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Abstract: Pulmonary arterial hypertension (PAH) is a chronic cardiopulmonary disorder instigated
by pulmonary vascular cell proliferation. Activation of Akt was previously reported to promote
vascular remodeling. Also, the irreversible nitration of Y350 residue in Akt results in its activation.
NitroAkt was increased in PAH patients and the SU5416/Hypoxia (SU/Hx) PAH model. This study
investigated whether the prevention of Akt nitration in PAH by Akt targeted nitroxide-conjugated
peptide (NP) could reverse vascular remodeling and metabolic reprogramming. Treatment of the
SU/Hx model with NP significantly decreased nitration of Akt in lungs, attenuated right ventricle (RV)
hypertrophy, and reduced RV systolic pressure. In the PAH model, Akt-nitration induces glycolysis
by activation of the glucose transporter Glut4 and lactate dehydrogenase-A (LDHA). Decreased
G6PD and increased GSK3β in SU/Hx additionally shunted intracellular glucose via glycolysis.
The increased glycolytic rate upregulated anaplerosis due to activation of pyruvate carboxylase in a
nitroAkt-dependent manner. NP treatment resolved glycolytic switch and activated collateral pentose
phosphate and glycogenesis pathways. Prevention of Akt-nitration significantly controlled pyruvate
in oxidative phosphorylation by decreasing lactate and increasing pyruvate dehydrogenases activities.
Histopathological studies showed significantly reduced pulmonary vascular proliferation. Based
on our current observation, preventing Akt-nitration by using an Akt-targeted nitroxide-conjugated
peptide could be a useful treatment option for controlling vascular proliferation in PAH.

Keywords: Pulmonary arterial hypertension; metabolism; Warburg effect; anaplerosis; nitroxide-
conjugated peptide; Akt

1. Introduction

Pulmonary arterial hypertension (PAH) is a rare disease that rapidly progresses by increased
proliferation in pulmonary vascular cells causing irreversible vascular remodeling. This accounts
for increased pulmonary arterial pressure and later cardiac dysfunction, the leading cause of patient
mortality in PAH [1]. According to Hoeper et al. [2], the frequency of PAH is 1.1 to 17.6 per million
adults per year and has an occurrence of 6.6 to 26 individuals per million. Even though the disease
remains incurable, despite the ineffective existing therapy, the only alternative treatment for this
disease is a heart and lung transplantation. Unfortunately, this option is only accessible in designated
surgical centers, and only half of these patients survive the surgery with a lifespan of approximately
five years [3,4].
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Akt signaling plays an important role in the pathogenesis of hypoxia-induced PAH [5]. In PAH,
Akt activation results in the stimulation of cell survival by preventing apoptotic pathways and
activating prosurvival mechanisms. Recently, we identified that the nitration of Akt1 at Tyr350 causes
its activation, ensuing greater endothelial nitric oxide synthase (eNOS) phosphorylation, subsequent
mitochondrial translocation, and affecting mitochondrial function [6]. Increased nitric oxide (NO)
production augmented high levels of peroxynitrite formation, nitrosative stress, and enhanced protein
nitration, which was reported in PAH [7]. These altered proteins may affect many important cytosolic
and mitochondrial metabolic pathways; therefore, controlling nitrosative stress is an effective option in
preventing PAH progression.

Mitochondria are an important source of reactive oxygen species (ROS), which accounts for
vascular dysfunction in PAH [8]. Under conditions of chronic hypoxia, hypoxia-inducible factor
and eNOS regulate various cellular functions to meet increased cellular bioenergetic requirements
in the pathogenesis of PAH [9,10]. Mitochondrial dysfunction limits ATP production, which results
in a metabolic shift towards the Warburg effect often found in highly proliferative cancer cells and
pulmonary vascular cells [11]. Another factor inducing cellular proliferation is anaplerosis, which is
the replenishment of tricarboxylic acid (TCA) cycle carbon intermediates via the glutaminase-mediated
deamidation of glutamine or the carboxylation of pyruvate [12]. Recent studies have linked anaplerosis
and glutaminolysis (anabolic pathways that promote cellular biomass for highly proliferative tumor
cells) to the hyperproliferative state of PAH, leading to hypertrophy and pulmonary vascular
resistance [13].

Antioxidant therapy has been studied for several decades, but its cellular effects are global, and it
does not show any clinical significance. Recently, it was reported that in the sugen/hypoxic PAH model,
the chemical antioxidant TEMPOL failed to attenuate right ventricular hypertrophy and pulmonary
arterial remodeling [14]. A targeted approach in antioxidant therapy is a promising technique and
could maximize the potential of an antioxidant. Nitroxides are the family of free radical compounds,
which are effective scavengers of ROS [15]. Nitroxides function as a superoxide dismutase (SOD)
mimetic, performing the interconversion of an oxammonium cation or hydroxylamine [16]. These
properties make nitroxide suitable for the development of defensive peptides for preventing Akt
nitration in our study. The affinity peptide that is exclusively targeted to protect the Akt nitration site
is conjugated with a nitroxide moiety, forming a nitroxide peptide (NP). Specifically, this would block
the tyrosine (Tyr)-350 nitration of Akt, and the conjugated nitroxide antioxidant part would effectively
alleviate free radical attacks. In this study, we infer that preventing Akt nitration with antioxidant
NPs may be an effective remedy in controlling metabolic reprogramming, anaplerosis, and vascular
remodeling events in PAH.

2. Materials and Methods

2.1. Development of Nitroxide-Conjugated Affinity Peptide

Nitroxide peptide (NP) was synthesized and purified by the 21st Century Biochemicals company
(Marlboro, MA, USA) from two parts, one being the peptide part with the affinity to Akt near
the Tyr 350 residue (Ser-Arg-Ile-Arg-Ser), and the other being a conjugated antioxidant, nitroxide
(3-carboxy-2,2,5,5-tetramethyl-3-pyrroline-1-yloxy), covalently attached to the free N-terminal amine.
The purified peptide was stored at −80 ◦C as a lyophilized powder. Samples were weighed and freshly
prepared just before each experiment or injection.

2.2. SIN-1 Induced Akt Nitration Assay

Human pulmonary artery endothelial cells (HPAECs) purchased from Lonza, Greenwood, SC,
were cultured using an endothelium media specific for HPAEC with 10% FBS. Cells were used from
passages 3–6. All experiments were performed on 80%–90% confluent cells. Akt nitration was induced
by treatment with 3-morpholinosyndnomine (SIN-1) (1 mM) for 1 h. NP pretreatment groups were
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treated with 1 µM NP for 30 min, and then cells were washed in PBS and treated with SIN-1 for
1 h. All treatments were accompanied by including controls with the corresponding vehicle. After
treatment, the cells were washed in PBS and lysed in RIPA buffer containing protease and phosphatase
inhibitor cocktail [17].

2.3. Human Subject

Deidentified lung samples consisted of patients with a diagnosis of group I PAH (idiopathic
pulmonary arterial hypertension (IPAH) group, N = 10) and healthy controls (control group, N = 10)
and were obtained through Pulmonary Hypertension Breakthrough Initiative (PHBI). The PHBI study
protocol was approved by the Institutional Review Boards of the participating sites in the network,
and all sites were adherent to the requirements of the U.S. Federal Policy for the Protection of Human
Subjects (45 CFR, Part 46), and supported the general ethical principles of the Declaration of Helsinki.

2.4. Rat Model of PH

Female Sprague Dawley rats (200–250 g) obtained from Charles River (Wilmington, MA, USA)
were used in this study. Animals were housed at 22 ◦C, 12 h light/dark cycle, and had access to
standard rodent food and water ad libitum. All experimental procedures were approved by the
University of Arizona Institutional Animal Care and Use Committee. Generally, PAH was induced by
a single injection of SU5416 (50 mg/kg) subcutaneously, followed by 3 weeks of hypoxia (10% O2) and
2 weeks of normoxia. This study included five animal groups: control group; SU1, rats were analyzed
after 1 week of SU5416 and hypoxia treatment; SU2, rats were analyzed after 2 weeks of SU5416 and
hypoxia treatment; SU5, rats were analyzed after 5 weeks of SU5416 treatment (3 weeks of hypoxia
with a following 2 weeks of normoxia); and SU2+NP, peptide treatment 0.1 mg/kg/d intravenous (i.v.)
injection started with SU5416 treatment for 2 weeks.

2.5. Hemodynamic Measurement

Animals were anesthetized with Inactin 100 mg/kg intraperitoneally (i.p.) (T133, Sigma-Aldrich,
St. Louis, MO, USA). A customized pressure transducer catheter (SPR-513, Millar Instruments, Houston,
TX, USA) was inserted into the RV via the right jugular vein and advanced into the right ventricle to
monitor right ventricular systolic pressure (RVSP), as described previously [7,18]. Briefly, the pressure
transducer catheter was connected to a Millar Transducer Control Unit TC-510 and PL3504 PowerLab
4/35 data acquisition system (AD Instruments, Colorado Springs, CO, USA) to monitor RV pressure
for 30 min. After this, a tracheal catheter was connected to a ventilator system (Harvard Rodent
Ventilator-683; Harvard Apparatus, South Natick, MA, USA), the thorax was opened, and the lungs
flushed with 0.9% sodium chloride through the right ventricle (RV). Heart and lungs were collected
from animals; the RV free wall was separated from the left ventricle (LV) and the septum (S). Fulton
index (RV/ LV + S ratio) as a parameter of RV hypertrophy was calculated. The total wet lung weight
was measured and normalized by the body weight of the animal. The left lung was fixed in formalin
and embedded in paraffin for histological examination. The other portion of the lung was stored at
−80 ◦C for further biochemical studies.

2.6. Histological Analysis

For the morphometric assessment of pulmonary vessels, 5 µm tissue sections were dewaxed
and stained with Verhoeff–Van Gieson (EVG) elastic fibers stain, by HistoWiz Inc. (Brooklyn, NY,
USA), using standard operating procedures and a fully automated workflow system. Ten transversely
sectioned pulmonary arteries (diameter < 300 µm) within each category per each animal (N = 6 per
group) were randomly selected from the whole-slide 40× digitized image Aperio AT2 scanner (Leica
Biosystems, IL, USA). Immunohistochemistry was performed using standard protocols. The sections
were deparaffinized and incubated with primary antibodies against Akt Y350 NO2 (1:100) and Ki67
(1:800) (ab15580 Abcam) and Dab Rabbit H1 (pH 6) for 20 min. The morphometric analysis was done
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by an investigator in a blinded grouping fashion. The wall thickness of the pulmonary artery (PA) was
measured using the publicly available software Fiji ImageJ (http://fiji.sc/Fiji; in the public domain) [19].

2.7. Western Blot Analysis

For an analysis of the total lung protein, lung tissues were lysed as previously described [20].
Briefly, 20–40 mg of lung tissue (human/rat) was lysed in permeabilization buffer mixed with protease
and phosphatase inhibitor cocktails (78429, Thermo Scientific, Rockford, IL, USA) using a Fisher
Homogenizer 850. The homogenate was centrifuged at 10,000× g for 10 min, and the supernatant was
carefully collected. Cell membrane and cytosolic fractions were isolated using the FractionPREPTM
cell fraction kit (Biovision, Milpitas, CA, USA) according to the manufacturer’s instruction. The protein
concentration was measured using the BCA protein assay kit (Thermo Scientific, Rockford, IL, USA).
Samples were incubated with 6x Laemmli sample buffer (Boston Bioproducts Inc., Ashland, MA,
USA) for 5 min at 95 ◦C, loaded on the 4%–20% SDS-PAGE Mini-PROTEAN TGX Stain-FreeTM gels
(Bio-Rad Laboratories Inc., Hercules, CA, USA), and separated by electrophoresis. Protein bands
were transferred using the Trans-Blot Turbo transferring system (Bio-Rad Laboratories Inc.) and then
blocked with 5% bovine serum albumin (37525, Thermo Scientific, Rockford, IL, USA) in Tris-buffered
saline. Membranes were probed using antibodies against Glut4 (07-1404, 1:1000) from Millipore;
pyruvate carboxylase (PC) (Ab229267, 1:1000) and peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α) (Ab191838, 1:1000) from Abcam; and pyruvate dehydrogenase (PDH)
(45-6600, 1:1000) from Invitrogen; phospho Akt (Ser 473) (4060S, 1:2000), Akt (9272S, 1:1000), hexokinase
1 (HK1) (C35C4, 1:1000), glyceraldehyde-3 phosphate dehydrogenase (GAPDH) (2118S, 1:1000), lactate
dehydrogenase-A (LDHA) (2012S, 1:1000), phospho glycogen synthase kinase (GSK) 3 β (Ser9) (9336S,
1:1000), GSK3 β (9315S, 1:1000), and glucose 6-phosphate dehydrogenase (G6PD) (8866S, 1:1000)
from Cell Signaling Technology. Mouse monoclonal anti-nitrotyrosine antibodies were obtained from
Calbiochem, La Jolla, CA, USA (487923, 1:500). Akt Y350 NO2 antibody was obtained as a custom-made
antibody against Akt1-nitro (341-353), and the sequence was CGRLPF-nitroY-NQDHEK. Two peptides
were developed with and without Y350 nitration. The antibody developed against nitrated peptide
was cleaned using non-nitrated peptide (Akt1 (341-353): CGRLPFYNQDHEK) to remove unspecific
antibodies. Affinity purification was done using large, reusable affinity purification columns against
the unmodified and nitrated peptides. ELISA validation showed specificity towards the nitrated
sequence and, therefore, selectively purified antibodies raised to nitro-Akt (Pacific Immunology
Corp. Ramona, CA, USA). Since the quantification of Akt nitration was not fully established by
mass spectrometry, we used a common method of a newly developed antibody for the quantification
of the specific Y350 nitration of Akt. The reactive bands were visualized by the chemiluminescent
ChemiDocTM MP Imaging System (Bio-Rad Laboratories Inc., Hercules, CA, USA) and analyzed using
Image LabTM software. The protein loading was normalized per total sample of protein as a fold
control using stain-free gels as previously described [21]. This normalization is equal to housekeeping
genes normalization and has been rigorously evaluated by Bio-Rad company (http://www.bio-rad.
com/en-us/applications-technologies/stain-free-imaging-technology?ID=NZ0G1815) and by our lab in
comparison with beta-actin normalization.

2.8. Seahorse Assays

For the glycostress Seahorse assay, human pulmonary artery smooth muscle cells (HPASMCs)
(purchased from Lonza, Greenwood, SC, USA) were seeded in a 24-well Seahorse cell culture microplate
at 50,000/well and kept overnight to form a monolayer. On the day of experiment, media were aspirated
and cells were incubated at 37 ◦C in a non-CO2 incubator for 1 h with 0.5 mL XF base medium (cat#
102353-100, Agilent, Santa Clara, CA, USA) supplemented with 2 mM glutamine. Glucose (56 µL,
100 mM), oligomycin (62 µL, 100 µM) and 2-deoxyglucose (69 µL, 500 mM) were added to the flux pack
wells (cat# 102342-100, Agilent, Santa Clara, CA, USA). ECAR (extracellular acidification rate) was then
measured using the Seahorse Bioscience XFe24 extracellular flux analyzer (Agilent, Santa Clara, CA,

http://fiji.sc/Fiji
http://www.bio-rad.com/en-us/applications-technologies/stain-free-imaging-technology?ID=NZ0G1815
http://www.bio-rad.com/en-us/applications-technologies/stain-free-imaging-technology?ID=NZ0G1815
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USA) according to the manufacturer’s protocol. For the mitostress assay, cells were prepared similarly
to the glycostress assay, with the exception that the XF base incubation media was supplemented with
pyruvate (1 mM), glutamine (2 mM), and glucose (10 mM). Oligomycin (56 µL, 10 µM), FCCP (62 µL,
10 µM) and rotenone + antimycin-A (69 µL, 5 µM) were added to the flux pack wells. OCR (oxygen
consumption rate) was then identified according to the manufacturer’s protocol. Data were normalized
to cell number as determined by flow cytometry. All the chemicals used for these experiments, unless
specified, were procured from Sigma-Aldrich, Saint Louis, MO.

2.9. Lactate Dehydrogenase Assay

LDH activity in lung tissue was assessed using the Lactate Dehydrogenase Activity Colorimetric
Assay Kit (K726, BioVision Inc. CA, USA) according to the manufacturer’s instruction. All values were
normalized with respect to protein concentrations as determined by the PierceTM BCA Protein Assay
Kit (Thermo Scientific, Rockford, IL, USA).

2.10. Pyruvate Dehydrogenase Assay

Lung tissue was lysed using RIPA buffer, and the lysate was used for the PDH activity. PDH
activity was measured with the PDH Activity Assay Kit (MAK183, Sigma-Aldrich, Saint Louis, MO,
USA) per manufacturer protocol. All values were normalized with respect to protein concentrations as
determined by the PierceTM BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA).

2.11. Metabolic Intermediates Analysis

Data were acquired using the West Coast Metabolomics Center at UC Davis. Briefly, a Restek
corporation Rtx-5Sil MS column was used with a helium mobile phase at the temperature interval
50–330 ◦C and flow-rate 1 mL min−1. Injection volume was 0.5 µL at 50 ◦C ramped to 250 ◦C by
12 ◦C s−1. Oven temperature started at 50 ◦C for 1 min, then ramped at 20 ◦C min−1 to 330 ◦C, and held
constant for 5 min. Mass spectrometry analysis was done on a Leco Pegasus IV mass spectrometer
with unit mass resolution at 17 spectra s−1 from 80 to 500 Da at −70 eV ionization energy and 1800 V
detector voltage with a 230 ◦C transfer line and a 250 ◦C ion source. Raw data files were preprocessed
directly after data acquisition and stored as ChromaTOF-specific *.peg files, as generic *.txt result
files, and additionally as generic ANDI MS *.cdf files. ChromaTOF ver. 2.32 was used for data
preprocessing without smoothing, 3 s peak width, baseline subtraction just above the noise level, and
automatic mass spectral deconvolution and peak detection at signal/noise levels of 5:1 throughout
the chromatogram. Apex masses were reported for use in the BinBase algorithm. Resulting *.txt files
were exported to a data server with absolute spectra intensities and further processed by a filtering
algorithm implemented in the metabolomics BinBase database. Significantly changed metabolites
were processed with principal component analysis (PCA).

2.12. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 5.01 (GraphPad Software,
San Diego, CA, USA). Outliers were identified with Grubbs’ test using GraphPad outlier calculator
(alpha = 0.5) at https://www.graphpad.com/quickcalcs/Grubbs1.cfm. The mean value (± SE) was
calculated for all samples, and significance was determined by the unpaired t-test, Mann–Whitney
U t-test, or analysis of variance (ANOVA). For one-way ANOVA, Bonferroni multiple comparison
tests to compare the selected pairs of columns was used. The significance was calculated using a 95%
confidence interval.

https://www.graphpad.com/quickcalcs/Grubbs1.cfm
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3. Results

3.1. Inhibition of Akt Nitration by NP

In the current investigation, we treated the sugen/hypoxia PAH model with our newly designed
defensive peptide, which blocks the Akt nitration site at Y350. This peptide has two parts, one being
the peptide part that has an affinity to Akt (Ser-Arg-Ile-Arg-Ser or SRIRS), and the other being
a conjugated nitroxide antioxidant. Figure 1A depicts the functioning of the defensive peptide;
the peptide part specifically binds near to the Tyr-350 residue of Akt and masks it from nitration
(Figure 1A). The nitroxide antioxidant part conjugated to the affinity peptide would help scavenge free
radicals from tyrosine residue and thereby prevent Akt modifications by peroxynitrite. The efficiency
of the developed defensive nitroxide peptide was tested by treating HPAECs. Initially, we treated
HPAECs with a peroxynitrite donor, SIN-1, which increased the Akt nitration. The amount of Y350
Akt nitration was recognized by using the custom-made antibody specific towards the nitrated Y350
sequence of Akt, which showed a very clear increase in Akt nitration in SIN-1-treated cells (Figure 1B).
NP was incubated with HPAECs for 30 min, then it was washed with PBS, and finally SIN-1 was
added to cells. Interestingly, we found that NP treatment showed 55% reduction of Akt nitration in
HPAECs (Figure 1B). Also, this additionally demonstrates the specificity of our antibody towards
recognition of nitro-Y350 Akt as well as efficacy of NP in blocking the nitration of Akt at the Y350
residue in pulmonary endothelial cells. Utilization of antibody is commonly used for quantification
of post-translational modification since mass spectrometry analysis is not a quantitative method,
especially for nitration modification of proteins.
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Figure 1. Nitroxide-conjugated peptide blocked nitration of Akt. (A) Schematic diagram of nitroxide
antioxidant conjugated peptide binding at tyrosine 350 residue of Akt and inhibition of peroxynitrite
radical induced Akt nitration. (B) SIN-1 (1 mM) for 1 h significantly increased Y350 nitration of Akt
in human pulmonary artery endothelial cells (HPAECs), and pretreatment with nitroxide peptide
(NP) showed a 55% reduction in Akt nitration. Also, this demonstrates the specificity of our antibody
towards Y350-nitroAkt. Data expressed as mean ± SE normalized on total protein (stain free); N = 6;
* p < 0.05 versus control; # p < 0.05 versus SIN-1 by ANOVA.

3.2. Akt Nitration is an Early Event Initiating PAH

In the present study, we also screened the onset of Akt nitration in three time phases after
sugen injection: early, after one week; two weeks; and finally at five weeks. Interestingly,
in immunofluorescence imaging, we found increased nitration of Akt in endothelial and smooth
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muscle layers of pulmonary arteries. This was observed as early as week one of the disease induction
and trails in two and five weeks of the disease (Figure 2A). We also correlated this observation with
increased nitro Akt protein modification in lung lysates, in one, two, and five weeks of the sugen PAH
model progression (Figure 2B). This observation signifies that the nitration of Akt starts early in the
pathogenesis of PAH. Importantly, screening of human lung tissue samples from the PHBI cohort also
revealed increased Akt nitration compared with healthy controls (Figure 2C).
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Figure 2. Akt nitration, an early event in PAH. (A) Immuno-fluorescence imaging indicated increased
Akt nitration in the endothelial and smooth muscle layer of pulmonary arteries of rats after one, two,
and five weeks of PAH progression (scale bar is 20 µm). FI, fluorescent intensity; SU1, rats were
analyzed after 1 week of SU5416 and hypoxia treatment; SU2, rats were analyzed after 2 weeks of
SU5416 and hypoxia treatment; SU5, rats were analyzed after 5 weeks of SU5416 treatment (3 weeks
of hypoxia with a following 2 weeks of normoxia). Mean ± SE, N = 10–50 arteries, * p < 0.05 versus
control by ANOVA. (B) Western blot analysis showed significantly increased expression of nitroY350
Akt in sugen treatment groups. Data expressed as mean ± SE, N = 6–8, * p < 0.05 versus control by
ANOVA. (C) Western blot analysis of healthy controls and idiopathic pulmonary arterial hypertension
(IPAH) patients indicated significantly increased nitroY350 Akt signal in IPAH. Data expressed as mean
± SE, N = 10, * p < 0.05 versus control by Mann–Whitney U t-test.

Based on these findings, we treated sugen/hypoxia rats with NP 0.1 mg/kg/d i.v. for two
weeks. The NP treatment showed a remarkable reduction of nitroAkt modification in the lung
tissue (Figure 3A). Here, NP significantly blocked Akt nitration at the inception of PAH development
(Figure 3B). Phosphorylation of Akt at Ser-473, an important triggering factor in PAH pathogenesis [5],
was found not altered in the two-week sugen/hypoxia model. Also, the NP treatment did not change the
total Akt expression (Figure 3C,D). These results suggest that the nitration of Akt is a primary episode
in PAH pathogenesis, and masking the nitration of Akt with NP does not affect the phosphorylation
levels nor the total expression of Akt. Importantly, total lung nitration levels were increased in the SU2
group, and treatment with NP did not significantly alter total nitration, confirming specificity toward
Akt nitration (Figure 3E).
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Akt, and total Akt expression in the lung lysate of sugen two weeks and sugen two weeks plus NP
treatment groups. (B) NP treatment significantly reduced nitro Akt modification. Phosphorylation of
Akt at Ser-473 (C) and total Akt expressions (D) were not altered in the two-week sugen/hypoxia model
and NP treatment. (E) Total nitration in lungs was increased in the SU2 group, and NP treatment did
not attenuate the total nitration in the lung significantly; thus, this shows NP selectivity toward Akt
nitration. Data expressed as mean ± SE normalized on total proteins, N = 6–8, * p < 0.05 versus control,
# p < 0.05 versus SU2 by ANOVA.

3.3. NP Attenuated Ventricular Pressure and Histological Changes

RV function in PAH was screened in the two-week sugen/hypoxia with NP treatment model.
Hemodynamic measurement by RV catheterization indicated an increase in RVSP in the two-week
sugen/hypoxia PAH model. NP treatment showed a reduction in RV pressure from 71.9 ± 3.6 to
36.1 ± 2.6, p < 0.001 (Figure 4A). In accordance with increased pressure, the RV of two-week PAH
showed an increase in the right heart hypertrophy, evidenced by Fulton index (Figure 4B), and this
was found reduced with NP treatment. Figure 4C shows a significant correlation between RVSP and
the Fulton index in the SU/hypoxia model, and early NP intervention prevented both remodeling and
heart hypertrophy back to almost control levels.

We studied the histological alterations in lung tissue associated with increased RV pressure in the
two-week sugen/hypoxic PAH model. EVG staining showed perivascular fibrosis, vasoconstriction,
and proliferation in pulmonary arteries. This signifies vascular obstruction and increased RV pressure
overload in the pulmonary artery (Figure 4D). Ki-67 immunohistochemical staining, a crucial protein
marker for cellular proliferation, was found increased in smooth muscle cells of the pulmonary artery
in the rat PAH model. NP effectively prevented vascular remodeling and cellular proliferation in
PAH (Figure 4E). These observations suggest that NP reduced proliferative pathological changes
and maintained vascular histology, resulting in reduced RV pressure and thereby preventing
PAH development.

Concurrent to proliferative phenotypical changes in smooth muscle cells of the pulmonary artery,
we observed increased glycolysis and decreased oxidative phosphorylation in HPASMCs treated with
the peroxynitrite donor SIN-1. SIN-1 treatment enhanced the overall glycolysis and glycolytic capacity
in HPASMC, as demonstrated in Figure 4F–H. NP treatment attenuated nitration-induced glycolysis
and brought it back to control levels by inhibiting Akt nitration. Moreover, SIN-1 treatment attenuated
mitochondrial respiration, but on the other hand, NP treatment prevented SIN-1-induced changes
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in mitochondrial respiration by significantly enhancing mitochondrial function, as demonstrated by
spare respiratory capacity, without affecting the basal respiration rate (Figure 4I–K). These observations
explain a concise metabolic transition in smooth muscle cells from oxidative phosphorylation to
glycolysis, similar to highly proliferative cancer cells.
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Figure 4. NP controlled hemodynamic and histological alterations. (A) Right ventricular systolic
pressure (RVSP) was significantly increased in SU2, and NP treatment showed a reduction in RV
pressure. (B) Fulton index, the ratio of right to left ventricles plus septum (RV/(LV+S)), was significantly
increased in SU2 and markedly decreased in NP treatment. (C) Correlation analysis between RVSP
and Fulton index showed a significant attenuation of the PAH phenotype in NP treatment. (D) Clastic
Verhoeff–Van Gieson (EVG) staining exhibited perivascular fibrosis, vasoconstriction, andproliferation
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in pulmonary arteries of SU2, and these alterations were significantly attenuated with NP treatment
(scale is 100 µm). (E) Ki-67 immunohistochemical staining showed increased cellular proliferation in the
media of the pulmonary artery in the SU2 group, and NP effectively prevented vascular remodeling and
cellular proliferation (scale is 100 µm). Small box represents magnified images at 25 µm. Data expressed
as mean ± SE, N = 4–7, * p < 0.05 versus control, # p < 0.05 versus SU2 by ANOVA. (F) Glycolytic
rate of HPASMCs; Sin-1 treatment increased glycolysis, but NP treatment attenuated this back to
control levels. ECAR, extracellular acidification rate; DG, deoxy glucose. Data expressed as mean ± SE,
N = 6–7. (G) Glycolysis and (H) glycolytic capacity increased with SIN-1 treatment and was found to
be attenuated with NP treatment. (I) Mitochondrial oxidative phosphorylation rate decreased with
SIN-1 treatment, and NP treatment upregulated the oxidative phosphorylation rate to control levels in
HPASMCs. OCR, oxygen consumption rate; FCCP, trifluoromethoxy carbonylcyanide phenylhydrazone;
ROT/AA, rotenone/antimycin-A. Data expressed as mean ± SE, N = 6–7. NP treatment without affecting
any basal respiration rate (J) significantly attenuated the SIN-1-increased spare respiratory capacity (K)
back to control levels.

3.4. NP Treatment Controlled Glucose Uptake and Glycolysis in PAH

In the early sugen/hypoxic PAH model, we checked glycolytic metabolism, usually found altered in
highly proliferative cells. Glucose uptake into the cell is controlled by glucose transporters, and Glut4 is
known to be Akt dependent. Akt is an important regulator of Glut4 translocation to the cell membrane.
During the first two weeks of the disease, lungs demonstrated the same Glut4 expression, but increased
Glut4 localization was identified in membrane fraction. This correlated with the observed increase
in Akt nitration, and NP treatment attenuated Glut4 translocation to the membrane (Figure 5A,B).
We, therefore, could infer that Glut4 translocation and subsequent increase in glucose uptake was
increased due to Akt nitration. The increased glucose concentration in the cytosol and activation
of the Akt pathway triggered a high glycolysis rate by upregulating HK1 and GAPDH enzymes
(Figure 5C,D). In early PAH, increased glycolysis was found to result in increased production of the
aerobic product, lactate from pyruvate, by the enzyme LDHA. SU2 lung tissue showed increased
LDHA expression and activity (Figure 5E,F). Prevention of Akt nitration significantly reduced pyruvate
disposal to lactate by attenuating LDHA expression and its activity. This resulted in an increased
expression of PDH enzyme and its activity to normalize the glycolytic metabolism through oxidative
phosphorylation (Figure 5G,H). Downregulation of LDHA decreased acidification rate by lactate,
and upregulation of PDH helps to supply increased acetyl Co-A for oxidative phosphorylation in
the mitochondria. This explains the Seahorse analysis data in Figure 4F,I. This substantiates that NP
treatment potentially balances the glycolytic shift in pulmonary vascular cells of PAH, favoring flux of
pyruvate into oxidative phosphorylation and restoring metabolically reprogrammed cells.
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Figure 5. NP treatment balanced glucose influx and glycolysis in PAH. (A) Western blot of total glucose
transporter Glut4 expression in control, SU2, and NP treatment. (B) The ratio of Glut4 expression
in membrane/cytosol was found significantly increased in SU2, and NP treatment controlled Glut4
translocation. (C,D) HK1 and GAPDH expression increased in sugen/hypoxia treatment represents
increased glucose utilization by glycolysis. (E) Lactate dehydrogenase expression elevated in SU2
represents increased lactate production in early PAH. (F) Increased lactate dehydrogenase activity
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activity were found significantly increased in NP-treated sugen/hypoxia. Data expressed as mean ± SE
normalized on the total protein, N = 6–8, * p < 0.05 versus control, # p < 0.05 versus SU2 by ANOVA.
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3.5. Pentose Phosphate Pathway and Glycogenesis Decreased in PAH

In accordance with increased glycolysis, we have also screened the compensatory glycogenesis,
the anabolic pentose phosphate pathway (PPP), and PC-mediated anaplerosis pathways in the
two-week sugen/hypoxia PAH model. GSK3β, which downregulates glycogen synthesis by inhibiting
glycogen synthase, was found increased in sugen/hypoxia. Glucose shuttling in PPP from glucose
6-phosphate is driven by G6PD and was found decreased in the two-week PAH model (Figure 6A,B).
Interestingly, the inhibition of Akt nitration with NP effectively maintained glycogen synthesis and PPP.
The increased glycolytic rate in sugen/hypoxia resulted in the activation of PC, increasing oxaloacetate
from pyruvate going to the TCA cycle and, thus, upregulating anaplerosis (Figure 6C). Increased
anaplerosis may affect pulmonary vascular cell proliferation in PAH [12]. NP treatment during the
first two weeks at 0.1mg/kg/d i.v. resolved anaplerosis by decreasing the expression of PC. Altered
oxidative phosphorylation in PAH could result largely in mitochondrial dysfunction. Two weeks of
sugen/hypoxia treatment increased PGC-1α expression, a major transcriptional coactivator and a chief
compensatory controller of mitochondrial biogenesis in hypoxic stress and cellular proliferation [22].
Importantly, prevention of Akt nitration significantly controlled PGC-1α expression in the lung tissue
(Figure 6D). Finally, we undertook lung metabolite profiling using LC-MS quantitative proteomics
for control, SU2, and SU+NP groups. Significantly changed (p < 0.05) metabolites were analyzed
with principal component analysis, and the data showed a significant separation between all groups.
In Figure 6E, Control and SU2 groups showed further separation by PCA. NP treatment resulted in
moving diseased animals toward the control and can indicate resolution of reprogramed metabolism
in the PAH model. Indeed, 30 metabolites were significantly restored by NP treatment.
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reduced with NP treatment. (B) Decreased G6PD expression in SU2 was upregulated significantly
with NP treatment. (C) Increased pyruvate carboxylase expression was decreased with NP treatment.
(D) Mitochondrial biogenesis marker PGC1α expression found increased in SU2 was significantly
reduced with NP treatment. Data expressed as mean ± SE, N = 6–8, * p < 0.05 versus control, # p < 0.05
versus SU2 by ANOVA. (E) Metabolite analysis of lung lysate showed metabolic reprogramming
in SU2 group and attenuation of metabolic changes by NP treatment. Principal component 1 (PC1)
and principal component 2 (PC2) plots explained 44.4% and 13% of the total variance, respectively.
Prediction ellipses for control, SU2, and SU2+NP groups show a probability of 0.95 that a new
observation from the same group will fall inside the ellipse. N = 19 data points.

4. Discussion

Pulmonary arterial hypertension (PAH) is a progressive and fatal condition characterized by
narrowing of the pulmonary arteries because of muscular thickening and intimal proliferation [23].
Abnormal Akt activation causes normal cells to undergo proliferative conversion [24], but in PAH,
the cause and activation of Akt are not fully elucidated. The nitration of Akt plays a crucial role in its
activation, and we found increased Akt nitration in patients with PAH as well as in the sugen/hypoxia
model. Akt nitration can activate eNOS phosphorylation, and this, in turn, increases peroxynitrite
formation, nitrosative stress, and mitochondrial dysfunction. Prolonged mitochondrial dysfunction is
responsible for PAH development with vascular damage and metabolic disorder [6,7]. The study of
metabolic alterations can be performed either by metabolomics or proteomics analyses. In our present
study, we followed protein expression and compared metabolite profiles between groups. This approach
clearly demonstrated PAH-specific alterations in the metabolic enzymes and metabolites, unveiling
the protective mechanism of the antioxidant peptide in the context of Akt nitration. Interestingly,
during the two-week sugen/hypoxic model, we identified that activation of Akt upregulated the
glucose transporter Glut4 to the membrane, and this augmented cellular glucose influx. This resulted
in increased aerobic glycolysis and anaplerosis, and a reduction in glycogenesis and PPP, similar to
highly proliferative cancer cells. Histological studies identified cellular proliferation and vascular
remodeling in lung tissue of early PAH. These pathological modifications recapitulate increased RV
systolic pressure and Fulton index in early PAH. NP inhibited Akt nitration at Tyr-350 and controlled
metabolic derangement in early PAH. NP treatment balanced cellular glucose influx, glycogen synthesis,
and PPP. These events controlled glycolysis, oxidative phosphorylation, and inhibited anaplerotic
reprogramming. Thus, with NP treatment, proliferative pathological changes in PAH were found to be
prevented, and RV functioning improved with normal RVSP. The summary of observed metabolic
alterations and effects of NP treatment is combined in Figure 7.
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Figure 7. NP attenuated metabolic reprogramming in pulmonary hypertension. In two weeks of
sugen/hypoxia, increased nitration induced activation of Akt upregulated the glucose transporter
Glut4 to the membrane, and this augmented cellular glucose influx. This results in increased aerobic
glycolysis and anaplerosis as well as a reduction in glycogenesis and pentose phosphate pathway.
These metabolic derangements result in increased cellular proliferation and vascular remodeling in
lung tissue of early PAH. NP treatment balanced cellular glucose influx, glycogen synthesis, and the
pentose phosphate pathway. NP corrected the glycolytic shift, improved oxidative phosphorylation,
and inhibited anaplerotic reprogramming. Thus, proliferative pathological changes in PAH were found
to be prevented with NP treatment. PAH, pulmonary arterial hypertension; NP, nitroxide-conjugated
peptide; TCA, tricarboxylic acid cycle; OXPHOS, oxidative phosphorylation.

As the incidence of PAH is high in females, we used female rats to study the anaplerotic
reprogramming and Akt nitration events in PAH. The high incidence of PAH in females could
perhaps be due to increased nitric oxide production and nitrosative stress development [25]. NO,
and the superoxide anion produced in hypoxic stress, potentiates a variety of biological processes
including peroxynitrite formation, nitration of many tyrosine residues of proteins, and a decrease in
antioxidant status [26]. Recently, we unveiled that Akt1 nitration at the Tyr-350 residue enhanced the
phosphorylation of eNOS at Ser617/1179 and its translocation to mitochondria in pulmonary artery
endothelial cells [6]. Excitingly, in our present investigation, using the newly developed nitro Akt
(Y350-NO2) antibody, we discovered that nitration of Akt at Tyr-350 residue was an early molecular
modification possibly responsible for the pathogenesis and progression of PAH. Immunohistochemistry
and protein expression studies authenticated that Akt nitration started early, from one week of the
disease, and trailed up in two and five weeks of the sugen/hypoxic model of PAH. Increased oxidative
and nitrosative stress in early sugen/hypoxic PAH could have potentiated these nitration events.
Pathological instigation of the Akt pathway has been described in many cancers, specifically in
lung carcinogenesis. Importantly, nitrosative stress-induced tyrosine nitration potentiated cellular
proliferation, and metastasis [27,28].

Identification of early Akt nitration encouraged the design of a targeted NP for its prevention and
to study the implication of Akt nitration in PAH pathogenesis. We developed an antioxidant NP having
two moieties: one a peptide part, designed complimentary to the Tyr-350 residue of Akt to obtain affinity,
and the second, an antioxidant nitroxide that helps to scavenge free radicals/electrons. Nitroxide is
a stable free radical, containing a nitroxyl group and an unpaired electron. This can easily diffuse
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through the cell membranes. In biological settings, they demonstrate SOD and catalase-like activities,
preventing the Fenton and Haber–Weiss reactions and mitigating protein and lipid damage [29].
The efficacy of the antioxidant peptide (NP) was screened in HPAECs by inducing nitrosative stress
with the peroxynitrite donor SIN-1. Extracellular treatment with NP alleviated (55%) nitration of Akt
in endothelial cells. The dose of NP used in this study was 100 times lower than the concentration of
the antioxidant, TEMPOL, normally used in treating PAH, and it did not affect the redox homeostasis
of the cellular environment. It was also recently reported that TEMPOL treatment was not effective in
preventing pulmonary arterial remodeling and, in fact, increased the severity of PAH [14].

In accordance with our initial observation, we found that Akt nitration was an early event, and NP
was tested in the sugen/hypoxic PAH model at week two of disease progression. Interestingly, we found
that NP was effective in blocking the nitration of Akt in early PAH. In late PAH, activation of Akt at
Ser-473 plays a crucial role in the reprogramming of metabolic pathways and PAH pathogenesis [5].
Intriguingly, in early PAH, there was neither any phosphorylation at Ser-473 of Akt nor any change in
the expression of total Akt. This observation strengthens the idea that the activation of Akt occurring
in early PAH might be through nitration of Akt. Akt activation is strongly associated with cellular
proliferation and vascular remodeling [30]. Our results suggest that the inhibition of Akt nitration
with NP could mitigate early Akt activation and vascular modification.

Pulmonary vascular remodeling is among the major factors in initiating higher pulmonary
vascular resistance and pulmonary arterial pressure. Akt plays a crucial role in hypoxia-induced
pulmonary vascular remodeling [5]. In our early sugen/hypoxic PAH models, we found increased
RV systolic pressure and right ventricular hypertrophy (Fulton index). RV hypertrophy instigated
by increased vascular resistance is primarily a compensatory mechanism, but this often leads to RV
dysfunction [31]. In accordance with the increased pressure, the lung tissue of high-pressure rats
showed perivascular fibrosis and vasoconstriction in pulmonary arteries. Ki-67, a sensitive protein
marker strongly associated with cell proliferation [32], was found to be highly expressed in the
pulmonary vasculature. This proliferation in the vascular wall and vasoconstriction explains the
reason for elevated RV pressure in early PAH. Fascinatingly, NP treatment improved RV function and
pulmonary vascular remodeling in the two-week sugen/hypoxic model. Similarly, in a previous report,
inhibition of Akt inhibited muscularization of pulmonary arterioles and reduced right ventricular
hypertrophy [33]. These findings suggest the idea that inhibition of Akt nitration with NP could
regulate its activation and could prevent downstream cellular proliferative and structural changes in
RV and lung vasculature. Moreover, unlike the small molecule inhibitors of Akt, NP can diminish
pathological events of nitration-mediated Akt activation without affecting normal Akt function. Thus,
we consider this to be an important benefit of the targeted antioxidant approach.

Previous reports identified that glycolytic shift (Warburg effect) is a major pathogenic cause,
in extreme cases, of PAH [10]. Figure 4F,G showed increased glycolytic and decreased oxidative
phosphorylation rates in HPASMCs with SIN-1 treatment. This explains Akt nitration induced
metabolic reprogramming from oxidative phosphorylation to glycolysis. NP treatment inhibited Akt
nitration and attenuated the metabolic reprogramming. Akt activation by peroxynitrite can enhance
cellular glucose uptake through the glucose transporter, Glut4, and can increase glycolysis in PAH [34].
In the present study, we profiled Glut4 expression in different cellular fractions and found it was
increased in the membrane/cytosolic fraction. In the early two weeks of PAH, nitrated Akt could
perhaps aggravate glucose uptake through increased membrane Glut4 translocation. High levels of
intracellular glucose influx could upregulate glycolytic metabolism to meet the demands of increased
cellular proliferation. This signifies the Seahorse analysis that PAH shifts glycolysis and mitochondrial
respiration in the sugen model. Proliferating cells tend to have an increased expression of glucose
transporters and glycolytic enzymes to compensate for the increased metabolic needs [35]. Inhibition
of Akt nitration with NP maintained glucose influx by downregulating the translocation of Glut4 to
the membrane fraction.
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In the present study, glycolytic enzymes HK-1 and GAPDH showed increased expression in lung
tissue of the two-week sugen/hypoxia model. HK1 is the first rate-limiting enzyme of glycolysis, and its
overexpression can initiate downstream pathways, amplifying reactions that offer increased ATP to
proliferating cells [36]. Also, Akt activation can exacerbate glycolysis by GAPDH phosphorylation
and activation in hypoxic stress conditions [37]. Here, we speculate that Akt activation by nitration
played a cardinal role in cellular glucose uptake and increased glycolysis in proliferating cells of early
PAH. LDHA converts pyruvate to more lactate in rapid flux metabolism through glycolysis. Increased
LDH expression and activity is characteristic of fast-growing cells, and its suppression stimulates
mitochondrial respiration and decreases proliferation [38]. Similarly, in our study, nitration of Akt
intersects with the aerobic glycolysis pathway in the two-week hypoxic/sugen model with increased
LDHA expression. Increased lactic acid production may result in lactic acidosis, a serious physiological
event in PAH [39]. Pyruvate generated in the latter phases of glycolysis is converted to either lactate,
via aerobic glycolytic metabolism, or acetyl-CoA, through the oxidation of glucose by PDH. PDH is
often considered as the “mitochondrial gate-keeping enzyme”, promoting pyruvate entry into the
OXPHOS [40,41]. Interestingly, inhibition of Akt activation with NP increases mitochondrial enzyme
PDH, signifying upregulation of oxidative phosphorylation, and a reduction of lactate accumulation.
Thus, in our early PAH model, NP treatment efficiently prevented the metabolic reprogramming from
glycolysis to oxidative phosphorylation and prevented cellular proliferative changes.

GSK3β is a serine-threonine kinase, regulating a variety of cellular functions like cell division,
proliferation, and differentiation. Akt is one of the critical regulators of GSK-3, and phosphorylation and
inactivation of GSK-3 represent the anti-apoptotic effects of Akt [42]. In the PAH model, Akt nitration
did not upregulate phosphorylation of Ser9 in GSK3β, but the total expression of GSK3β was increased.
GSK3β phosphorylation is controlled by phosphorylated Akt, but in early PAH, Akt phosphorylation
was found not activated, and this could perhaps be the reason for no change in phosphor-GSK3β
expression. Elevation of GSK3β inversely correlates with glycogen synthase [43]. Inhibition of
glycogen synthase downregulates glycogen synthesis and could produce more LDH as well as
oxaloacetate for aerobic respiration and anaplerosis. However, NP by preventing Akt activation
decreased GSK3β expression and maintained glycogen synthesis. On the other hand, we found that
G6PD, the rate-limiting enzyme of PPP [44], was decreased. This could downregulate PPP and redirect
the metabolism towards increased glycolysis, similar to what we found in a recent complex III-deficient
model [7]. In accordance with this, our recent report in PAH patients suggests that G6PD deficiency
potentiates hemolysis and disease progression [45]. In the two-week sugen/hypoxic model, nitro Akt
activation maintained G6PD expression and corrected the PPP, thus balancing glycolytic metabolism
to normal.

Downregulation of glycogen synthesis and PPP in early PAH lungs shifted the metabolism
towards glycolysis and perhaps produced increased pyruvate. As observed in our study, pyruvate
could have activated PC and produced increased oxaloacetate for the TCA cycle. This could result in
increased anaplerosis. Anaplerosis by PC and glutaminolysis are the reasons for pulmonary vascular
constriction and increased proliferation in PAH [13]. Increased glycolysis and anaplerosis provides
supplementary biomass for cellular proliferation in early PAH. Increased anaplerosis could lead to
a reduction in oxidative phosphorylation and cause mitochondrial dysfunction [11]. Two weeks of
sugen/hypoxia increased PGC-1α expression in lung tissue, representing impairment in mitochondrial
function and mitochondria biogenesis demand. PGC-1α might be increased for compensating the
metabolic reprogramming and mitochondrial dysfunction in early hypoxic stress [46]. Activation of
Akt is associated with the regulation of PGC-1α [47]. In our early PAH model, activation of Akt by
Tyr-350 nitration may have upregulated PGC-1α expression. Excitingly, the prevention of Akt nitration
with NP downregulated PGC-1α expression, representing improved mitochondrial functioning and a
reduction in cellular anaplerosis.
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5. Conclusions

Altogether, our results suggest that inhibition of Akt nitration with targeted NP can prevent
metabolic reprogramming and pathophysiological events in early PAH. Specifically, NP prevented
the activation of Akt by nitration, which controlled a series of cascades, including the balancing of
intracellular glucose influx, lactic acidosis, and anaplerosis. Improved glycogenesis, PPP, and oxidative
phosphorylation maintained the cellular metabolic balance and decreased proliferation. Suppressing
cellular proliferation reduced RV hypertrophy and pulmonary vascular remodeling. These dramatic
events controlled vascular flow and regulated RV pressure back to normal.
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