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Abstract: Hepatitis B virus (HBV) infection persists as a major global health problem despite the
availability of HBV vaccines for disease prevention. However, vaccination rates remains low in
some regions of the world, driving the need for novel strategies to minimise infections and prevent
disease progression. Thus, understanding of perturbed molecular signaling events during early
phases of HBV infection is required. Phosphosignaling is known to be involved in the HBV infection
processes, yet systems-level changes in phosphosignaling pathways in the host during infection
remain unclear. To this end, we performed phosphoproteome profiling on HBV-infected HepG2-
NTCP cells. Our results showed that HBV infection drastically altered the host phosphoproteome
and its associated proteins, including kinases. Computational analysis of this phosphoproteome
revealed dysregulation of the pathways involved in immune responses, cell cycle processes, and
RNA processing during HBV infection. Kinase Substrate Enrichment Analysis (KSEA) identified the
dysregulated activities of important kinases, including those from CMGC (CDK, MAPK, GSK, and
CLK), AGC (protein kinase A, G, and C), and TK (Tyrosine Kinase) families. Of note, the inhibition of
CLKs significantly reduced HBV infection in HepG2-NTCP cells. In all, our study unravelled the
aberrated phosphosignaling pathways and the associated kinases, presenting potential entry points
for developing novel therapeutic strategies for HBV treatment.

Keywords: hepatitis B virus; phosphoproteomics; phosphosignaling; kinases; kinase inhibitor; kinome

1. Introduction

Hepatitis B virus (HBV) infection is the leading cause for liver fibrosis, cirrhosis, and
hepatocellular carcinoma (HCC) [1]. Despite the development of prophylactic vaccinations
against HBV, over 300 million people are still chronically infected with HBV and afflicted
with accompanying liver diseases, elevating the financial burden on the global healthcare
system [2]. Current HBV therapeutics include interferons (IFN) and nucleoside/nucleotide
analogue treatment. However, as such treatments are unable to effectively eliminate the
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viral genome from infected hepatocytes, recurrence of infection is common when treatments
are discontinued. To address the urgent need for novel therapeutic approaches in HBV, in-
depth knowledge of the molecular signaling and pathways associated with HBV infection
is required.

The HBV lifecycle is a multistep process involving both viral and host factors. To
initiate virus entry, the large surface HBV protein first interacts with the host sodium tauro-
cholate co-transporting polypeptide (NTCP) membrane transporter [3]. The HBV genome,
initially existing as a relaxed circular double-stranded DNA (rcDNA), is subsequently
transported to the host nucleus. At this point, the HBV DNA can either be integrated into
the host genome, or converted into covalently closed circular DNA (cccDNA) through host
DNA repair mechanisms [4]. Through subsequent interactions with host histones and HBV
core protein, the cccDNA is organised into a mini-chromosomes that serves as a stable
transcriptional template for the synthesis of viral proteins and progeny virions [5]. Adding
further complexity, viral and host factors involved in the infection process are also regulated
through post-translational modifications (PTMs) such as ubiquitinations, phosphorylations,
and methylations (reviewed in [6]). Among these, protein phosphorylation is increasingly
recognised as an important PTM that influences the HBV lifecycle. The phosphorylation of
Hepatitis B core protein (HBcAg) by kinases such as the serine-arginine rich protein kinase
1/2 (SRPK1/2) and Casein Kinase 2 (CK2) were reported to be vital for protein localisation,
pgRNA encapsidation, viral DNA synthesis, and virion maturation and secretion [7–10].
On a systemic level, protein phosphorylation is responsible for regulating host molecular
signaling pathways in response to external or internal stimuli. The interplay and dynamics
of phosphosignaling events, such as the TLR2/MyD88/NF-κβ, HIPPO, and cGAS-STING
signaling pathways reportedly regulate the outcome of HBV infection [11,12]. Phospho-
signaling events are also involved in the development of HBV-associated cirrhosis and
hepatocellular carcinoma, which are the main causes of liver morbidity and mortality in
chronic HBV patients [1]. For instance, the HBV X protein (HBx) was shown to facilitate
HCC development through the activation of phosphosignaling pathways such as the TGF-β
signaling pathway (reviewed in [13]).

The above studies clearly demonstrate that phosphorylation is one of the vital pro-
cesses in the regulation of HBV infection, playing key roles ranging from regulating
the immune responses to promoting HCC progression. However, the dynamics of the
global phosphorylation landscape during HBV infection remains poorly understood. Mass
spectrometry-based phosphoproteomics is a forefront technology for the unbiased iden-
tification and quantification of system-wide phosphoproteome changes. In combination
with advanced computational approaches, the rewiring of host signaling pathways during
HBV infection can be identified. Additionally, well-annotated protein phosphorylation
profiles and state-of-the-art bioinformatics can be used to identify kinome dynamics during
HBV infection [14]. Previously, such approaches have been successfully employed to study
the effects of phosphosignaling network changes in HBV-associated HCC [15]. However,
the understanding about modulations of the phosphorylation landscape during the initial
phase of HBV infection remains enigmatic. Here, we report the identification of dysregu-
lated molecular signaling events in early-stage HBV infection through a comprehensive
phosphoproteomics analysis of HBV-infected HepG2-hNTCP-C4 cells (HepG2-NTCP).
Our analysis revealed the rewiring of the host kinome and phosphosignaling events
at seven days post-HBV infection with key kinases as potential therapeutic targets for
HBV treatment.

2. Results
2.1. Altered Phosphoproteome Landscape during HBV-Infection

To understand the rewiring of phosphosignaling events during HBV infection, a global
phosphoproteomics analysis was performed using HBV-infected HepG2-NTCP cells at
seven dpi. Mock-infected HepG2-NTCP cells at seven dpi were used as controls. To identify
and quantify global phosphorylation changes, we employed the tandem mass tag (TMT)-
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based phosphoproteomics approach (workflow shown in Figure 1A). Based on the HBV
pgRNA levels, we observed a MOI of 3000 to be sufficient for obtaining a measurable level
of infection at seven dpi. (Figure 1A and Supplementary Figure S1). Through this analysis,
we identified 10,109 phosphosites, of which 9825 sites are with high-quality quantification.
These sites were derived from 7468 phosphopeptides (2677 phosphoproteins). The majority
of these peptides (73%) harbor a single phosphosites, while 23% and 4% have double and
triple site-occupancies, respectively (Figure 1B). Of the quantified phosphosites, 72% have
a localisation probability of more than 0.98, among which 92%, 8%, and 0.4% of the
phosphosites are pSerine(S), pThreonine(T), and pTyrosine(Y), respectively (Figure 1B). In
comparison to the Phosphosite Plus database [16], 29% of our identified phosphosites were
novel and unique to our dataset.

Unsupervised hierarchical clustering and Principal Component Analysis (PCA) anal-
ysis showed tight clustering among the replicates while forming distinct clusters between
HBV and mock infected replicates (Supplementary Figure S2A,B), thereby indicating the
high reproducibility of our dataset. Using the criteria of TMT ratio >1.3 (up-regulation) and
<0.769 (down-regulation) with a p-value <0.05, we identified 413 phosphosites on 340 phospho-
peptides (269 proteins) with increased abundance and 271 phosphosites on 198 phosphopeptides
(145 proteins) with decreased abundances (Figure 1C and Supplementary Table S1), thereby
implying substantial changes to the host phosphorylation landscape at seven dpi. Substantially
higher number of phosphorylation events (413) as compared to dephosphorylation (273) were
observed, suggesting a global enhancement of kinase activity during infection. Based on the
annotations from the UniProt database, the proteins identified with altered phosphorylation
changes are known phosphoproteins, demonstrating high phosphopeptide recovery efficiency.
Additionally, some of them are associated with host–virus interactions, confirming the suitability
of this model in studying the host response to HBV infection (Figure 1D).

2.2. Dysregulation of Biological Processes during HBV Infection

To evaluate the global changes of biological processes upon seven dpi, a Gene On-
tology Biological Process (GO-BP) functional annotation of the differentially regulated
phosphoproteins was performed using ClueGO [17]. Proteins with increased phosphoryla-
tion were shown to be associated with 159 representative GO-BP terms, forming 44 ClueGO
clusters based on kappa scoring (Figure 2). Among these, seven main ClueGO clusters
containing a high significance of GO-BP terms were observed (Supplementary Figure S4).
The main clusters include RNA processing, regulation of supramolecular fibre organisation,
golgi vesicle transport, cellular response to insulin stimulus, protein localisation to cell–cell
junctions, ERBB signaling pathway, and exogenous antigen processing and presentation
(Figure 2). In contrast, the functional annotation of proteins with decreased phosphory-
lation was only assigned to 20 representative GO-BP terms (Supplementary Figure S3).
Some of the significant (p-value < 0.05) GO-BP terms associated with this group of pro-
teins include the cellular response to interleukin-4 (IL-4), positive regulation of histone
modification, and membrane assembly (Supplementary Figure S3). These results suggest
that, HBV infection at seven dpi causes significant changes to host biological processes,
especially through the upregulation of protein phosphorylation, which is likely owed to
the respective kinase activation.

The activation and regulation of the innate host immune system are among the first
host defences against viral infection. To determine whether these proteins with altered
phosphorylation are involved in the host immune responses, a limited GO enrichment
assay was performed against GO terms related to immune system processes (ISP). Of the
356 proteins identified with altered phosphorylation, 74 were annotated to 45 representative
GO-ISP terms such as granulocyte activation and neutrophil degranulation and activation,
among others (Supplementary Figure S5C). The heatmap depicting the normalised abun-
dance (z-score) of these phosphosites is shown in Supplementary Figure S5D. Based on
kappa score grouping, these 45 representative GO-ISP terms can be grouped into seven
clusters (Supplementary Figure S5A). These clusters were represented by GO terms that are
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linked to granulocyte differentiation and activation, B-cell proliferation, antigen processing
and presentation, hematopoietic stem cell differentiation, activation of innate immune
responses, and defence responses to a virus (Supplementary Figure S5A). Among these,
GO-ISP terms that are grouped in granulocyte activation were statistically significant, with
an adjusted p-value of <0.05 (Supplementary Figure S5B).
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Figure 1. Dysregulation of host phosphoproteome detected during HBV infection (A) Left Panel:
Schematic representation of TMT-based mass spectrometry strategy for phosphoproteome profil-
ing of HBV infection. Phosphoproteome profiling was performed on HepG2-NTCP cell line in-
fected with HBV at seven days post infection (dpi) at 3000 MOI. Mock infected cells were used as
controls. Five biological replicates for both mock and infected HepG2-NTCP. Right panel: High
pgRNA expression level detected at seven dpi. (B) A total of 10,109 phosphosites were identified,
mapping to 7468 phosphopeptides, and 2677 proteins. The pie charts depict the phosphopeptide
and phosphosites distributions (C) Volcano-plot of phosphopeptides with up- and down-regulated
phosphorylation. Phosphopeptides were considered differentially regulated when fold change of
HBV/Mock is >1.3 [upregulated, Log2(FC) > 0.378] and <0.769 [downregulated, Log2(FC) < −0.378]
in addition to p-value <0.05, as determined by the Student’s t-test (D) UniProt keywords linked to
proteins with deregulated phosphorylation. Only keywords with FDR <0.05 are shown.
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Figure 2. Gene Ontology Biological Process (GO-BP) analysis of proteins with upregulated phospho-
rylation using ClueGO. Main ClueGo clusters denoted by dashed line.

2.3. HBV Infection-Induced Host Kinome

To investigate how the kinases were affected during HBV infection, we examined
the kinases quantified in our data and found that the phosphorylation of 28 kinases were
altered during HBV infection (Figure 3A). Of these, the upregulation of serine/arginine-rich
protein specific kinase (SRPK1) phosphorylation at ser482 was a particularly intriguing
novel phosphosite (refer to Supplementary Figure S6 for MS/MS spectra). Moreover,
SRPK1 regulates the phosphorylation of the HBcAg C-terminal domain (CTD) region,
which is a process known to be vital in the HBV lifecycle [18].
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Figure 3. Host kinome alteration during HBV infection (A) Heatmap (z-score) illustration of identified
kinases with deregulated phosphorylations (B) Kinase activity plot depicting estimated kinase
activities during HBV infection. Kinases with enhanced activities are labelled in red, while kinases
with decreased activities are in blue. Kinases with no changes in activity are not labelled. CK2a2,
DAPK3, CK2alpha, and CK1alpha are not shown due to their off-the-chart activity scores. (C) Kinase
phylogenetic tree depicting kinase families deregulated during HBV infection.
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Next, the changes in kinase activities during HBV infection were estimated based
on the kinase–substrate relationship using KSEA through NetworKIN [14]. Based on this
prediction, the activities of 34 kinases, including CDK1/2, CK1, CK2, and MAPKs were
predicted to be upregulated. In contrast, the activities of only 14 kinases, such as Fyn,
Src, and PKCs, were predicted to be downregulated during HBV infection (Figure 3B). To
gain an overview of the dysregulation of the host kinome during infection, kinases with
observed modulated activities and altered phosphorylation were mapped to the kinase
phylogenetic tree using KinMap [19]. This mapping indicated that most of the kinases
with augmented activities belong to the CMGC (CDK, MAPK, GSK, and CLK) kinase
group (Figure 3C). On the other hand, kinases with impaired activities during infection
mainly belonged to the TK (Tyrosine Kinase) group (Figure 3C). Together, these results
revealed drastic changes in the host kinome that could trigger the dysregulation of key
host regulatory pathways during HBV infection.

2.4. Rewiring of Host Phosphosignaling Pathway during HBV Infection

To further determine which host pathways are affected during HBV infection, the
annotation of dysregulated kinases against the KEGG pathway database revealed that the
kinases are involved in several signaling pathways. Broadly, we observed two main associ-
ated functional pathway categories: (i) host response to pathogen infection, which includes
Yersina infection, Hepatitis B, platelet activation, herpesvirus infection, and Epstein-Barr
virus infection; and (ii) tumour progression and cancer-related pathways, including HCC
and viral carcinogenesis (Figure 4A,B).

Sixteen (24%) of the dysregulated kinases identified in this study were mapped to
the KEGG pathway database entry, “Hepatitis B” (entry: map05161), which is a collection
of signaling pathways involved in regulating HBV infection (Figure 4B). Several kinases,
such as TGFβRII, JNK, CKD1/2, and AKT kinases, were associated with signaling path-
ways that modulate oncogenesis, apoptosis, cell proliferation, and HCC invasion and
metastasis. These signaling pathways include TGF-β, PI3K-AKT, SAPK/JNK, and MAPK
signaling pathways (Figure 4B). Several kinases, such as p38, ERK, AP-1, and MKK4/7,
were mapped to the TLR/MyD88-dependent pathway, which is known to regulate the
host innate immune responses to viral infection (Figure 4B). Interestingly, the majority of
these were predicted to have higher kinase activities, which suggest that the host immune
response is activated through the TLR/MyD88-dependent pathway during HBV infection.
This is consistent with several reports where HBV can elicit a limited host innate immune
responses [20]. Taken together, our observations confirm that HBV infection rewires diverse
host signaling pathways during infection.

2.5. Assessing Deregulated Kinases as Therapeutic Targets for HBV

To decipher how the phosphorylation landscape is deregulated during HBV infection,
we constructed a phosphorylation network between the kinases that are predicted and
experimentally observed in this study, with their corresponding dysregulated substrates
(Figure 5A). This network was constructed, using only experimentally observed substrates
and reported kinase–substrate pairs, resulting in a much smaller kinase–substrate net-
work. This was done to facilitate identification of potential kinase therapeutic targets.
The constructed phosphorylation network revealed two kinase–substrate network hubs
surrounding CDK1 and CDK2, where several substrates with altered phosphosites were
observed. Additionally, several MAP kinases and their substrates were also represented
in the kinase–substrate network (Figure 5A). This reconstructed network suggests that
kinases such as CDK1, CDK2, and MAP kinases could play vital roles in regulating HBV
infection through the modulation of phosphosignaling pathways, which is consistent with
their reported roles during HBV infection [21,22].
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Figure 4. Involvement of dysregulated kinases during HBV infection in various signaling pathways
(A) KEGG pathway terms associated with kinases deregulated during HBV infection. (B) Mapping of
kinases with deregulated activities to pathways involved in HBV infection. Nodes in red depict kinases
with enhance activities, while nodes in yellow are kinases with lower activities during HBV infection.
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Figure 5. Inhibition of HBV responsive kinase decreases HBV infection (A) Kinase–substrate network
of the deregulated phosphorylation events observed experimentally. Phosphosites labelled in blue are
reported while those labelled in pink are novel phosphosites. (B) Effects of CLKs inhibition on HBV
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infection in HepG2-NTCP cells. HepG2-NTCP was treated with 1 µM of MU1210 (inhibitor) and
1 µM of MU140 (control) during HBV infection. PgRNA level, intracellular cccDNA level, and
HBeAg secretion were used as indicators for HBV infection efficiency. Results shown were derived
from three biological replicates and p-value was calculated using the Student’s t-test (two-tailed,
* p-value < 0.05, ** p-value < 0.01).

Although the CLKs did not form any key network hub, their activation in HBV
infection is novel and has not been studied before. Thus, the effect of CLKs inhibitors
on HBV was tested with pgRNA expression, intracellular cccDNA, and HBeAg ELISA
as indicators for HBV infection efficiency [23,24]. The inhibition of CK2 by DMAT1 was
reported to decrease HBV infection, and it was included here as a positive control [25]. As
expected, DMAT1 treatment showed a reduction of pgRNA transcription when assayed at
both four and seven dpi (Supplementary Figure S8). The treatment of HepG2-NTCP with
CLKs inhibitor, MU1210, during HBV infection led to a reduction in the pgRNA level at both
four dpi and seven dpi, while no such reduction was observed with MU140, a structural
analogue of MU1210 functioning as a negative control (Figure 5B). Similarly, a reduction
in intracellular cccDNA and HBeAg secretion levels was also observed (Figure 5B). These
observations suggested that CLKs could be plausible candidate targets and their inhibitors
can be further evaluated for the development of effective therapies for HBV infection.

3. Discussion

In this study, we unravelled the dysregulation of the host kinome and its associated
key phosphosignaling events during HBV infection using advanced systemic phospho-
proteomics analysis. To our knowledge, this is the first systems-wide study of the host
phosphosignaling changes at as early as seven days post-HBV infection.

Here, we observed several kinases with altered activities that might be attributed to
host–virus interactions during HBV infection, suggesting that some could be candidate
therapeutic targets for HBV infection. Among them, kinases belonging to the CMGC kinase
family, which include CDKs, MAPKs, GSKs, and CLKs, were predict to be activated during
HBV infection (Figure 3B). Intriguingly, when compared to a similar study performed on
HBV-associated HCC, the enhanced activity of the CMGC kinase family appeared to be
specific to early-stage HBV infection [15]. This suggests that CMGC kinases may play
dominant roles in regulating early phases of HBV infection. Traditionally, kinases in the
CMGC family are involved in diverse biological processes including RNA processing and
transcription [26].

Our analysis also revealed that a significant portion of proteins with altered phos-
phorylation were involved in similar biological processes (Figure 2A). Recent evidence
has increasingly showed that the interplay between CMGC kinases (especially CLKs and
SRPKs) and their roles in the phosphorylation of SR proteins could be implicated in viral
replication through the regulation of RNA transcription/splicing, mRNA stability/export,
nuclear transport, and protein translation (reviewed in [27]). The phosphorylation of
HBcAg (SR domain containing viral protein) at the CTD by SRPK1/2 kinases is thought to
be crucial for regulating the affinity between HBcAg and pgRNA, a key step in pgRNA
packaging and encapsidation [18]. In our study, we observed the deregulation of SRPK1
phosphorylation at a novel phosphorylation site, Ser482. While SRPK1 is currently un-
derstood to be activated by Casein Kinase 2 (CK2) through phosphorylation at Ser51 and
Ser555 [28], the effects of Ser482 phosphorylation on the function of SRPK1 remains convo-
luted. As SRPK1 phosphopeptides containing Ser51 and Ser555 were not detected in our
analysis (likely due to stochastic sampling in the MS), the activity status of SRPK1 during
HBV infection remains to be concluded. Hence, further studies will be needed to determine
whether phosphorylation of SRPK1 at Ser482 has a unique or additive role in regulating
HBV infection.

The increased activities of MAPK kinases were also predicted during HBV infection,
suggesting the upregulation or activation of the MAPK signaling pathway. This observation
is consistent with previous reports where the Ras/Raf/MEK/ERK signaling cascade has
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been shown to be activated when truncated middle surface antigens [MHBs(t)] were
overexpressed in liver cell lines [29]. This was demonstrated to be involved in promoting
cell survival and cell cycle deregulation, thereby possibly playing a role in HBV-associated
HCC progression [30]. Furthermore, the increased kinase activity of CDK1 observed in
our study corroborates with reports suggesting the activation of cyclin B1-CDK1 kinase
activity in HBxAg expressing HepG2 cells, will result in cell cycle deregulation through
G2/M arrest [31]. However, the mechanism and reasons underlying the induction of cell
cycle arrest by HBxAg is still unclear, although a recent report suggested that this might
be required to facilitate efficient viral replication [32]. The enhanced activities of kinases
involved in the cell cycle support the observation about the increased phosphorylation of
their substrates being involved in the cell cycle/division during HBV infection (Figure 2A).

The innate immune responses to pathogen infection is an integral part of the host
defence mechanism. Toll-like receptors (TLRs) play crucial roles in the innate immune
response through recognition of pathogen-associated molecular patterns (PAMP) and the
subsequent initiation of signaling pathways, thereby causing the ultimate activation of
NF-κB transcription factors and IFN response factors (IRFs) [33]. However, since HBV
infections do not induce the expression of IFN-regulated genes, HBV is often described as a
“stealthy” virus that is able to evade the host’s innate immune responses [34]. Nonetheless,
recent studies have revealed that HBV infections reportedly trigger the innate immune
responses through activation of the TLR2/myD88-dependent signaling pathway, which
is rapidly controlled through negative feedback mediated by the HIPPO signaling path-
way [11]. In the TLR/myD88-dependent signaling pathway, engagement of TLR leads to
the formation of the Myddsome complex, which is comprised of the MyD88 and the IRAK
kinase family [35]. The autophosphorylation and release of IRAK1 from the Myddsome,
which ultimately leads to the activation of TAK1 [36]. Subsequently, the activation of
TAK1 results in the activation of the IKK complex-NF-κB pathway and MAPK signaling
pathway [37]. This results in the translocation of NF-κB to the nucleus, where it induces the
expression of pro-inflammatory genes [37]. Likewise, the activation of TAK1 also leads to
the activation of MAPK family kinases such as ERK1/2, P38, and JNK [37]. This activates
down-stream AP-1 family transcription factors, which are involved in regulating of the host
inflammatory response [38]. Based on our kinase activity analysis, several MAPK family
kinases were predicted to have higher kinase activities after HBV infection. These include
ERK1/2, p38, JNK, and the upstream MKK4/7 (Figure 4B). Furthermore, increase phospho-
rylation of STAT1 at Ser727, a known downstream effect of TLR/myD88 activation during
the innate immune response, was also observed in our study (Supplementary Table S1 and
Supplementary Figure S5D) [39]. While these observations suggest an activation of the
TLR/MyD88-dependent signaling pathway, no activation of the HIPPO signaling pathway
was observed. The dephosphorylation of YAP/TAZ1 transcription factors indicates the acti-
vation of the HIPPO signaling pathway [40]. However, no deregulation of phosphorylation
was observed in all seven detected phosphosites in our study. This suggests that at seven
dpi, HBV infection may not trigger the activation of the HIPPO signaling pathway. Based
on these observations, our results suggest that the innate immune responses could be trig-
gered during HBV infection at seven dpi through the activation of the myD88-dependent
signaling pathway. However, further experimental evidence from immune cells will be
needed to validate these results.

To evaluate potential candidate kinases as drug targets, we tested several kinase in-
hibitors on HBV infection. MU1210, a highly potent inhibitors of CLK1, 2, and 4, exhibited
significant suppression of HBV infection (Figure 5B). The CLK family kinases, consisting
of dual specificity protein kinases CLK1, CLK2, CLK3, and CLK4, are highly conserved
and found in diverse organisms ranging from yeast to humans [41]. CLKs are known to
play critical roles in regulating mRNA splicing through the phosphorylation of SR pro-
teins [42]. Our results indicate that CLKs could be involved in modulating HBV infection,
but the exact role played by each of the CLKs during HBV infection should be delineated
in subsequent studies. Although CLKs share homology with SRPK kinases, SRPK1 and
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CLKs phosphorylate distinct groups of proteins—as CLKs mainly localise to the nucleus
while SRPK1 is cytoplasmic [43]. Therefore, it is unlikely that CLKs regulate HBV infection
through the phosphorylation of HBcAg, a process that is crucial for viral RNA encapsida-
tion. In other diseases such as prostate cancer and HIV infection, CLKs have been reported
as promising therapeutic targets [44,45]. Although the biological significance of HBV RNA
splice variants during infection is fragmented, the alternative splicing of pgRNA has been
implicated in modulating HBV replication, which could lead to the translation of novel
viral proteins that could alter HBV pathogenesis and the host immune responses [46]. Thus,
we propose that the involvement of CLKs in HBV pgRNA alternative splicing might play
an important role in regulating HBV infection.

4. Materials and Methods
4.1. Cell Culture

The human hepatoma cell line HepG2–NTCP, obtained from Dr Koichi Watashi (Na-
tional Institute of Infectious Diseases, Tokyo, Japan) [47], was used for in vitro infection.
The cells were maintained in complete medium consisting of Dulbecco’s modified Eagle’s
medium (DMEM/F-12, GlutaMax supplement, Gibco, Waltham, MA, USA) supplemented
with 5% heat inactivated fetal bovine serum (FBS) (Gibco, Waltham, MA, USA), 0.1 mM
non-essential amino acids (NEAA) (Gibco, Waltham, MA, USA), 100 U/mL penicillin,
100 µg/mL Streptomycin (Gibco, Waltham, MA, USA), 2 mM L-glutamine (Gibco, Waltham,
MA, USA), 5 µg/mL human insulin (Sigma Aldrich, St. Louis, MO, USA), and 500 µg/mL
geneticin (G418) (Gibco, Waltham, MA, USA) at 37 ◦C in a humidified 5% CO2 incubator.

4.2. HBV Infection

HBV were generated from a stable transfected hepablastoma cell line (Hep38.7) that
expresses HBV as described previously [48]. Briefly, Hep38.7 (tet-off) cells were induced
to produce HBV particles through tetracycline withdrawal. Twelve days after tetracycline
removal, culture media containing HBV were harvested and filtered through a 0.22 µm
polyethersulfone (PES) membrane filter (Corning, New York, NY, USA). The virus super-
natant was then concentrated using a heparin column and eluted with high salt, followed
by overnight dialysis in phosphate-buffered saline (PBS). Real-time quantitative PCR was
used to quantify the genome copy number of the HBV DNA. For infection, HepG2-NTCP
cells at 70% confluence 1-day post-seeding were first treated with synchronisation medium
consisting of complete medium with 3% DMSO and 500 µM L-Mimosin for 24 h. the cells
were then incubated for 30 min with complete medium containing 800 µM of EGTA at
37 ◦C in a humidified 5% CO2 incubator. After the removal of EGTA-containing medium,
the cells were infected with HBV at a multiplicity of infection (MOI) of 3000 in the presence
of 4% PEG 8000 and 2.5% DMSO in DMEM/F12 medium supplemented with 2% FBS for
24 h. For the mock infection, cells were incubated for 24-hour in 4% PEG 8000, 2.5% DMSO
in DMEM/F12 medium supplemented with 2% FBS. Upon virus removal followed by
washing with PBS four times, HBV-infected cells were cultured in post-infection medium
consisting of DMEM/F12 medium with 2% FBS and 1% DMSO. The post-infection medium
was replaced at four days post-infection (dpi) and infected cells were harvested at day
seven dpi. For phosphoproteome analysis, five biological replicates each of mock and
HBV-infected HepG2-NTCP were used.

4.3. Extraction of RNA and DNA

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany)
and digested with DNase according to the manufacturer’s protocol. For cDNA synthesis,
250–400 ng of total RNA was reverse transcribed with the iScript cDNA Synthesis Kit
(Bio-Rad, Hercules, CA, USA) following the manufacturer’s protocol. cDNA was adjusted
to 5 ng/µL using nuclease-free water and 2 µL of cDNA per reaction was used for qPCR
analysis. Total DNA was extracted from the cells using the DNeasy Blood and Tissue Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s protocol.
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4.4. Real-Time Quantitative PCR and HBeAg ELISA

To determine pgRNA level after HBV infection, HBV pgRNA was quantified by real-time
qPCR using two HBV-specific primers: pgRNA-Forward, 5′-GTGCACTTCGCTTCACCTCT-
3′, and pgRNA-Reverse, 5′-TTGACATTGCTGAGAGTCCAA-3′ [49]. The housekeeping gene,
GAPDH, was amplified using GAPDH forward primer 5′-GTGTGAACCATGAGAAGTATGA-
3′ and GAPDH reverse primer 5′-GTCCTTCCACGATACCAAAG-3′. The relative fold change
of pgRNA between conditions was determined using the ∆∆ct method. Real-time qPCR
was performed with iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA).
To determine the copy number of intracellular cccDNA, a probe-based qPCR approach was
used. cccDNA was amplified using cccDNA forward primer 5′-GGGGCGCACCTCTCTTTA-
3′ and cccDNA reverse primer 5′-AGGCACAGCTTGGAGGC-3′. The Taqman probe 56,
FAM/TCACCTCTG/ZEN/CCTAATCATCTC/3IABkFQ was used. The cccDNA copy num-
ber was determined using a standard curve approach with a 10× serial-diluted cccDNA
template, starting from 10ng (Standard rang 1 fg to 1 ng). The reaction was carried out using
the Luna Univeral Probe qPCR mix (NEB, Ipswich, MA, USA). To determine the level of
HBeAg secretion, the HBeAg CLIA kit (Autobio diagnostic, Zhengzhou, China) was used.
This assay was performed on 50 µL of medium harvested at four or seven dpi. All experiments
were performed in triplicates and repeated twice for two additional biological replicates. The
p-value was calculated using Student’s t-test (two-tailed, * p-value < 0.05, ** p-value < 0.01).

4.5. Immunofluorescence

The cells on coverslips were fixed with 4% paraformaldehyde at room tempera-
ture (RT) for 15 min. After washing with PBS twice, the cells were permeabilised with
0.1% Triton X-100 in PBS for 15 min at RT. Following another PBS wash step, the cells were
incubated with blocking buffer (1% BSA in PBS) for 30 min at RT. For HBcAg staining, the
rabbit anti-HBcAg (DAKO 0586) primary antibody was diluted 1:500 in blocking buffer and
incubated with the cells for 1 h at RT. The cells were then washed three times with blocking
buffer before incubation with the secondary antibody (goat anti-rabbit IgG conjugated with
Alexa Fluor 594 diluted 1:1000 in blocking buffer, Invitrogen) for 1 h in the dark at RT. After
washing three times in PBS, the coverslips were mounted using the ProLong™ Diamond
Antifade Mountant with DAPI (Invitrogen, Waltham, MA, USA) and imaged using EVOS
FLoid Cell Imaging Station (Life Technologies, Carlsbad, CA, USA).

4.6. Cell Lysate Preparation

Cells harvested at seven dpi were lysed with lysis solution containing 9M urea, 20 mM
HEPES, 1 mM sodium orthovanadate, 2.5 mM sodium pyrophosphate, and 1 mM β-
glycerophosphate, which were supplemented with 1× Complete EDTA-free mini-protease
inhibitor (Roche Diagnostic, Basel, Switzerland). Protein quantification was performed
using the Pierce 660 nM Protein Assay (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions.

4.7. Reduction, Alkylation and Digestion

Lysate containing 500 µg total protein was first reduced with 5 mM dithiothreitol and
was followed by alkylation with 10 mM iodoacetamide. The sample was then diluted to
6M urea with 100 mM ammonium bicarbonate before digestion with Lys-C protease (Wako,
Osaka, Japan) at an enzyme-to-protein ratio of 1:100 (w/w) overnight at 37 ◦C. Subsequently,
the sample was further diluted to 1M urea with 100 mM ammonium bicarbonate, before
trypsin digestion at an enzyme-to-protein ratio of 1:50 (w/w) for 8 h at 37 ◦C. The resulting
peptides were then desalted using the Empore C18-SD Extraction Disk Cartridge (3M, Saint
Paul, MN, USA).

4.8. Tandem Mass Tag (TMT) Labelling

TMT10plex labelling was performed according to the manufacturer’s recommendation
(Thermo Fisher Scientific, Waltham, MA, USA). Briefly, 100µg of digested peptides were
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labelled with each TMT reagent resuspended in 41 µL of anhydrous acetonitrile. The
TMT-labelled peptides were mixed at equal ratios for a total of 1mg labelled peptide (Mock:
126, 127N, 127C, 128N, 128C; HBV infected; 129N, 129C, 130N, 130C and 131). The labelled
peptide mixture was then dried using a vacuum concentrator before phosphopeptide
enrichment.

4.9. Phosphopeptide Enrichment

Phosphopeptide enrichment was performed on the TMT-labelled peptide mixture
using the Fe-NTA Phosphopeptide Enrichment Kit (Thermo Fisher Scientific, Waltham,
MA, USA) based on the manufacturer’s instructions. Briefly, the lyophilised TMT-labelled
peptides were resuspended with binding buffer before loading onto a spin column contain-
ing pre-equilibrated Fe-NTA. Enrichment was performed at RT for 30 min before washing
three times with the washing buffer. Phosphopeptides were subsequently eluted from
the beads and dried using a vacuum concentrator before resuspension with 0.1% formic
acid. The peptide concentration was determined using the NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA).

4.10. Mass Spectrometry Data Acquisition

Online reversed phase LC separation was performed on 4µg of labelled-phosphopeptides
using the EASY-nLC 1000 UPLC system (Thermo Fisher Scientific, Waltham, MA, USA). The
enriched phosphopeptides were separated using an EASY-Spray column (C18, 100 Å, 2 µm,
75 µm × 500 mm, Thermo Fisher Scientific, Waltham, MA, USA) over a 180-min gradient
(8–38% mobile phase B) at flow rate of 300 nL/min. Mobile phase A was 2% acetonitrile and
0.1% formic acid, and mobile phase B was 80% acetonitrile and 0.1% formic acid. The eluted
peptides were directly injected into the Orbitrap Fusion Tribrid Mass Spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) with the following parameters: spray voltage at
2.5 kV, RF lens level at 60%, and ion transfer tube temperature 275 ◦C. The full scan range
of MS1 was defined as 400–1500 m/z at a resolution of 120K with a maximum ion injection
time of 50 ms and automated gain control (AGC) target 4.0 × 105 Data-dependent MS2
and MS3 (ddMS2 and ddMS3) were configured according to the MSA SPS MS3 method, as
previously described [50]. Briefly, ddMs2 was performed using CID OT, with the collision
energy at 35% and isolation width at 0.7 m/z. The maximum ion injection time was set at
60 ms with an Orbitrap resolution of 30 k and AGC target 5.0 × 104. For the MS3 filter,
the precursor selection was set to 400–1200 m/z with precursor ion exclusion ranges from
−18 to +5. Isobaric tag loss exclusion was set to TMT. For ddMS3, HCD OT was used with
an isolation width of 2 m/z and an HCD collision energy of 65%. The scan range was set
to 100 to 500 m/z with a resolution of 60 K, ion injection time of 118 ms, and AGC target
1.0 × 105.

4.11. Identification and Quantification of Phosphopeptides

The generated MS spectra was searched using the Proteome Discoverer Software v2.2
(Thermo Fisher Scientific, Waltham, MA, USA). For phosphopeptide identification, the SE-
QUEST HT search engine was used. The search was performed using Percolator against the
UniProt human reference proteomes database (June 2017 release, 92977 entries including
isoforms), which was modified to include all the viral proteins of HBV genotype C and D
(UniProt, 13 entries, accessed on May 2018) with an FDR specified at 0.01. The precursor
and fragment mass tolerance were set at 10 ppm and 0.02 Da, respectively. The static
modifications include cysteine carbamidomethylation (+57.021 Da) and TMT10plex tags on
both the N-terminal and lysine (+229.163 Da). The dynamic modifications include methion-
ine oxidation (+15.995 Da); serine, threonine, and tyrosine phosphorylation (+79.966 Da);
and N-terminal acetylation (+42.011 Da). For confident identification of phosphorylated
sites, the ptmRS node of PD2.2 was used for phosphosite localisation. Only phosphosites
with a localisation probability of more than 90% were considered. Both unique and ra-
zor peptides were used for quantification. For reporter ion quantification, co-isolation
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threshold of 50% and average reporter signal-to-noise (S/N) threshold of 10 were used to
consider peptides for quantification. The mass spectrometry proteomics data are deposited
to the ProteomeXchange Consortium via the PRIDE [51] partner repository with the dataset
identifier PXD015393 and DOI 10.6019/PXD015393.

4.12. Analysis of Differentially Regulated Phosphoproteins

The identification and visualisation of differentially regulated phosphopeptides were
performed using Perseus [52]. Phosphopeptides were considered differentially regulated
when the fold change of HBV/Mock is >1.3 (up-regulated) and <0.769 (down-regulated),
in addition to a p-value of <0.05, as determined by the Student’s t-test, after normality
was determined using the Shapiro-Wilk test in R Studio version 1.3.1 (R Studio, Boston,
MA, USA). Gene Ontology (GO) enrichment analysis and visualization of the relationships
between ontology terms was performed using the ClueGO plugin in Cytoscape version
v3.6.1 (Cytoscape Consortium) [17,53] with the following parameters: only GO terms
annotating Biological Process (BP) or Immune System Process (ISP) was selected for analysis.
Network Specificity of medium was chosen for plotting of the network, and a Kappa score
for the GO terms and pathway network connectivity of more than 0.4 was chosen. A
two-sided hypergeometric test was used to determine whether the terms are enriched or
depleted, and an adjusted p-value < 0.05 was considered significant.

4.13. Kinase–Substrate Prediction and Enrichment Assay

Prediction of upstream kinases was performed using NetworKIN (v3.0) based on the
kinase consensus motifs and their cellular context [54]. Phosphosites from all differen-
tially regulated phosphopeptides were used for upstream kinase prediction. the default
Networkin score of 1.5 was chosen as the cut-off for the prediction. Kinase–substrate
enrichment assay (KSEA) was performed to predict the activity of kinases with the delta
count approach [14]. Briefly, with the NetworKIN prediction output, the sample frequency
of kinases was calculated based on the number of times the kinase–substrate pair was
predicted. By comparing the kinase sample frequency with the kinase population frequency,
which was calculated based on the Networkin prediction of the whole human proteome,
the activity of kinases can be estimated with two-sided hypogeometric testing.

4.14. Cytotoxicity Assay

The IC50 of kinase inhibitors was determined using the Cell-titer-GLO Luminescent
Cell Viability Assay kit (Promega, Madison, WI, USA) according to the recommendations
from the manufacturer. Briefly, 10,000 HepG2-NTCP cells were seeded into a 96-well plate
before treatment with various kinase inhibitor concentrations. Cell viability was assayed at
24 h post-treatment.

4.15. Kinase Inhibitor Treatment of HBV Infected HepG2-NTCP

HBV infection on HepG2-NTCP was carried out as described earlier. At one dpi, the
kinase inhibitors (Table 1) were added to the post-infection medium after the washing and
removal of viruses containing infection medium. For CK2 inhibition, 10 µM of DMAT
(SML2044, Sigma-Aldrich, St. Louis, MO, USA) was used. For CDK1 inhibition, 100 nM
of RO-3306 (SML0569, Sigma-Aldrich, St. Louis, MO, USA) was used. For CDK2 and
CDK5 inhibition, 5 µM of PNU112455A (SML0498, Sigma-Aldrich, St. Louis, MO, USA)
was used. For CLKs inhibition, 1 µM of MU1210 (SML2713, Sigma-Aldrich, St. Louis, MO,
USA) was used. In addition, 1 µM of MU140 (SML2722, Sigma-Aldrich, St. Louis, MO,
USA), a structural analogue, was used as a control for MU1210. At four dpi, the expended
medium was replaced with fresh post-infection medium containing the corresponding
kinase inhibitors. Infected HepG2-NTCP was harvested at four and seven dpi for pgRNA
quantification.
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Table 1. Information on selected kinase inhibitors.

Kinases Inhibitor Target Reported Ki IC50

DMAT CK2 40 nM >500 µM
RO-3306 CDK1 35 nM 164 µM

PNU112455A11 CDK2 and CDK5 3.2/3.6 µM (CDK2/5) >500 µM
MU1210 CLKs 23 nM 16.7 mM
MU140 NA (Structural analog of NU1210) NA >5 00 µM

5. Conclusions

Our unbiased advanced phosphoproteomics analyses provide a detailed snapshot
of the phosphoproteome changes in hepatocytes during HBV infection. Subsequent data-
driven bioinformatics analyses revealed the dynamics in the host kinome and phospho-
signaling events impacted by HBV. These dynamic events should be further studied to
confirm and assess the viability of their key hubs as targets for HBV therapeutics. Of note,
our comprehensive study will be a valuable resource to explore subsequent mechanistic
details on the role of protein phosphorylation in regulating HBV pathogenesis, and key
signaling proteins with aberrant activities that could be potential entry points in HBV drug
target discovery.
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