasks. It also indicates that multimodal

strategies could enhance the robustness of the system against unseen

data and is thus desirable when building similar user-

characterization pipelines.

Table 2. Test results (on Dataset-1) for classifiers and meta-classifiers

Feature/method F1 score (95% CI) (0.XXX) Coverage (%) Accuracy (95% CI) (%) AUROC

F M

Name/DG 802 (795–810) 802 (795–809) 98.1 80.2 (79.5–80.9) 0.878

Screen name/SVM 748 (740–756) 719 (710–728) 100.0 73.4 (727–742) 0.817

Description/SVM 728 (719–736) 693 (683–703) 88.9 71.1 (70.3–72.0) 0.796

Description/BLSTM 724 (716–733) 665 (655–675) 88.9 69.7 (68.9–70.6) 0.781

Description/BERT 790 (782–797) 757 (748–766) 88.9 77.4 (76.7–78.2) 0.873

Tweets/SVM 893 (888–898) 879 (872–885) 100.0 88.6 (88.1–89.2) 0.933

Tweets/Lexicon 874 (868–880) 856 (849–862) 100.0 86.5 (86.0–87.1) 0.917

Profile/M3 903 (897–908) 898 (893–903) 100.0 90.0 (89.5–90.5) 0.968

Colors/SVM 671 (662–682) 649 (640–659) 100.0 66.1 (65.3–66.9) 0.712

Colors/RF 660 (651–669) 640 (630–649) 100.0 65.0 (64.2–65.8) 0.692

Meta-1 947 (944–951) 940 (936–944) 100.0 94.4 (94.0–94.8) 0.965

Meta-2 947 (943–951) 939 (935–944) 100.0 94.3 (93.9–94.7) 0.971

Meta-3 948 (944–952) 941 (937–945) 100.0 94.5 (94.1–94.9) 0.966

Meta-4 930 (925–934) 920 (915–925) 100.0 92.5 (92.1–92.9) 0.953

Table 3. Test results (on Dataset-2, for users who have revealed gender information on Facebook) for classifiers and meta-classifiers

Feature/method F1 score (95% CI) (0.XXX) Coverage (%) Accuracy (95% CI) (%) AUROC

F M

Name/DG 717 (655–773) 833 (796–867) 94.9 79.0 (74.9–82.9) 0.844

Screen name/SVM 692 (634–745) 776 (732–816) 100.0 74.0 (69.7–78.2) 0.838

Description/BERT 674 (616–727) 715 (663–762) 94.9 69.6 (65.0–74.2) 0.839

Tweets/SVM 821 (772–865) 894 (864–921) 100.0 86.7 (83.3–89.8) 0.916

Tweets/Lexicon 770 (717–818) 846 (810–879) 100.0 81.6 (77.7–85.2) 0.889

Profile/M3 894 (855–928) 936 (913–956) 100.0 92.0 (89.3–94.4) 0.974

Meta-1 927 (894–954) 955 (935–972) 100.0 94.4 (92.0–96.6) 0.964

Meta-4 885 (846–919) 926 (902–949) 100.0 91.0 (88.1–93.7) 0.955
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Moving forward, there are two directions to further improve the

pipeline, inclusion of targeted cohort into training data and experi-

menting with additional classification algorithms/architectures. For

example, incorporating multiple features in one system, similar to

the M3 system,31 might further improve the performance. We chose

our architecture based on model simplicity and development effi-

ciency. We note that, though potentially complex and time-

consuming, it is possible to design and train a model that learns

from all the user’s attributes simultaneously and performs well, in

contrast to our architecture that learns these information through a

transformed knowledge—the predicted scores. We leave this investi-

gation to future work.

Potential pipeline utility
Given that our pipeline performs well across domains and shows

promising results on the external task (eg, inferring gender propor-

tions), we believe that this pipeline is well-suited for application on

medical/health tasks harnessing Twitter data. This pipeline can be

used to infer the gender proportions in targeted cohorts and poten-

tially help investigate the gender disparities in health topics of inter-

est. For example, social media has been shown to be a potentially

excellent resource for conducting large-scale mental health surveil-

lance,19,53,54 and our methods can be used to derive gender-specific

insights from such surveillance tasks. Tasks commonly performed

using social media data, such as sentiment analyses regarding tar-

geted topics, may also benefit from the gender-specific characteriza-

tions enabled by our system.55,56 Combined with other recently

developed methods, such as geolocation-based characterization of

social media chatter,14,50 our methods can provide very unique

insights over a given population of social media users.

Toxicovigilance
Our post-classification analyses of the PM cohort illustrated the util-

ity of automatic gender classification on social media data. The

closeness of the gender proportions of tranquilizer and stimulant

misusers from Twitter and those from NSDUH 2018 validates the

effectiveness applying social media mining for Toxicovigi-

lance.10,57,58 The inferred gender proportion of pain reliever users,

though different from NSDUH 2018, is almost identical to that of

the overdose EDV according to the NEDS. This association between

self-reports of drug use on Twitter and overdose EDV rates is consis-

tent with our past research,14 in which we identified significant asso-

ciations between opioid misuse reports on Twitter and overdose

deaths over specific geolocations (eg, counties and sub-states). Social

media provides the opportunity to combine multiple types of infor-

mation, including past tweets, social connections, and geolocation.

All the information combined can provide geolocation-, gender- and

time-specific trends to extract insights, for example for gender

inequalities in medical treatment regarding substance use disor-

der.59–63 It potentially could also test hypotheses such as the associa-

tion between mental health issues and PM misuse.64,65 The

development of sophisticated models for social media mining may

even provide broad insights about how nonmedical users of pain

relievers become victims of overdose over time, and may even serve

as an early warning system.57,58,66–68 Furthermore, the surveillance

can be done close to real time—a great improvement over the turn-

around time for curating overdose statistics and conducting the

NSDUH, which may make timely public health intervention possi-

ble.69 For example, the system can provide the trends and statistics

to the local health department and hospitals for better preparation

for PM misuse prevention and treatment, and highlight cohorts at

higher risk.57,70 Note that we do not envision that social media data

analytics can replace the traditional resources, but we know from

the current state of research that it provides excellent complemen-

tary data, and the opportunity to provide information/intervention

beyond the traditional health services.

Limitations
Our pipeline may inherit the biases and errors introduced by the

data and resources used in the pipeline development, leading to sig-

nificant limitations. The lack of information related to the biases

(eg, race, primary language, or location) limits the performance and

our ability to address them. For example, the users in Dataset-1,

though having at least one English tweet, may not be representative

for US Twitter users (eg, by racial distribution). Our pipeline may

inherit this undetected bias. Also, using Demographer28 might intro-

duce bias toward racial majority. Though its effect on the test per-

formance might be detected, we are not able to remedy such biases

when the racial coding is absent. Also biases might be introduced

during annotation. For example, Dataset-1 and the test set of

Dataset-2 may be biased toward those whose gender identities are

public. Therefore, though the evaluation provides a measure of the

pipeline’s performance against human interpretation, it may not be

accurate on users whose genders are difficult to identify.

Besides, merging the two individually labeled datasets when con-

structing Dataset-1, though essential for obtaining acceptable train-

ing power and generalizability, could also affect annotation quality

by introducing inconsistency. Though the annotation methods

adopted in Liu and Ruths25 and Burger et al23 both fall within our

definition (gender identified on social media), we caution that these

methods are different and are not perfect. For example, some users

might use different gender identities on different platforms.

Crucially, limited by the annotations, our methods are only ap-

plicable to populations with binary gender identities. While this cov-

Table 4. Gender distributions for selected medication categories (inferred by the classifier/NSDUH 2018/overdose EDV 2016)

Medication category Number of users (geo-located in the US) Percentage of male/female

inferred (geo-located in the US) NSDUH 2018 overdose EDV 2016

Tranquilizers 62 471 (20 863) 0.499/0.501 (0.490/0.510) 0.499/0.501 —

Stimulants 93 598 (36,323) 0.504/0.496a (0.514/0.486a) 0.551/0.449 —

Pain relievers 38,299 (12,077) 0.621/0.379a (0.635/0.365a) 0.518/0.482b 0.630/0.370

aThe female proportion whose difference with the corresponding female proportion in NSDUH 2018 is statistically significant.
bAccording to the Appendix A in NSDUH 2018 (35), Glossary, “Although the specific pain relievers listed above are classified as opioids, use or misuse of any

other pain reliever could include prescription pain relievers that are not opioids. For misuse in the past year or past month, estimates could include small numbers

of respondents whose only misuse involved other drugs that are not opioids.”
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ers the majority of the population, our methods do not work for the

non-binary gender minorities—a community that has been shown to

be particularly vulnerable from a public health perspective.71–74 De-

spite this limitation, our proposed system not only serves as an im-

portant stepping stone for future work by establishing a strong

performance over the simplistic binary classification, but already

allows us to investigate the inequalities that women experience in

medical treatment (eg, for substance use disorder).59–63 Including

non-binary population in our model would require collecting data

from this population using coding schemes tailored for the differen-

ces within the population. Obtaining comprehensive demographic

information could also help extending our methods to include non-

binary users. We currently are in the early stage of exploring how to

best address these issues.

There are also significant limitations associated with the analysis

of nonmedical PM users. First, not all people living in the United

States use English primarily over social media. Limited by our infra-

structure, we currently are unable to capture Twitter users who use

languages other than English, but extending to other languages, spe-

cifically Spanish, is a planned future direction.75–77 Second, Twitter

users might choose not to include geo information in tweets, which

makes geo-locating impossible. For example, Dredze et al50 esti-

mated that only less than 25% of the public tweets could be geo-

located by their system. We caution that, because of this low pro-

portion, it is not clear if the tweets geo-located in the United States

can well represent the US tweets. For Dataset-2, we found that

roughly 40% of the users’ misuse tweets could be geo-located while

about 84% of them were located in the United States, and the gen-

der proportions inferred using Dataset-2 and those using Dataset-2-

US are very similar. Though this suggests that they might represent

similar populations, they may still not be representative of all US

Twitter users. Third, the detection of misuse tweets is based on a

classification pipeline, so the inference is also limited by this NLP

pipeline’s performance.49 Fourth, the data are limited to Twitter

users that are accessible via the Twitter API, and should not be con-

sidered as a random sample of US population.

Ethics
Though we limit this work to observational research on publicly

available data and adhere to Twitter API’s use terms, there is still

concern over Twitter users’ protection and their perceptions.78–81

To avoid potential harms to the users, we only study and report on

the aggregated data; no user’s data will be released. We also will

make the NLP pipeline publicly available (without the data) to en-

sure reproducibility, transparency to researchers and Twitter users,

and to support community-driven development. Only the scripts for

gender detection pipeline and our best performing pipeline will be

made available with this manuscript.

CONCLUSIONS

As social media-based health research focus is moving from

population-level to cohort-level studies, incorporating user demo-

graphic information is becoming more important. In this work, we

developed a gender detection pipeline and evaluated its performance

on a general dataset and a domain-specific dataset. Our proposed

pipeline shows high accuracy even when applied on a health-specific

dataset. We further showed that the pipeline can be used to infer the

nonmedical PM users’ gender distributions, which is consistent with

the statistical data reported by NSDUH 2018 (stimulants and tran-

quilizers) and by NEDS (overdose EDV due to Opioids). With the

much-needed growing attention on explicitly incorporating demo-

graphic information, such as gender and race/ethnicity, in research,

it is crucial to be able to conduct aggregated gender-specific analyses

of health-related social media data. Our pipeline is readily usable by

social media researchers who need to infer users’ demographics

from their data. We note that, besides gender, other demographic in-

formation, such as race or age are also important for research, and

developing pipelines for these user characterization tasks and evalu-

ating them on domain-specific datasets are part of our planned fu-

ture work.
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