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Abstract: A method for predicting the long-term effects of ferric on methane production was de-
veloped in an anaerobic membrane bioreactor treating food processing wastewater to provide
management tools for maximizing methane recovery using ferric based on a batch test. The results
demonstrated the accuracy of the predictions for both batch and long-term continuous operations
using a Bayesian network meta-analysis based on the Gompertz model. The prediction bias of
methane production for batch and continuous operations was minimized, from 11~19% to less
than 0.5%. A biochemical methane potential-based Bayesian network meta-analysis suggested a
maximum 2.55% ± 0.42% enhancement for Fe2.25. An anaerobic membrane bioreactor improved
the methane yield by 2.27% and loading rate by 4.57% for Fe2.25, operating in the sequenced batch
mode. The method allowed for a predictable methane yield enhancement based on the biochem-
ical methane potential. Ferric enhanced the biochemical methane potential in batch tests and the
methane yield in a continuously operated reactor by a maximum of 8.20% and 7.61% for Fe2.25,
respectively. Copper demonstrated a higher methane (18.91%) and sludge yield (17.22%) in batch but
faded in the continuous operation (0.32% of methane yield). The enhancement was primarily due to
changing the kinetic patterns for the last period, i.e., increasing the second methane production peak
(k71), bringing forward the second peak (λ7, λ8), and prolonging the second period (k62). The dual
exponential function demonstrated a better fit in the last three stages (after the first peak), which
implied that syntrophic methanogenesis with a ferric shuttle played a primary role in the last three
methane production periods, in which long-term effects were sustained, as the Bayesian network
meta-analysis predicted.

Keywords: methanogenic yield; ferric; anaerobic membrane reactor; Bayesian network meta-analysis;
food processing wastewater

1. Introduction

Maximizing the recovery of biogenic methane in the agriculture sector through process-
based studies is needed [1]. To this end, methanogenic kinetics based on biochemical
methane potential may be a promising method to progress from batch to long-term con-
tinuous methane recovery. The Biochemical Methane Potential (BMP) test is a method to
determine the feasibility of an agent to stimulate methane production in anaerobic diges-
tion. The test provides the precise kinetics of methane production under well-controlled
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conditions [2]. These conditions can involve different substrates, agents, and dosages [3,4].
Therefore, the stimulation can be evaluated as the percentage of methane increase as com-
pared to a control group. For example, 5~350-mmol magnetite stimulates a 1.6%~16.1% bio-
gas production potential (G0, mL/gVSadded) in BMP batch tests [5], while nano-magnetite
5~350 mmol stimulates a −6.9%~6.0% biomethane production potential (G0, mL/gVSadded)
in batch tests [6]. A similar percentage enhancement is expected in continuous reactors
in a batch test. However, the enhanced rates are different in a batch and a continuous
reactor [7]. For example, 20-mmol magnetite (100–700 nm particle size) simulates a 4.5%
methane yield in continuous operations [8], even higher than a similar dosage in a batch
test [5,6]. Ferric could trigger multiple effects in anaerobic digestion, e.g., trace elements
of methanogens, activator or function center of metalloenzyme (F420), flocculation, and
enhance the direct interspecies electron transfer (DIET) by different mechanisms [9]. These
effects could demonstrate different impacts on the short-term and long-term effects. Com-
parably, copper also impacted the methane yield but demonstrated limited mechanisms in
anaerobic digestion, e.g., copper works as a trace element for methanogens [10]. Therefore,
the short-term effects were more similar with the long-term effects for copper [11]. The
differences (of ferric supplement) between the batch and continuous reactors highlight the
needs for an evaluation method, especially for ferric supplements, which demonstrates the
coexistence of multiple mechanisms [12]. The copper supplement demonstrated limited
mechanisms and similar iron strength, which makes copper an ideal control treatment
for developing the prediction method. Such an evaluation method should predict the
enhancement effects in a continuous reactor based on a corresponding batch test. However,
there is still a disparity between the methods used for the batch and continuous reactors.

There are also attempts to expand the biochemical methane potential to a long-term
methane recovery to evaluate its biodegradability and methane yield. The biochemical
methane potential in anaerobic digestion was expected to be the five-day or 20-day bio-
chemical oxygen demand in an active-sludge treatment. The first step is the early prediction
of methane production, which can be realized by modeling methane production in the ini-
tial days [12,13]. An early prediction of the biochemical methane potential can be achieved
through the static and kinetic modeling of the initial gas production [13]. A fifty-day total
biogas production can be predicted based on 14 days in an anaerobic biodegradation test
(BMc) using the same kinetic modeling. The next step is the extension of batch testing
of continuous reactors; for example, connecting the biochemical methane potential to the
methane yield. A full biochemical methane potential implies an infinite digestion time (also
known as the retention time), which is the significant difference from a practical reactor.
A reactors’ hydraulic retention time can range from hours to 20~30 days for anaerobic
reactors, and 5–40 h for aerobic reactors. Five days is long enough for an anaerobic reactor,
but for BMP(t), it is difficult to choose an acceptable time that balances being efficient
and useful [14]. Even if t is set as the reactor-specific retention time, the BMP(t) is too
large, as compared with the reactor’s methane yield. Model predictions based on the
components have also been studied [3], but biomass components change a lot between
types and seasons; thus, they rely on a chemical components analysis, which is the main
limitation.

In general, there are three types of kinetic models for predicting methane production.
The Monod models were implemented as a series of models from the International Water
Association, e.g., anaerobic digestion model No.1 and active-sludge models [15]. The
Monod quadratic (MQ) model contains a modified Monod model with a similar mathematic
form as the Michaelis–Menten model. The model can plot curves for balanced growth or
the competition of substrates in a simple form [16]. The first-order models include the
logarithmic growth phase in anaerobic digestion. The first-order models are applicable in
scenarios in which there is a single, limited step [17]. The limit is usually the consumption
of substrates. Gompertz models are typical “S”-style curve equations [13]. The Gompertz
model can shape two methane production peaks and a lag time, which has attracted a lot
of intention as regards inhibition and stimulation in relation to methanogenic kinetics [18].
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In this context, the objective of this study was to statistically predict the long-term
effects of ferric on methane production and was developed in an anaerobic membrane
bioreactor treating food processing wastewater, based on the biochemical methane potential
from the batch results using the Bayesian network meta-analysis. The method developed
allows for a better understanding of the long-term kinetic effects and dosage optimization
of ferric, where copper was the control treatment.

2. Material and Methods
2.1. Scheme and Operation of the Anaerobic Membrane Bioreactor

A lab-scale anaerobic membrane bioreactor (AnMBR) was set up for testing the long-
term effects of ferric on methane production in an AnMBR treating starch wastewater. The
working volumes of the acidogenesis phase or methanogenesis phase were 2 L and 4 L,
respectively. The temperature was maintained at mesophilic conditions 37 ± 2 ◦C and
37 ± 0.3 ◦C by electrical heating and water bath, respectively. The methanogenesis phases
were equipped with an online pH sensor (Hach Inc., Loveland, CO, USA) and biogas flow
rate meter (µFlow, Bioprocesses AB., Lund, Sweden) for process monitoring. A tubular
membrane (PVDF, 0.01 m2, 200,000 Da, Berghof GmbH, Eningen, Germany) was used
for the effluent, externally driven by a centrifugal pump (OW-370A, Taizhou Qibo Ltd.,
Shandong, China) to create crossflow (3 m·s−1) for fouling mitigation. More details about
the reactor can be found in [19]. Before the acidogenesis phase, the influent was injected
using a peristaltic pump (100, Lange Ltd., Heibei, China), which was measured using an
online electronic balance (TD10000, 0~10,000 ± 0.1 g, Tianjin Tianma Ltd., Tianjin, China).

The influent was obtained from a potato starch factory in Hebei Province, one of the top
five private starch enterprises in China. The influent was filtered using a 0.15-mm screen,
and the chemical oxygen demand (COD) and suspended solid (SS) were 27.61 ± 3.49 g·L−1

and 6.21 ± 0.84 g·L−1, respectively. The reactor was inoculated with anaerobic sludge from
an egg-shaped digester, Xiaohongmen Wastewater Treatment Plant, Beijing, China [20].

The AnMBR automatically operated as an anaerobic sequencing batch membrane
reactor [21], where similar kinetic characteristics can be expected as those in the kinetic
model. The automation strategy (Figure 1) was implemented on a BIO-5GCA lab fermenter
(Shanghai Bailun Bio-Technology Co., Ltd., Shanghai, China). After the initial idle stage, the
influent stage was performed, in which the AnMBR was fed with starch wastewater until
the high water-level was met or the pH dropped. During the reaction stage, mechanical
stirring (120 ± 4 rpm) was applied to achieve a completely mixed condition. The effluent
stage began at the end of methane production and continued until the pH or water level
dropped beyond a certain threshold [19]. After the effluent stage, another cycle followed.
The augmentation was implemented in three stages: sCtrl (without dosage), sFe (dosed
with ferric), and sCu (dosed with copper). The first stage, i.e., sCtrl, was characterized by
a constant organic loading rate (ORL) to achieve stable operations [19]. The other stages
used ferric chloride and copper chloride at optimized dosages, respectively.

2.2. Apparent Kinetics of Methanogenesis

The biochemical methane potential batch tests were performed to investigate the
effects of ferric and copper on the methane production kinetics in three parallels (Figure 1A).
The effluent of the acidogenesis phase was made up of substrates. The mixed liquor
from the methanogenesis phase was the inoculum for the methanogenesis kinetic tests
and modeling. The experiment was performed using the Automatic Methane Potential
Test System (AMPTS-II, Bioprocess Control AB., Lund, Sweden) per the instrument’s
manual. The ferric and copper were ferric chloride and copper chloride, respectively. The
methane production kinetic parameters were estimated according to [13]. The models
below are as follows: Equation (1)—first-order model, Equation (2)—a first-order rate
model with a variable order of time dependency, Equation (3)—a combination of two first-
order rate models, Equation (4)—a Monod-type model, Equation (5)—a quadratic Monod
model, Equation (6)—a modified Gompertz model, Equation (7)—a Gompertz model, and



Membranes 2021, 11, 100 4 of 16

Equation (8)—a logistic function model. The Gompertz and Logistic models were added to
estimate the lag phase parameter [12,18,22]. These models were calibrated with cumulative
methane production data from the batch tests. The relative root mean square error (rRMSE)
and R2 were calculated according to [13]. The residuals were calculated according to [12].

BMP(t) = B1·(1 − exp(−k1·t)) (1)

BMP(t) = B2·(1 − exp(−k2·tγ)) (2)

BMP(t) = B3·(1 − X·exp(−k31·t)− (1 − X)·exp(−k32·t)) (3)

BMP(t) = B4·
(

k4·t
1 + k4·t

)
(4)

BMP(t) = B5·
(

t2

t2 + k51·t + k52

)
(5)

BMP(t) = B6·exp
(
− θ1·exp(−k61·t)

k61
− θ2·exp(−k62·t)

k62

)
(6)

BMP(t) = B7·exp(−exp(k71(λ7 − t) + 1)) (7)

BMP(t) = B8·
(

1
1 + exp(k81(λ8 − t) + 2)

)
(8)

Here, BMP(t,), Bn, and kn refer to the cumulative methane production(at time t), BMP∞
(biochemical methane potential, NmlCH4/gCOD), and the rate constants for different
kinetic models (n), respectively. Nomenclature of parameters are listed in Table S1. The
BMP∞ was used for the following analysis in the Bayesian network meta-analysis.

The dosages of the ferric and copper additions are presented in Table S2. Each of the
dosages was analyzed as a treatment. The dosage was designed to also consider the side
effects of ferric chloride as a flocculating agent. The upper limit of the discharging standard
of trace elements/heavy metals was Cu ≤ 2.0 mg·L−1.
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2.3. Effects Evaluation by Bayesian Network Meta-Analysis

A network meta-analysis allows for the comparison of multiple treatments using
estimates of rank probabilities based on the Bayesian approach [23]. The network meta-
analysis is a widely used statistical method in evidence-based medicine, which is used for
evaluating the effects of treatments with multiple mechanisms. The hypothesis was that
higher dosages have comparatively more effects if considering the tested enhancement
rate as a posterior probability of the enhancement happening in each dosage condition.
The Bayesian network meta-analysis (BNMA) allows for decoupling of the multiple effects
from a higher dosage to a lower dosage. The BNMA is an extension of the classical pairwise
meta-analysis. The BNMA allows to compare multiple interventions based on both head-
to-head comparisons within treatments and indirect comparisons across treatments. The
BNMA method was used to predict the methane yield of the reactor with the BMP∞ results
from the batch test. The BNMA was performed using the BMP∞ as the input. The Bayesian
network meta-analysis (BNMA) model for the comparison of multiple treatments was
performed based the central ideal of Bayes’ Theorem, which incorporates subjective prior
knowledge into statistical inference (Equation (9)). The theorem allows for an estimation of
the probability of an effect of event A (daily methane productions at a higher Ferric dose
A) based on another event, B (daily methane productions at a lower Ferric dose B).

P(A|B) ∝ P(B|A) × P(A) (9)

The P(A) is what we want to estimate. To estimate the P(A), which represents the
distributions of daily methane production, we denoted a set of parameters θ that character-
ized the distribution. Instead of B (true daily methane production at a lower Ferric dose
B), here, we only collected actual experimental data (with errors, explained in the next
paragraph) through which we estimated θ. The observed daily methane production was
store in vector Y, which followed the distribution P(Y).

P(θ|Y) ∝ P(Y|θ) × P(θ) (10)

A conventional meta-analysis is defined as a pairwise meta-analysis, which is equiv-
alent with a multilevel random effects model. The model works under the so-called
assumption of exchangeability, where we not only assume that effects of individual treat-
ments deviate from the true intervention effect of all treatments due to sampling error but
that there are other sources of variance introduced by the fact that the studies do not stem
from on single bacteria but from microbial communities. Therefore, there is not only one
true effect size of daily methane production but a distribution of true effect sizes, and we
want to estimate the mean of this distribution of true effect sizes. The model assumes that,
when the observed effect size (observed daily methane production) kn’ of an individual
dose A deviates from the true effect size kT (true increase of daily methane production
caused by the dose A), the reason for this is that the estimate is burdened by (sampling)
error εk and an extra/second source of error ζk. The second source of error is introduced
by the fact that even the true effect size kT is only part of an overarching distribution of
true effect size with the mean µ (Equation (11)).

kn’ = kT + µ + ζk (11)

To estimate the variance of the distribution of true effect sizes (τ2), several estimators
(of τ2) are implemented in meta. For a conventional pairwise meta-analysis, we included K
studies and collected the effect size Yk for each of our studies k = 1, . . . , 5. We defined the
fixed-effect model as Equation (12):

Yk∼N(kT, SK
2) (12)

where we calculate the likelihood (the P(Y| θ) part from above) of our effect sizes, assuming
that they follow a normal distribution drawing from the distribution of the one true effect
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size kT, which has the variance sk
2. We do not assume that each study is an estimator of

the one true effect sized kT but that there are study-specific true effects kn estimated by
each effect size Yk. Furthermore, these study-specific true effects are again an overarching
distribution of true effect sizes, which is defined by its mean d and variance τ2, our between-
study heterogeneity.

kn∼N(d, τ2) (13)

In the Bayesian model, we also give an uninformative prior distribution to both d
and τ2. The Bayesian network meta-analysis was therefore formulated by the Bayesian
meta-analysis model for a pairwise meta-analysis. The Bayesian network meta-analysis
can consist of different treatments being compared and denote a single effect size (daily
methane production) obtained from one (experimental observation of) treatment/dose a
that was compared to treatment/dose b as Equations (14) and (15). The study/inoculum-
specific true effect for the comparison of a and b (ferric dose 1 to 5) is assumed to be part
of an overarching distribution of true effect sizes with mean dab, where d1a is the effect of
treatment a compared to the predefined reference treatment without ferric supplement [24].

Ykab∼N(kTab, sk
2) (14)

knab∼N(dab, τ2) (15)

The Bayesian network meta-analysis is therefore performed using the gemtc and rjags
package in R 3.7.0 (R Foundation, New York, USA) with the existence of a software called
JAGS (Just Another Gibbs Sampler) [24]. The Network graph, mcmc1 and mcmc2, and
nodesplit plot and forest() function were plotted herein for the analysis.

2.4. Microbial Community Analysis

Mixed liquor of 0.4 g from the methanogenesis phase, where ferric or copper was
added, was collected for DNA extraction with the QIAamp DNA Stool Mini Kit (Qiagen,
Germantown, MD, USA). The reactor’s mixed liquor was sampled at the end of each stage
for DNA extraction. These DNA extracts were marked as Ctrl, Fe, and Cu. PCR amplicons
were purified with a DNA purification kit (BioFlux, Japan). The quality and concentration of
the extracted DNA were determined through 1% agarose gel electrophoresis and NanoDrop
ND-1000 (NanoDrop, Wilmington, DE, USA), respectively.

The microbial community of the samples was determined through a high-throughput
sequencing method. The PCR primers 515F and 806R were selected for the 16S V4 region.
DNA was amplified following the protocol, as previously described. The amplicons were
sent out to Novogene Co., Ltd. in Beijing for small-fragment library construction and pair-
end sequencing using an Illumina Mi-Seq sequencing system (Illumina, San Diego, CA,
USA). Sequencing reads were assigned to each sample based on a unique barcode. Pairs of
reads from the original DNA fragments were merged using FLASH [25] and filtered out
using UCHIME [26]. Barcode and primers were removed from sequencing reads. After the
above filtration, the minimum sequencing depth was 30,578 clean reads. Normalization of
the sequence number was conducted for 30,578 sequences to make a fair comparison with
the same sequencing depth. The sequences were deposited in MG-RAST under project
mgp17379 [27].

The taxonomic classification of the sequences in each sample was conducted individu-
ally using the Ribosomal Database Project (RDP) Classifier, as previously suggested in [28].
The sequences in different taxonomy levels were assigned at the bootstrap cut-off of 50%,
as suggested in [29].

2.5. Physicochemical Analysis

Chemical oxygen demand (COD), total solids (TS), volatile solids (VS), and ammonia
were determined using the APHA method. Total carbon (TC), total organic carbon (TOC),
and total inorganic carbon (TIC) were determined with a liquiTOC II (Elementar Analy-
sensysteme GmbH, Germany). Online sensors of Oxidation–Reduction Potential (Hach
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Inc., Loveland, CO, USA) and electrical conductivity (EC) (Hach Inc., Loveland, CO, USA)
were equipped, and the data were acquired using the programmable logic controller (PLC,
S7-200, Siemens Inc., Munich, Germany) in the fermenter.

Sludge and bacteria morphologies were observed with electronic scanning microscopy
with an electronic microscopy FE-SEM (Hitachi S-4160, accelerating voltage of 15 kV,
Hitachi, Tokyo, Japan) in dry mode (10 Torr, dry biomass). Biogas yield and specific
methanogenic activity were calculated as suggested in [30].

2.6. Statistical Analysis

The paired-samples t-test was used to evaluate the significance of the differences in the
methane production caused by the addition of ferric and copper during the anaerobic diges-
tion of starch wastewater. Pearson correlations were used to assess the association between
kinetics parameters, and a p-value < 0.05 was considered to be statistically significant. The
methanogenic kinetics were calibrated with the CurveFit.jl and Optim.jl packages in Julia
1.3.1 (Julia Lab, Massachu-setts Institute of Technology, Cambridge, UK). A dendrogram
was plotted using an average link between groups to identify the dominant kinetic patterns.
The Bayesian network meta-analysis was performed with the bnma package in R 3.7.0 (R
Foundation, New York, USA) based on JAGS (Just Another Gibbs Sampler 4.3.0). The
evolution of the microbial community was compared in pairs among sCtrl, sFe, and sCu
by a two-sided Welch’s t-test in STAMP, in which it was filtered by p > 0.01 to decipher the
microbial community response to ferric after the long-term augmentation of ferric in the
anaerobic membrane bioreactor treating starch wastewater.

3. Results
3.1. Enhancement of Cumulative Methane Production in the Batch Test

The paired-samples t-test indicated that ferric and copper significantly influenced the
methane production in the batch anaerobic digestion of starch wastewater (p < 0.05). The
ferric improved the cumulative methane production by a maximum of 8.20% at Fe2.25 and
further increased during ferric-reduced methane production (Figure 2A). There were two
methane production peak periods (hour one and hour 27) for the daily methane production.
The first peak was generally the same among treatments, while the improvement of the
methane production mainly happened later during the second peak (hours 25–30). The
easily degradable organics formed the first peak, and the poorly biodegradable organics
formed the second peak. This is easy to understand, because starch wastewater is a mix-
ture of organic compounds with different biodegradability. This indicates that ferric can
enhance the degradation of poorly biodegradable organics. Copper improved the cumula-
tive methane production by a maximum of 7.9% at Cu1.5 and increased the biochemical
methane potential (BMP) by a maximum of 18.91% at Cu0.5. The copper improved more in
the first methane production peak than the second peak. The violate suspended solid (VSS)
and specific methanogenic activity (SMA) were increased more, implying a higher growth
of sludge. The increased sludge may be helpful for other types of anaerobic reactors but a
burden for the anaerobic membrane bioreactor where extra sludge treatment is needed. A
lower COD removal rate was achieved with copper than the ferric supplement. A lower
COD removal rate implied more effluent organic matters and foulants, which is also a
weakness for an anaerobic membrane bioreactor. Therefore, copper was less noticed on
further investigation.

The methane yield is another important factor in a continuous reactor, because the
digestion time is the essential operational parameters for continuously operated reactors
(Figure 2). There is a maximal daily methane production (mL, Figure 2B), a maximum
methane production rate (Rmax, mL·g−1VSadded·d−1, M7 Gompertz model), and a specific
methanogenic activity (SMA, gCOD·gVS−1·d−1, Figure 2C), which are used to describe
the methane production rate. The maximum daily methane production is represented as
the first methane production peak in which ferric is reduced between the two extremes
by −4.13% and −21.96% for Fe2.25 and Fe9, respectively. Ferric was able improve the
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maximum methane production rate by a maximum of 7.70% for Fe22.5, with decreasing
amounts of ferric reducing the maximum methane production rate to varying degrees. The
specific methanogenic activity changed most significantly with ferric dosages in the batch
(Figure 2C). Ferric was able to improve the specific methanogenic activity by a maximum
of 2.5% for Fe2.25, higher than copper (Figure 2D). A further increase in ferric reduced the
specific methanogenic activity by a maximum of −32.3% for Fe22.5. This indicates that
ferric was able to accelerate the degradation speed, especially for poorly biodegradable
organics. Ferric improved the COD removal by a maximum of 13.8% for Fe2.25. The
ferric groups demonstrated a higher average COD removal than the copper group (Figure
2E,F). The COD will be converted to biogas (methane and CO2), microorganisms, and inert
compounds in a long-term operation. The conversion of poorly biodegradable organics was
enhanced by ferric. This further indicates that ferric was able to enhance the degradation
of the poorly biodegradable organics.
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Figure 2. The profiles of cumulative methane production, daily methane production rate, and performance changes for
ferric ((A), (B), (C)) and copper ((D), (E), (F)) during the Biochemical Methane Potential (BMP) batch test, respectively. The
error bar was the standard error of average in three parallel tests. The dosage (mg/L) is listed after the elements (Fe and Cu)
in the legend. The first peak of the methane production rate is amplified in the subfigures, respectively. The SMA, BMP,
VSS, and COD refer to specific methanogenic activity, biochemical methane potential, violate suspended solid, and chemical
oxygen demand, respectively. The changing rate was calculated by comparing the augmented experimental group with the
control group, where the COD removal demonstrated a stable improvement in all ferric groups.

3.2. Effect of Dosages on the Kinetics Parameters in the Batch Test

The methane production rates were also fitted as the kinetics parameters in the
multiple kinetic models (M1~M8) with the Levenberg–Marquardt algorithm. While the
cumulative methane productions were plotted using B (BMP(t) and Bn), the methane
production rates were depicted using the kinetic parameters (kn, γ, λ, etc.). The kinetics of
methane production mainly include two groups of critical characteristics. The first group
is made up of speed parameters: kn as the methane production rate constant, X, and θn
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as the correction coefficient for the rate constant. The second group is made up of time
dependency parameters: γ as the modified time dependency, and λ as the lag time. This is
ferric evolving in multiple electron processes at various speeds.

Figure 3 shows the ranges of the kinetic parameters of different models at ferric
dosages from 0 mg·L−1 to 22.5 mg·L−1, in which 0 mg·L−1 is the control group without
ferric. The first-order models (FO, FOMT, and FOFO); the Monod models (Monod and
MQ); and the Gompertz models (MGM and GM) at the given ranges (0 < kn < 1) had similar
kinetic behaviors and demonstrated similar dose–effect relationships between the dosages
and kinetic parameters. The medium dosages (0.45–6.75 mg·L−1) demonstrated a lower
rate constant than the control and higher dosages (9.0–22.5 mg·L−1), further indicating that
ferric accelerated the degradation speed of poorly biodegradable organics.
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Figure 3. Facet plot of the rate parameters of different methanogenic kinetics under different ferric dosages. The results
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presented in Table S1.

The time dependency γ of the methane production also weakens for medium dosages,
indicating the acceleration of methane production. The lag time λ is an essential kinetic
parameter representing a relief period in ammonia inhibition, for example [27]. The lag time
decreased when the dosage increased, indicating that that inhibition was mitigated [31].

3.3. Changing of Methanogenic Kinetic Patterns in the Batch Test

The cumulative methane production could be fitted to the multiple kinetic models
(M1~M8) with the Levenberg–Marquardt algorithm (R2 > 0.963, rRMSE < 18.78), and the
modified Gompertz model (MGM) had the lowest rRMSE (2.13%) for multiple dosages
and the highest (average) fitting (R2 < 0.997). The cumulative methane production curve
could be approximately reproduced by all the models listed (M1~M8). A visual inspection
showed that the residuals for the MGM were evenly spread across the values of BMP(t)
and time (Figure S1).
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The first methane production peak (hour 1) was slightly overestimated by the first-
order models, including FO, FOMT, and FOFO. Moreover, the period (hours 2–26) after
the first methane production peak was vastly underestimated by the first-order models. A
similar overestimation of the first peak and an underestimation of the following period
was observed in the Monod models (Monod and MQ). The model estimation after the first
peak was improved by the modified time dependency (FOMT and MQ), with an accuracy
trade-off between the first peak and the following period. On the contrary, the first methane
production peak was slightly underestimated by the dual exponential functions (MGM
and GM). Furthermore, the period after the first methane production peak was somewhat
overestimated by the dual exponential functions. The LFM performed very similarly to the
MGM in terms of giving the actual values.

The second methane production peak (hour 27) trends were slightly underestimated
by all models, but the period after the second methane production peak (hours 28–65)
varied between models. The period was overestimated by the first-order models. A similar
severe overestimation was also seen for the Monod models. Model estimation after the
second peak was also improved by the modified time dependence, while the accuracy loss
was smaller than for the first peak. The period was only slightly overestimated by the dual
exponential functions (MGM and GM). The most stable residuals in the second methane
production peak and the following period were produced from the LFM model.

The last period (hours 66–84) was different not only in terms of the model but, also, in
terms of the dosage. The last period was underestimated by the first-order models. The
underestimation of FO and FOFO decreased significantly when the dosages were at the
medium levels Fe2.25–Fe6.75 (p < 0.05). The last period was underestimated even more
by the Monod model, which also improved at the medium dosages. The underestimation
of the last period was improved by the modified time dependency (FOMT and MQ). The
last period was also underestimated by the dual exponential functions at the low and high
dosages, while it was overestimated at the medium dosages. The characteristics of the last
period might be due to the poorly biodegradable organics. The kinetics described the stan-
dard patterns of methane production. The differences in the last period indicate that ferric
changed the kinetic patterns of the poorly biodegrading organics at the medium dosages.

The dual exponential function (exp(f[exp(time)])) demonstrated better fitting than
the other mathematic forms of kinetics. A dual exponential is an interesting mathematic
pattern, which may be linked to the syntrophic nature of microbial methane production.
The dual exponential function (M6 to M7) grows much more quickly than an exponential
function (M1~M3), which shows lower residuals after both methane production peaks.
Similar residuals can also be found in previous research [12].

3.4. Effect of Dosage on Biochemical Methane Potential by GM-Based NMA

All the kinetic models suggested that the biochemical methane potential was max-
imally enhanced by Fe2.25, while suggesting quite different growth rates of 3.62–9.67%.
The biochemical methane potential was enhanced by a maximum of 9.67% for Fe2.25 in
the Monod model, which is the kinetic pattern in anaerobic digestion model No. 1. The
first-order model and Gompertz model suggested 7.61% and 4.58% for Fe2.25, respectively.
The biochemical methane potentials differ between the methane production kinetic models,
which causes confusion. This confusion has limited the widespread application of kinetic
models [12].

The biochemical methane potential was enhanced by a maximum of 2.55% (with a 95%
confidence interval (2.13%; 2.96%)) for Fe2.25, as indicated by the network meta-analysis
based on the Gompertz model (GM; Figure 4). The result (2.55%) was similar to those
based on the first-order model, which was 1.73% (with a 95% confidence interval (1.37%;
2.09%)) for Fe2.25. The network meta-analysis showed significant heterogeneity (p < 0.001)
in both the Gompertz model and the first-order model. Increasing or decreasing the ferric
dosage reduced the biochemical methane potential in batch tests and the methane yield
in a continuous reactor. The Bayesian network meta-analysis showed that the differences
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between the biochemical methane potential and cumulative methane production might
differ due to the superposition of the multiple effects of ferric. Therefore, the “true” effects
of the biochemical methane potential can be estimated by eliminating the superposition.
The Right-Skewness tests showed a significantly right-skewed p-curve, indicating that there
is a “true” effect [24]. The funnel plot suggests that the small-study effects are acceptable
(Figure S2).
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(d) p-curve. The low p-value and the impartial funnel plot indicated that the prediction is reliable in the reported case with
acclimated microbes.

3.5. Changing of Methane Yield and Performance in Semicontinuous AnMBR

The paired-samples t-test indicated that only the ferric significantly influenced the
methane yield in semicontinuous AnMBR (p < 0.05). The ferric stages (sFe) with an
optimized dosage of Fe2.25 mg·L−1 were able improve the methane yield by an average of
2.27% ± 0.67% (days 42–84, sFe), as compared with the control stage (days 1–42, sCtrl). The
average enhancement rate (2.27% ± 0.67%) was in accordance with the previous evaluation
using the Bayesian network meta-analysis (2.55%) (with a 95% confidence interval (2.13%;
2.96%)), with a difference of less than 0.5%. The prediction bias of methane production
from batch to continuous was reduced from 11%~19% to less than 0.5%.

The paired-samples t-test indicated that ferric and copper significantly influenced
the reactor performances in semicontinuous AnMBR (p < 0.01). Both ferric and copper
significantly improved the organic loading rate (Table 1). The effluent COD of AnMBR
was 351.69 ± 73.23 mg·L−1 in 126 days, which firmly meets the discharging standard
(Figure 5). The sequencing batch reactor’s performance relied on the efficiency of each
batch [19]. The ferric was able to enhance the degradation of poorly biodegradable organics
by accelerating the second peak’s degradation speed and changing the last period’s kinetic
patterns. The ferric therefore shortened the batch cycle, leading to a higher loading rate
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(12.36 ± 0.41 kgCOD·kgVSS
−1·d−1) than the control or copper period. On the other hand,

the copper increased the methane yields by only 0.32% in the continuously operated reactor.
The other effects, including the organic loading rate and effluent COD, were less stimulated
by copper than ferric.
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Figure 5. The influent and effluent COD of the anaerobic membrane bioreactor (AnMBR) without
(sCtrl) augmentation and with ferric (sFe) and copper (sCu) augmentations at the Bayesian network
meta-analysis-optimized dosages, respectively. The COD removal rate unexpectedly increased and
met the discharging standard. Despite that, the methane yield with ferric augmentation in the long
term was improved by 2.27%, just as predicted.

Table 1. Changes of the methane yield and performance in a semicontinuous anaerobic membrane bioreactor (AnMBR).
COD: chemical oxygen demand.

Control Strategy
(Biogas-pH strategy) sCtrl sFe sFe Rate

(%) sCu sCu Rate
(%)

Time (day) 1–42 42–84 84–126
Organic loading rate (kgCOD·kgVSS

−1·d−1) 11.8 ± 0.3 12.4 ± 0.4 4.6 12.1 ± 0.6 2.1
Effluent COD (mg·L−1) 273 ± 48 374 ± 93 37 349 ± 152 28

Methane flow rate (NmL·h−1) 593 ± 351 632 ± 397 6.6 619 ± 368 4.44
Methane yield (NmL·gCODin

−1) 309 ± 51 316 ± 57 2.27 310 ± 62 0.32

4. Discussion
4.1. Potential Mechanisms of Methanogenic Kinetic Response to Ferric

The difference between the BMP batch and the continuous-flow reactor could be
attributed to a combination of mechanisms related to ferric and copper, e.g., the electron
acceptor and donator. Copper has limited impacts on the methane yield. The copper could
be the reciprocal regulation of the genes encoding two MMOs (Methane monooxygenase)
intracellularly. Ferric has more mechanisms than copper in methanogenesis. Ferric could
accept the electron and donate it later for the methanogen. Ferric could also stimulate
interspecies electron transfer by many mechanisms. Ferric could decrease the distance be-
tween two groups. Ferric could conduct an electron between two groups in the syntrophic
methanogenic consortia, which also could stimulate a methane yield [9]. Ferric widely
participates in methanogenic biochemical processes, as in enzymes. The mechanisms of
extracellular electron transfer (EET) were extensively elaborated recently, showing that
Fe (II) works as an electron shuttle. Fe(II) oxidizers can perform a direct electron transfer to
reduce CO2, which is involved in the Direct EET hypothesis [32,33]. The shuttle electrons
for interspecies extracellular electron transfer move by the redox cycling of Fe (II)/Fe (III).
The electron shuttle may be a more convincing argument than flocculation for the examples
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herein, given the enhancement for Fe2.25. Cycling also relies on the oxidation–reduction
potential. Magnetite (Fe2+Fe2

3+O4
2−) is also a commonly tested conductive material that

mediates the interspecies electron transfer (IET). It is known as a conductive-material-
mediated IET, and more researchers tend to regard it as a type of direct IET. Direct IET
is an alternative IET to interspecies hydrogen transfer or interspecies formate transfer.
Magnetite could even trigger direct IET in a methanogenic sludge and could promote
methane production from propionate [34].

On the other hand, iron also plays significant roles in Flavin-based electron bifurcation.
Ferredoxins are iron–sulfur proteins that mediate electron transfers for strictly anaerobic
bacteria and archaea. Ferredoxins act as low-potential terminal acceptors that, upon reoxi-
dation, drive electrochemical proton pumps such as ferredoxin-NAD reductase (Rnf) [35]
and ferredoxin-proton reductase [36]. Reduced ferredoxins also enable difficult reductions,
such as protons to hydrogen, nitrogen to ammonia, and CO2 to formyl groups [37].

Understanding the dose–effect relationships between batch and continuous anaerobic
digestion is a topic of great interest. Network meta-analyses may not be as powerful as
they are supposed to be for long-term evaluations, given the partial limitations. However,
a network meta-analysis still showed better accordance than the many methods attempted
herein in terms of representing the batch and reactor processes. One of the main reasons
for this was that ferric combines many effects, e.g., flocculants, enzymes, and electron
transport, in methane production. The Bayesian network meta-analysis model allowed us
to estimate the probability of the combined effects as a conditional probability during the
processes of methane production [38].

4.2. Deciphering the Methanogenic Kinetic Response to Ferric

The community structure results showed that Methanosaeta significantly increased
with ferric and copper supplementations in the sFe and sCu stages (Figure 6). The triggered
effects on acetoclastic Methanosaeta may be sustained in the copper period [39], as ferric
accumulated in the reactor [40]. Kinetic patterns represent methane production in a
mathematics form. Overestimation between the two peaks by first-order models and
Monod kinetics implies that the methane production for that period does not follow the
single logarithmic multiplication pattern. The lower residuals using the dual exponential
kinetics implied two syntrophic microbes with different growth rates. Each microbe has its
own time-depended growth rate. They collaborate deeply as a dual exponential function.
Simultaneous syntrophism of the two groups of microbes affected the methane production.
The better fit in the last three stages (after the first peak) using the dual exponential kinetics
implies that syntrophic methane production played a primary role in the last three methane
production periods.

The network analysis showed the ferric dosage (0.45, 22.5 mg·L−1) significantly af-
fected the biochemical methane potential (Bn) and the rate constant (kn) in the first-order
and the Monod models. The results strongly implied that the ferric dosage was linked
more with the first group in terms of syntrophic consortia. The ferric dosage also showed
a significant correlation with the lag time. The results implied that the ferric dosage
might accelerate the syntrophism [34], instead of directly linking with the second group in
the syntrophism.

The kinetic patterns also implied different pathways for enhancing the methane
production. For example, the overestimating of the first-order model suggested that
methane production may be lower than it is supposed to be. Therefore, pretreatment,
pre-acidification [18], etc. are potential countermeasures. Extending the logarithmic mul-
tiplication after the first peak may also be helpful. The better fit of the Gompertz model
suggested a non-negligible lag in the system. The lag may occur due to inefficient syn-
trophism or even revisable inhibition. Therefore, enhancing the syntrophism by triggering
a direct interspecies electron transfer (DIET) with a conductor or by increasing the aggre-
gation with flocculation could be a solution. Ferric could play more roles as a flexible
management tool [41]. The prediction of biogas production based on a better understand-
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ing of biochemical kinetics would allow for better food processing wastewater treatment to
be established to decrease pollutants and increase energy recovery.
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Figure 6. The STAMP plot comparing the microbial community of the AnMBR with long-term ferric and copper augmenta-
tion: (A) sFe and sCu, (B) sFe and sCtrl, and (C) sCu and sCtrl. The Methanosaeta is stimulated by both ferric and copper.
The ferric dosage also stimulated Flavobacterium and Syntrophomonas as syntrophic methanogenic consortia, while copper
inhibited them, e.g., Bacteroides.

5. Conclusions

The effects of ferric and copper on methane production were investigated in batch
and lab-scale reactors in this study. A consistent enhancement of methane production
from batch (2.55% ± 0.42%) to the reactor (2.27% ± 0.67%) was achieved using the Gom-
pertz kinetic-based Bayesian network meta-analysis. Ferric enhanced the degradation of
poorly biodegradable organics primarily by accelerating the second peak’s degradation
speed (k71) and decreasing the lag time (λn), while copper accelerated the first peak’s
degradation speed. Kinetic patterns revealed that the effect of ferric was primarily affected
by syntrophism, but copper demonstrated limited impacts in the continuously operated
reactor. The improved coupling as a result of the batch evaluation allowed for a predictable
operation of a semicontinuous reactor with a higher methane yield and loading rate.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-037
5/11/2/100/s1: Figure S1. Facet plot of residual error for different methanogenic kinetic models.
The flat curve indicated a stable fit throughout digestion. The digestion time was marked at three
kinetic stages for to compare the performances of the different kinetic models: the first peak of
daily methane production (1), the second peak of daily methane production (27), and the last period
(66). Figure S2. The Funnel plot for the bias check and effects plots in the network meta-analysis.
Table S1. Nomenclature. Table S2. Dose of ferric and copper for the methane production dynamic
characteristics.

Author Contributions: Conceptualization, methodology, software, validation, and writing—review
and editing, D.Y. and T.R.; data curation and writing—original draft preparation, R.T.N.; investigation
and visualization, Y.L.; and resources, supervision, project administration and funding acquisition,
Y.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (2016YFD0501405 and 2016YFE0118500), the Major Science and Technology Program for Water
Pollution Control and Treatment of China (2017ZX07102-002 and 2018ZX07105-001), National Natural
Science Fund (21677161), and the special fund from the State Key Joint Laboratory of Environment

https://www.mdpi.com/2077-0375/11/2/100/s1
https://www.mdpi.com/2077-0375/11/2/100/s1


Membranes 2021, 11, 100 15 of 16

Simulation and Pollution Control (Research Center for Eco-environmental Sciences, Chinese Academy
of Sciences) (19Z02ESPCR). Dawei Yu was supported by the visiting scholar project from China
Scholarship Council (201904910106).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fletcher, S.E.M.; Schaefer, H. Rising methane: A new climate challenge. Science 2019, 364, 932–933. [CrossRef] [PubMed]
2. Hafner, S.D.; Koch, K.; Carrere, H.; Astals, S.; Weinrich, S.; Rennuit, C. Software for biogas research: Tools for measurement and

prediction of methane production. SoftwareX 2018, 7, 205–210. [CrossRef]
3. von Cossel, M.; Möhring, J.; Kiesel, A.; Lewandowski, I. Optimization of specific methane yield prediction models for biogas

crops based on lignocellulosic components using non-linear and crop-specific configurations. Ind. Crops Prod. 2018, 120, 330–342.
[CrossRef]

4. Zang, Y.; Yang, Y.; Hu, Y.; Ngo, H.H.; Wang, X.C.; Li, Y.Y. Zero-valent iron enhanced anaerobic digestion of pre-concentrated
domestic wastewater for bioenergy recovery: Characteristics and mechanisms. Bioresour. Technol. 2020, 310, 123441. [CrossRef]
[PubMed]

5. Zhang, J.; Lu, T.; Wang, Z.; Wang, Y.; Zhong, H.; Shen, P.; Wei, Y. Effects of magnetite on anaerobic digestion of swine manure:
Attention to methane production and fate of antibiotic resistance genes. Bioresour. Technol. 2019, 291, 121847. [CrossRef]

6. Zhang, J.; Wang, Z.; Lu, T.; Liu, J.; Wang, Y.; Shen, P.; Wei, Y. Response and mechanisms of the performance and fate of antibiotic
resistance genes to nano-magnetite during anaerobic digestion of swine manure. J. Hazard. Mater. 2019, 366, 192–201. [CrossRef]

7. Li, Y.; Chen, Y.; Wu, J. Enhancement of methane production in anaerobic digestion process: A review. Appl. Energy 2019,
240, 120–137. [CrossRef]

8. Baek, G.; Kim, J.; Lee, C. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of
dairy effluentEnhancement in process performance and stability. Bioresour. Technol. 2016, 222, 344–354. [CrossRef]

9. Martins, G.; Salvador, A.F.; Pereira, L.; Alves, M.M. Methane Production and Conductive Materials: A Critical Review. Environ.
Sci. Technol. 2018, 52, 10241–10253. [CrossRef]

10. Wu, X.; Tian, Z.; Lv, Z.; Chen, Z.; Liu, Y.; Yong, X.; Zhou, J.; Xie, X.; Jia, H.; Wei, P. Effects of copper salts on performance, antibiotic
resistance genes, and microbial community during thermophilic anaerobic digestion of swine manure. Bioresour. Technol. 2020,
300, 122728. [CrossRef]

11. Chan, P.C.; Lu, Q.; de Toledo, R.A.; Gu, J.D.; Shim, H. Improved anaerobic co-digestion of food waste and domestic wastewater
by copper supplementation—Microbial community change and enhanced effluent quality. Sci. Total Environ. 2019, 670, 337–344.
[CrossRef] [PubMed]
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