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The gram-positive filamentous bacterium Streptomyces is one of the largest resources
for bioactive metabolites, particularly antibiotics. Antibiotic production and other
metabolic processes are tightly regulated at the transcriptional level. Sigma (σ) factors
are components of bacterial RNA polymerases that determine promoter specificity. In
Streptomyces, σ factors also play essential roles in signal transduction and in regulatory
networks, thereby assisting in their survival in complex environments. However, our
current understanding of σ factors in Streptomyces is still limited. In this mini-review,
we demonstrate the roles of Streptomyces σ factors, illustrating that these serve as
linkers of different metabolic pathways. Further investigations on σ factors may improve
our knowledge of Streptomyces physiology and benefit exploitation of Streptomyces
resources.
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INTRODUCTION

Streptomyces is the largest genus of Actinobacteria and is characterized by complex morphological
differentiation and the ability to produce valuable secondary metabolites (reviewed by Demain,
2002; Challis and Hopwood, 2003; Flardh and Buttner, 2009). This genus possesses complex
regulatory systems that coordinate various biological processes and allows survival in their habitats.
Transcriptional regulation is one of the most extensively studied regulatory mechanisms, with
RNA polymerase (RNAP) playing a central role in transcription. Transcription initiation requires
a holo-RNAP complex, which is composed of a core-RNAP (α2ββ′ω) and a dissociable sigma (σ)
factor that recognizes specific promoter elements and facilitates transcription initiation (reviewed
by Browning and Busby, 2004; Paget, 2015). Although the importance of σ factors has been
established, further investigations on its regulatory mechanisms are warranted (reviewed by
Feklistov et al., 2014; Browning and Busby, 2016). Sigma factors are not only a distinct subunit
of RNAPs, but also an essential part of signal transduction systems. Endogenous and exogenous
signals regulate the expression and activity of σ factors, thereby modifying the transcriptome (Cho
et al., 2001; Takano et al., 2005; Hesketh et al., 2007; Feng et al., 2011). Moreover, various σ factors
act as master regulators, regulating more than one biological process (Lee et al., 2005; Kim et al.,
2012). In this mini-review, we provide an overview of the functions of σ factors in the life cycle of
Streptomyces and illustrate that these also link different metabolic pathways, which benefits further
investigation of σ factors and exploitation of Streptomyces resources.

CLASSIFICATION OF σ FACTORS

Bacterial σ factors can be divided into two families, namely, σ70 and σ54. The σ54 family, which
contains only one member that is distinct from σ70 proteins, has been excluded from this review.
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The σ70 family is named after the Escherichia coli housekeeping
σ70 and consists of four subgroups (1, 2, 3, and 4) based
on differential physical functions, phylogenic relationships, and
possession of conserved domains σ1 (region 1.1), σ2 (region 1.2,
2.1–2.4), σ3 (region 3.0–3.2), and σ4 (region 4.1–4.2) (Figure 1)
(reviewed by Paget, 2015). The number of members in the σ70

family, particularly those in groups 3 and 4, is highly variable
among bacterial species. Streptomyces spp. encodes various σ

factors to survive in complex environments and coordinate
complicated physiological processes. This mini-review focuses on
the Streptomyces σ70 family proteins.

GROUP 1 σ FACTORS

Group 1 σ factors, including E. coli σ70 and its orthologs,
possess all four σ domains and a non-conserved region
(NCR) of variable length located between regions 1.2 and 2.1
(Figure 1). NCR is involved in core interactions and promoter
escape (Leibman and Hochschild, 2007). Group 1 σ factors
are responsible for the transcription of essential genes and
are thus also called “housekeeping σ factors” (reviewed by
Paget, 2015). In Streptomyces, principal housekeeping σ factor
(σHrdB) is not only required for essential gene expression, but
is also involved in morphological differentiation and secondary
metabolism (Fujii et al., 1996). Studies have revealed that
σHrdB affects secondary metabolism in at least two ways. First,
σHrdB initiates the transcription of pathway-specific regulatory
genes that are essential to secondary metabolite biosynthesis.
For example, in S. coelicolor, σHrdB regulates the biosynthesis
of actinohordin (ACT) and undecylprodigiosin (RED) by
initiating the transcription of the pathway-specific regulatory
genes actII-ORF4 and redD (Fujii et al., 1996). Similarly, in
S. avermitilis, σHrdB initiates the transcription of the pathway-
specific regulatory gene aveR to promote the biosynthesis of
avermectin (Zhuo et al., 2010). Moreover, the biosynthesis of
secondary metabolites requires precursors and energy, which
is produced by σHrdB-dependent primary metabolism. Thus,
σHrdB mediates the metabolic flux from primary to secondary
metabolism.

Because σHrdB connects primary metabolism with secondary
metabolism, genetic manipulation of the hrdB gene has been
utilized as a strategy in enhancing antibiotic production.
The engineering of hrdB can be performed by at least
two methods. In the first method, the site-mutated hrdB
gene that triggers the upregulation of aveR transcription
is introduced into avermectin high-producing strain 3–115,
thereby improving avermectin B1a yield by over 50% (Zhuo
et al., 2010). In the second method, as the strength of the
hrdB promoter (hrdBp) is greater than other commonly used
promoters in Streptomyces, the native promoters of the antibiotic
biosynthesis genes or pathway-specific regulatory genes are
replaced with hrdBp to improve antibiotic yield. For example,
nikkomycin yield is significantly enhanced by introducing hrdBp-
driven sanG, which encodes the pathway-specific activator of
nikkomycin biosynthesis in S. ansochromogenes TH322 (Du et al.,
2013).

GROUP 2 σ FACTORS

The structure of group 2 σ factors is highly similar to that
of group 1 σ factors, except for the absence of region 1.1.
Furthermore, group 2 σ factors are not essential to bacterial
growth. The number of group 2 σ factors encoded by bacterial
genomes is highly variable (Table 1) (Buttner and Lewis, 1992;
Osanai et al., 2008; Battesti et al., 2011). The Streptomyces genome
usually contains three group 2 σ factors: σHrdA, σHrdC, and σHrdD

(Buttner et al., 1990; Forsman and Granstrom, 1992; Kormanec
et al., 1992; Wang et al., 2015). The majority of studies have
focused on σHrdD.

Although σHrdD is transcribed during growth, and the σHrdD-
RNAP holoenzyme can initiate transcription of genes that are
involved in antibiotic biosynthesis (e.g., actII-ORF4, redD) and
differentiation (e.g., whiB) in vitro, hrdD mutants do not exhibit
changes in secondary metabolism and differentiation (Fujii et al.,
1996; Kang et al., 1997), thereby prompting us to examine the
biological significance of σHrdD. Earlier studies have determined
that hrdD can be induced by stresses such as envelope stress,
oxidative damage, and hyperosmolarity (Kang et al., 1997; Paget
et al., 2001; Lee et al., 2005), suggesting that σHrdD may be
involved in stress response processes. Moreover, in pathogenic
actinobacterium, Mycobacterium tuberculosis, group 2 σ factor
σB

Mtb can specifically bind to RbpA, a transcriptional activator
without DNA-binding activity, and the activity of σB

Mtb is
stringently dependent on RbpA (Hu et al., 2014). These findings
suggest that in Streptomyces, σHrdD may bind to an RbpA-like
protein to form a complex, which is required for survival under
stress conditions.

Although the expression of group 2 σ factors in Streptomyces
may be related to multiple biological processes, knowledge of
their biological significance remains limited. E. coli σS, the most
extensively studied group 2 σ factor, can affect the expression
of about 500 target genes under stress conditions. It is not
only involved in general stress responses but also in survival in
the stationary phase (Weber et al., 2005; Battesti et al., 2011).
Therefore, further investigations are warranted to clarify the
underlying regulatory mechanisms of Streptomyces group 2 σ

factors.

GROUP 3 σ FACTORS

Group 3 σ factors possess σ2, σ3, and σ4 domains (Figure 1),
which are referred to as alternative σ factors that are used to
direct RNAP to genes involved in adaptive responses (reviewed
by Gruber and Gross, 2003). In Streptomyces, alternative σ

factors modulate multiple metabolic pathways in response to
intracellular or extracellular signals (Kormanec and Sevcikova,
2002; Viollier et al., 2003; Dalton et al., 2007; Bobek et al.,
2014).

σWhiG, an alternative σ factor that regulates differentiation,
orchestrates the formation of spores by activating the
transcription of three regulatory genes, namely, whiA, whiH, and
whiI, which are essential for cell division and spore maturation
(Ryding et al., 1998; Ainsa et al., 1999; Kaiser and Stoddard,
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FIGURE 1 | σ factor domains in the σ70 family. Domain organization of σ70 family members from groups 1, 3, and 4.

TABLE 1 | Number of σ factors in actinobacteria species.

Strains Group 1 Group 2 Group 3 Group 4 Total

Streptomyces avermitilis ATCC31267 1 2 10 47 60

Streptomyces coelicolor A3(2) 1 3 10 50 64

Streptomyces griseus IFO13350 1 2 10 39 52

Streptomyces scabies 87.22 1 2 10 48 61

Streptomyces venezuelae ATCC10712 1 2 9 28 40

Micromonospora aurantiaca ATCC 27029 1 3 3 31 38

Mycobacterium tuberculosis H37Rv 1 1 1 10 13

Mycobacterium smegmatis MC2 155 1 1 1 21 24

Corynebacterium glutamicum ATCC13032 1 0 0 5 6

2011). In S. chattanoogensis, σWhiG also regulates secondary
metabolism. σWhiG promotes natamycin biosynthesis by directly
activating the transcription of two natamycin biosynthetic
genes, scnC (encodes an aminotransferase) and scnD (encodes
a P450 monooxygenase). The deletion of scnC or scnD results
in the accumulation of two natamycin analogs, 4,5-deepoxy-
natamycinolide and 4,5-deepoxy-natamycin, respectively, but
abolishes natamycin biosynthesis (Liu et al., 2015a,b). Besides,
whiG expression is regulated by bis-(3′-5′)-cyclic dimeric GMP
(c-di-GMP), an important second messenger that imparts
global effects in Streptomyces (reviewed by Bush et al., 2015).
A transcriptional repressor BldD negatively regulates whiG
transcription in a (c-di-GMP)-dependent manner. At the
vegetative growth stage, high concentrations of c-di-GMP lead
to the formation of BldD-(c-di-GMP) complexes that bind
to whiG promoter regions, repressing its transcription. When
morphological differentiation starts, c-di-GMP concentrations
decline, causing the release of BldD from the target DNA,
thereby relieving transcriptional suppression of whiG (Elliot
et al., 2001; Tschowri et al., 2014). Therefore, σWhiG responds to
the intracellular signal molecule and coordinates morphological
differentiation as well as secondary metabolism.

Except for σWhiG, S. coelicolor has nine other alternative σ

factors (σB, σF, σG, σH, σI, σK, σL, σM, and σN), all belonging
to the σB-like σ factors, which are homologs of Bacillus subtilis
σB (Cho et al., 2001; Lee et al., 2004). These σB-like σ factors
play important roles in the Streptomyces regulatory system
(Kelemen et al., 1996; Kormanec and Sevcikova, 2002; Lee et al.,
2005; Mao et al., 2009; Wang et al., 2010). Among the σB-like
σ factors, σB has been most extensively investigated. σB can

control morphological differentiation and secondary metabolism
by directly regulating differentiation-related genes (e.g., dpsA
required for spore maturation and whiB that is required for
aerial hyphae formation) and antibiotic biosynthetic genes (e.g.,
redH that encodes a phosphoenolpyruvate-utilizing enzyme and
redZ that encodes a pathway-specific regulator for RED) (Lee
et al., 2005; Facey et al., 2009, 2011). Furthermore, σB controls
morphological differentiation and secondary metabolism by
regulating the ppGpp synthesis (Lee et al., 2004). Guanosine
tetraphosphate (ppGpp) is an extensively studied signaling
nucleotide that is synthesized in nutrient-limited conditions. It
interacts directly with RNAP to modulate the transcriptome
(reviewed by Hauryliuk et al., 2015). In S. coelicolor, ppGpp
affects differentiation and secondary metabolism by modulating
the expression of genes required for aerial hyphae formation and
pathway-specific regulators (Hesketh et al., 2007). σB influences
intracellular ppGpp concentrations by directly regulating the
ppGpp synthetase gene relA (Lee et al., 2004).

In addition, σB responds to environmental stress signals and
activates the stress-related regulon. First, σB controls osmotic
defensive responses by initiating the transcription of genes that
are involved in the synthesis and uptake of osmotic compatible
solutes (Lee et al., 2005; Fernandez-Martinez et al., 2009), as well
as activating two other alternative σ factors that also contribute
to osmotic stress responses, namely, σL and σM, in a hierarchical
order to strengthen the regulatory network (Lee et al., 2005).
Second, σB is involved in oxidative stress responses by promoting
cysteine and mycothiol (streptomycetes major thiol buffer)
biosynthesis and the expression of catalase (Lee et al., 2005).
Finally, the σB regulon includes cold shock proteins, thereby
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suggesting that it may be involved in cold shock responses
(Lee et al., 2005). Interestingly, upon osmotic stress, σB rapidly
activates the osmotic defense system and subsequently promotes
the transcription of oxidative stress-related genes (Lee et al.,
2005), suggesting that σB protects S. coelicolor from subsequent
oxidative damage after osmotic shock. These findings indicate
that σB governs multiple stress responses in Streptomyces. In
summary, σB governs multiple biological processes and acts as a
key element in the stress response system, thereby eliciting rapid
responses to changes in habitat.

GROUP 4 σ FACTORS

Group 4 σ factors are the most divergent members of the σ70

family and exclusively contain the σ2 (which lacks region 1.2) and
σ4 domains (Figure 1). As group 4 σ factors usually correlate with
extracytoplasmic stimuli, these are also called extracytoplasmic
function (ECF) σ factors (reviewed by Staron et al., 2009; Paget,
2015). The Streptomyces genome encodes various ECF σ factors,
which reflects their complex habitats and complicated metabolic
processes (Table 1).

Extracytoplasmic function σ factors play essential roles in
the stress response system of Streptomyces spp. One of the
most extensively studied stress-responsive ECF σ factor is
S. coelicolor σR. It is induced by oxidants and translation-
inhibiting antibiotics and subsequently activates the oxidative
damage reparatory system, ribosome-associated products, and
transcriptional regulators (e.g., RbpA) (Paget et al., 2001; Yoo
et al., 2016; Lee et al., 2017). Additionally, during thiol-
oxidative stress, σR is required to maintain the level and
activity of σHrdB, thereby suggesting a crosstalk between ECF
σ factor and housekeeping σ factor during stress (Kim et al.,
2012). These findings reveal that σR is a master regulator
of defense responses against multiple stresses. On the other
hand, σR is regulated at multiple levels. First, σR activity is
regulated by its cognate anti-σ factor, RsrA. Under normal
conditions, RsrA binds to σR and sequesters σR from RNAP.
Under stress, RsrA undergoes structural changes that cause the
release of σR, which subsequently regulates its regulons (Kang
et al., 1999). The expression of σR is also regulated at the
transcriptional (promoted by transcriptional activator WblC),
translational (repressed by translation initiation factor IF3), and
post-translational (degraded by Clp proteases) levels (Kim et al.,
2009; Yoo et al., 2016; Feeney et al., 2017). Taken together,
σR is a pivotal element in the complex regulatory network of
Streptomyces spp.

Extracytoplasmic function σ factors are involved in
morphological differentiation. The widely distributed ECF
σ factor, σBldN, is required for aerial mycelium formation (Bibb
et al., 2000). Studies have revealed that σBldN is responsible for
the expression of differentiation-related proteins chaplin, rodlin,
and BldM (Bibb et al., 2000, 2012). Deletion of bldN abolishes
aerial hyphae formation, thereby causing the “bald” phenotype
(Bibb et al., 2000; Yague et al., 2014).

Regulation of secondary metabolism by ECF σ factors
is commonly identified among actinomycetes, and some

pathway-specific ECF σ factors are located within the
antibiotic biosynthesis gene cluster. σMibX in Microbispora
corallina is the most extensively studied cluster-situated ECF
σ factor that controls the biosynthesis and maturation of
microbisporicin (Foulston and Bibb, 2010). Microbisporicin
is synthesized by the mib gene cluster, which is composed of
six transcriptional units (i.e., mibJYZO, mibQ, mibR, mibXW,
mibABCDTUV, and mibEFHSN). The LuxR-family regulator
MibR is responsible for the activation of mibABCDTUV,
and the ECF σ factor σMibX initiates the transcription of
mibJYZO, mibQ, mibR, mibXW, and mibEFHSN. Under
normal conditions, the transcriptional activity of σMibX is
sequestered by its cognate anti-σ factor MibW, abolishing
microbisporicin production. Upon nutrient limitation, cellular
ppGpp concentrations increase and subsequently activate mibR
transcription in a σMibX-independent manner, followed by the
expression of the mibABCDTUV operon, thereby inducing the
biosynthesis of immature microbisporicin. Subsequently, the
immature antibiotic inactivates MibW, leading to the release
of σMibX, which in turn upregulates the expression of mature
microbisporicin (Foulston and Bibb, 2011; Fernandez-Martinez
et al., 2015). This model illustrates that antibiotics can function
as a signal and an ECF-σ factor-(anti-σ factor) complex may play
a crucial role in the signaling pathway.

In Streptomyces, the only identified cluster-situated ECF
σ factor is σAntA, which has been reported in S. albus.
Unlike σMibX, no anti-σ factor regulating the transcriptional
activity of σAntA has been reported to date (Seipke et al.,
2014). Interestingly, σAntA expression and antimycin production
diminish upon differentiation (Seipke et al., 2014), suggesting
that the expression/activity of σAntA may be “switched off”
by some specific regulatory mechanism that is coupled with
differentiation, yet needs further investigation.

In summary, ECF σ factors play essential roles in responding
to signals and modulate Streptomyces metabolism. However,
compared to various other ECF σ factors in this particular
bacterial species, researches investigations on ECF σ factors
and the mechanism underlying their response to signals are
limited.

Further investigations on ECF σ factors, the corresponding
signals, and the relationship between these signals and biological
processes are necessary to enrich our understanding of the
Streptomyces regulatory network.

CONCLUSION

Transcriptional regulation is a crucial mechanism in modulating
gene expression, and RNAP is the key element in transcription.
Sigma factors are the only variable elements of holo-RNAP,
indicating that the selection of a particular target gene is
mainly dependent on σ factors. In most cases, unlike other
transcriptional factors that upregulate or downregulate gene
expression, σ factors act as “switches” that turn expression on or
off. In this mini-review, we focused on the members of the σ70

family in Streptomyces, illustrating their function and underlying
mechanisms.
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Streptomyces species undergo complex morphological
differentiation and synthesize various secondary metabolites,
which are governed by a complex regulatory network. As a crucial
component of the transcriptional regulatory system, σ factors
fine-tune gene expression and regulate metabolic fluxes. Thus,
engineering of specific σ factors is a feasible method of generating
high-producing antibiotic strains (Zhuo et al., 2010), which
requires detailed and precise knowledge of σ factor function.
However, except for very few members, the biological function
of most σ factors and whether these are related to secondary
metabolism remains unclear. Thus, further investigations on the
functions of Streptomyces σ factors should be conducted.

Streptomyces has a subtle signal sensing and transduction
network that responds to extracellular and intracellular signals.
Recent studies have revealed that the majority of antibiotic
biosynthesis gene clusters in Streptomyces are not expressed, and
these clusters are described as “silent.” These silent metabolites
are not produced under normal conditions, suggesting that
special signals are needed to activate them (reviewed by Okada
and Seyedsayamdost, 2017). Sigma factors may respond to some
special signals and activate these silent antibiotic synthetic gene

clusters, thereby extending our arsenal of bioactive metabolites.
Hopefully, future investigations on σ factors may improve our
understanding of the Streptomyces signal transduction system,
thereby promoting antibiotic production and the discovery of
novel secondary metabolites.
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