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Abstract: Trytanthrin, found in Ban-Lan-Gen, is a natural product containing an indoloquinazo-
line moiety and has been shown to possess anti-inflammatory and anti-viral activities. Chronic
inflammation and hepatitis B are known to be associated with the progression of hepatocellular
carcinoma (HCC). In this study, a series of tryptanthrin derivatives were synthesized to generate
potent anti-tumor agents against HCC. This effort yielded two compounds, A1 and A6, that exhibited
multi-fold higher cytotoxicity in HCC cells than the parent compound. Flow cytometric analysis
demonstrated that A1 and A6 caused S-phase arrest and downregulated the expression of cyclin A1,
B1, CDK2, and p-CDC2. In addition to inducing caspase-dependent apoptosis, A1 and A6 exhibited
similar regulation of the phosphorylation or expression of multiple signaling targets, including Akt,
NF-κB, and mitogen-activated protein kinases. The anti-tumor activities of A1 and A6 were also
attributable to the generation of reactive oxygen species, accompanied by an increase in p-p53 levels.
Therefore, A1 and A6 have potential clinical applications since they target diverse aspects of cancer
cell growth in HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths
globally, with over 40,000 new cases and 30,000 deaths reported in the United States [1,2].
Obesity, alcohol consumption, smoking, exposure to aflatoxin, and viral infection (hepatitis
B and C) are the common risk factors for HCC [1]. In addition to prevention, the current
treatment options for HCC include surgery, liver transplant, chemotherapy, radiotherapy,
and embolization [3]. However, the 5-year relative survival rate is lower than 20% due
to tumor recurrence, cirrhosis, and organ shortage [4]. Thus, there is an urgent need to
develop a new therapeutic strategy for the treatment of HCC.

For centuries, natural products have been used as enriched sources for the prevention
and therapy of various diseases, including cancer [5]. For example, camptothecin, an
alkaloid from Camptotheca acuminate, has been used to treat stomach cancer, bladder cancer,
and leukemia for over 30 years [6]. Paclitaxel, originally isolated from Taxus brevifolia, alters
microtubule polymerization in the cell cycle and is a commonly prescribed anti-cancer
drug approved for the treatment of breast cancer, ovarian cancer, lung cancer, and oral
cancer by the U.S. Food and Drug Administration [7]. Similarly, vinorelbine, originally
developed from vinca alkaloid, was approved as the first line of treatment for advanced
lung cancer in 1994 [8].
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Ban-Lan-Gen, a traditional Chinese medicine (TCM), has been used to relieve in-
flammation, mumps, hepatitis, and seasonal influenza [9–11]. Xiao et al. reported that
the extract of Ban-Lan-Gen inhibits the production of inflammatory cytokines, including
nitric oxide, prostaglandin E2, and tumor necrosis factor-α in lipopolysaccharide-treated
RAW264.7 cells [12]. Chronic inflammation is associated with an increased risk of develop-
ing cancer, accounting for 15–20% of cancer-related deaths [13]. Notably, Ban-Lan-Gen is
a TCM that is associated with a significantly reduced risk of HCC in hepatitis B-infected
patients [14]. Natural products such as alkaloids partly contribute to the biological activity
of Ban-Lan-Gen [15]. Tryptanthrin, an alkaloid isolated from Ban-Lan-Gen, causes G1
cell cycle arrest, and was found to downregulate the expression of cyclin D2 in murine
myeloid leukemia cells [16]. Multiple studies have shown that tryptanthrin suppresses
tumor growth by modulating various targets, including p38, ERK, PIM1 kinase, and
MDR1 [17–20]. Recent modifications of tryptanthrin have paved a way to obtain different
targeted drugs that include amino-tryptanthrin derivatives such as topoisomerase II (Topo
II), N-benzyl tryptanthrin derivatives such as indoleamine 2,3-dioxygenase (IDO), and
tryptophan 2,3-dioxygenase (TDO) dual inhibitors (Figure 1A) [21,22]. In this study, we
report the use of tryptanthrin as the lead compound to synthesize a series of tryptan-
thrin derivatives with improved anti-tumor activity. The pharmacological mechanism of
tryptanthrin derivatives was also investigated in HCC cells.
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2. Materials and Methods
2.1. Reagents, Chemicals, Antibodies

Isatoic anhydride and indoline-2,3-dione (Sigma-Aldrich, St. Louis, MO, USA) were
used as the starting material to synthesize tryptanthrin and tryptanthrin derivatives
(Figures 1B and Pages S4–S9). The identity and purity of these compounds were identified
by proton magnetic resonance spectrometry, EI-MS, and high-performance liquid chro-
matography (Pages S10–S29). Antibodies against p-AktSer473, Akt, p-p38180/182Thr/Tyr, p38,
p-ERK202/204Thr/Tyr, ERK, JNK, p-JNK183/185Thr/Tyr, caspase-8, NF-κB, p-NF-κB536Ser, IκBα,
CDK2, CDC-2, p-p5315Ser, p53, cyclin A1, cyclin B1, and p-CDC215Tyr were purchased from
Cell Signaling Technology (Beverly, MA, USA). Antibody against fibrillarin was purchased
from Signalway Antibody (College Park, MD, USA). β–actin antibody and other chemicals
were obtained from Sigma-Aldrich (St. Louis, MO, USA). All agents were dissolved in
DMSO and added to cells at a final DMSO concentration (0.1%).

2.2. Cell Culture

Human hepatocellular cell lines Hep3B and SK-Hep1 were gifts from Dr. Po-Chen
Chu (China Medical University) and maintained in Dulbecco’s modified Eagle’s medium/
Nutrient Mixture (DMEM) (Invitrogen, Carlsbad, CA, USA). Cells were supplemented with
10% fetal bovine serum (FBS; Gibco, Grand Island, NY, USA) in a humidified incubator
containing 5% CO2 at 37 ◦C.

2.3. Cell Viability Analysis

The cell viability of the compounds was determined by 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assays [23]. Briefly, 0.5 mg/mL MTT (100 µL)
was added to a 96-well plate per well and incubated for 4 h at 37 ◦C. After removing the
medium, the reduced MTT dye was solubilized in DMSO (200 µL per well). A SPECTROstar
Nano spectrophotometer (BMG LABTECH, Ortenberg, Germany) was used to measure the
absorbance at 570 nm.

2.4. Flow Cytometry

Cells (2 × 105/3 mL) were treated with DMSO or drugs for 48 h, stained with propid-
ium iodide (PI) or annexin V-FITC, and PI according to the vendor’s protocol. For cell cycle
analysis, cells were washed with ice-cold phosphate-buffered saline (PBS) twice, fixed in
70% cold ethanol for 4 h at 4 ◦C, then analyzed by the multicycle software (ModFit_T3.0).
For apoptosis evaluation, cells were analyzed by using a BD FACSAria flow cytometer
(Becton Dickinson, Heidelberg, Germany) and BD FACSDiva 6.1.3 software (BD). Caspase-
3 activation was assessed using a FITC rabbit anti-active caspase-3 kit according to the
vendor’s protocol (BD Pharmingen, San Diego, CA, USA).

2.5. Reactive Oxygen Species (ROS) Generation

Cells (2 × 105/3 mL) were treated with DMSO or drugs, stained by 2′,7′-dichlo-
rodihydrofluorescein diacetate (DCFH-DA) (5 µmol/L) for ROS determination, respec-
tively [24]. Then, cells were analyzed by fluorescence intensity using flow cytometry
(Becton Dickinson, Heidelberg, Germany) and BD FACSDiva 6.1.3 software (BD).

2.6. Western Blotting

Proteins from lysed HCC cells were prepared on SDS polyacrylamide gels and trans-
ferred onto the nitrocellulose membrane [24]. Then, the membranes were incubated with
primary antibodies overnight and then the secondary antibodies. The blots were detected
by enhanced chemiluminescence.

2.7. Preparation of Nuclear Extracts

Cells were treated with DMSO or drugs for 48 h. The nuclear extracts were prepared
using NE-PERTM Nuclear and Cytoplasmic Extraction Reagents (Thermo Fisher Scientific,
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Waltham, MA, USA) according to the manufacturer’s instructions. Then, the nuclear
extracts were analyzed by Western blotting.

2.8. Statistical Analysis

All experiments were performed with at least three replicates, and results are repre-
sented as means ± standard deviation (SD) except indicated otherwise. All of the data
were analyzed by the Shapiro–Wilk normality test. Statistical significance was determined
with a two-tailed paired Student’s t-test comparison between two groups of data sets, and
among three or more groups was analyzed by one-way analysis of variance (ANOVA).
Differences were considered significant at * p < 0.05, ** p < 0.01. Statistical analyses were
performed using SPSS for Windows (SPSS, Chicago, IL, USA).

3. Results
3.1. Structure–Activity Relationship (SAR)

In order to improve the anti-proliferative effect of tryptanthrin, twelve tryptan-
thrin derivatives were synthesized (Figure 1B). The inhibitory effect of these compounds
(A1–A12) on the growth of Hep3B HCC cells was assessed after treatment for 48 h, using
an MTT assay. Among these tryptanthrin derivatives, A6 exhibited the most potent in-
hibitory effect with an IC50 of 1.4 µmol/L (Figure 1B, doxorubicin as a positive control),
relative to 5.7 µmol/L for tryptanthrin (Figure 2A). SAR analysis of the twelve compounds
demonstrated that an electron-withdrawing group at C-8, such as bromine (e.g., A1) or
iodine (e.g., A2), is essential for their anti-proliferative activity. In addition, compared
with A4, which has a bromine group at C-2, A11 exhibited poorer cell growth inhibition
in Hep3B cells. As shown in Figure 2B,C, A1 and A6 inhibited cell growth in a dose- and
time-dependent manner in Hep3B cells. The IC50 values of sorafenib, a currently used
agent in the treatment of HCC [25], were approximately 9.2 µmol/L and 4.8 µmol/L after
24 h and 48 h treatment in Hep3B cells (Figure 2D). Since the IC50 values of A1 and A6 were
lower than those of the others, the pharmacological mechanism of these two compounds
was investigated in subsequent experiments.

3.2. A1 and A6 Induce Cell Cycle Arrest

To examine the effect of the tryptanthrin derivatives on cell cycle progression in HCC
cells, Hep3B cells were treated with A1 or A6 for 48 h and stained with propidium iodide
(PI). Flow cytometric analysis demonstrated that A1 arrested Hep3B cells in the S phase
in a dose-dependent manner (Figure 3A, etoposide as a positive control). After treatment
with 5 µmol/L A1, the cell population in the G2/M phase increased from 11.9% to 50.8%
in the control group (Figure 3A). Likewise, the proportion of cells in the G2/M phase also
decreased in A6-treated Hep3B cells. The effect of A1 and A6 on the proteins involved in
regulating the S and G2/M phases was also investigated. Western blotting showed that A1
and A6 downregulated the levels of cell cycle-related proteins, including cyclin A1, cyclin
B1, CDK2, and p-CDC2 in Hep3B cells (Figure 3B).

3.3. A1 and A6 Induce Caspase-Dependent Apoptosis in Hep3B Cells

PI/Annexin V staining indicated that A1 and A6 increased the percentage of apoptotic
cells in a dose-dependent manner after 48 h of treatment in Hep3B cells (Figure 4A). Com-
pared with 4.9% in the control group, the percentage of double-stained cells considerably
increased to 51.5% and 28.5% after treatment with 2.5 µmol/L A6 and 2.5 µmol/L A1,
respectively (Figure 4A). Additionally, flow cytometric analysis showed that both A1 and
A6 induced caspase-3 activation (Figure 4B, staurosporine as a positive control). Western
blotting demonstrated that the level of caspase-8 was downregulated by both A1 and A6
in a dose-dependent manner in Hep3B cells (Figure 4C).
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(n = 3). * p < 0.05, ** p < 0.01. (C) Effects on caspase-8 after treatment with A1 and A6.



Biomedicines 2021, 9, 1527 7 of 13

3.4. A1 and A6 Modulate Signaling of Akt and Mitogen-Activated Protein Kinases (MAPKs)

Multiple studies have shown that activation of Akt and MAPKs is involved in the
occurrence and development of liver inflammation, accounting for a correlation between
HCC aggressiveness and poor prognosis [26–28]. Western blotting showed that A1 and
A6 induced downregulation of Akt phosphorylation and a downstream effector, NF-κB,
in a dose-dependent manner with no obvious impact on the level of IκBα, the inhibitor
of NF-κB, in Hep3B cells (Figure 5A). In addition, the level of NF-κB was decreased after
treatment of A1 and A6 in the nucleus of Hep3B cells (Figure 5B). Furthermore, A1 and
A6 decreased the levels of MAPK family signaling cascades, including p-ERK and p-JNK,
accompanied by an increase in p-p38 (Figure 5A). A p38 inhibitor, SB203580, was used to
examine the upregulation of p-p38 in A6-treated cells. Western blotting demonstrated that
the level of p-p38 after treatment with A6 and SB203580 was lower than that in the group
treated with only A6 (Figure 5C). The cell viability of the group treated with a combination
of A6 and SB203580 was assessed using an MTT assay. Pre-treatment with SB203580 did
not interfere with A6-induced cytotoxicity, suggesting that p38 might not be the major
target of A6 in HCC cells (data not shown).
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3.5. A1 and A6 Increase Generation of Reactive Oxygen Species

Previous studies have shown that the augmentation of oxidative stress contributes to
the progression of HCC [29,30]. We found that A1 and A6 increased ROS generation in a
concentration-dependent manner in Hep3B cells (Figure 6A, H2O2 as a positive control).
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As shown in Figure 6B, pre-treatment with the ROS scavenger N-acetylcysteine (NAC) or
glutathione (GSH) partially reversed A6-induced ROS production. A similar phenomenon
was observed in A1-treated Hep3B cells (Figure 6B). Western blotting showed that A1 and
A6 upregulated the phosphorylation of p53, a DNA damage response biomarker [31], in
Hep3B cells (Figure 6C). Furthermore, the level of p-p53 was also increased in another
HCC cell line (SK-Hep1 cells) expressing wild-type p53 [32] after treatment with A1 and
A6 (Figure 6D). To investigate the role of p53 in A1- and A6-treated cells, pifithrin-α, a p53
inhibitor, was used. As shown in Figure 6E, the level of p-p53 after the combination of A1
and pifithrin-α was lower than that in the A1 alone group. A similar phenomenon was
observed in A6-treated Hep3B cells (Figure 6F). Compared with A1 or A6 alone, PI/annexin
V double staining showed no significant change in the apoptotic cell count upon combined
treatment of A1 or A6 and pifithrin-α (data not shown). These results suggested that p53
might not be the main molecule required for A1 or A6-induced apoptosis in HCC cells.
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Figure 6. Analysis of reactive oxygen species (ROS) in A1- and A6-treated HCC cells. (A) Cells were treated with A1, A6, or
DMSO for 3 h and stained with carboxy-DCFDA. H2O2 (300 µmol/L) was used as a positive control. (B) Left, cells were
treated with A1 or in combination with N-acetylcysteine (NAC) or glutathione (GSH) for 3 h. Right, cells were treated with
A6 or in combination with NAC or GSH for 3 h. Data are presented as the mean ± S.D. (n = 3). ** p < 0.01. (C) Expression of
p-p53 and p53 after treatment with A1 and A6 in Hep3B cells and (D) SK-Hep1 cells. Phosphorylation and expression of
p53 in Hep3B cells treated with (E) A1 (5 µmol/L) and (F) A6 (2.5 µmol/L) alone or co-treated with pifithrin-α (10 µmol/L)
for 48 h.

4. Discussion

It is well known that chronic inflammation caused by the hepatitis virus leads to
the occurrence of HCC [33]. Tryptanthrin is an anti-viral and anti-infective compound
present in Ban-Lan-Gen, which possesses preventive and therapeutic properties against
viral infection and inflammation as a TCM [10,15]. Tryptanthrin has been reported to
exert anti-proliferative effects on human skin cancer cells [19] and human neuroblas-
toma cells [34] as well as induction of apoptosis in human breast cancer cells via GSTpi
and c-junk NH2-terminal kinase (JNK) [35]. In the current study, we reported the phar-
macological investigation of the tryptanthrin analogs A1 and A6 in HCC cells after the
structural optimization.

The replacement of hydrogen on C-8 imparted A6 with a higher potency for inhibiting
cell growth. The derivative A1 with an 8-bromo substituent had superior anti-proliferative
activity than the derivative A11 with a 2-bromo substituent and the parent compound
(tryptanthrin) with no substituents at C-2 and C-8. Compared with sorafenib, A1 and
A6 demonstrated a higher anti-proliferative effect in Hep3B cells. Qin et al. reported
that metal-tryptanthrin complexes cause S-phase arrest by inhibiting telomerase in blad-
der cancer cells [36]. Benzo[b]tryptanthrin suppresses cell growth by inhibiting Topo II,
a ubiquitous enzyme that is essential in the regulation of DNA topology [37], in breast
cancer cells [38]. In the present study, A1 caused S and G2/M arrest, while A6 affected
cell arrest in the G2/M phase in Hep3B cells. Both A1 and A6 downregulated the levels of
cyclin A1, cyclin B1, CDK2, and p-CDC2. Cyclin A1, a rate-limiting protein for the G1/S
transition, interacts with CDK2 for the onset of both DNA replication and mitosis [39].
Additionally, the formation of the cyclin B1/CDC2 complex regulates entry into the M
phase [40].

Apoptosis plays a pivotal role in the pathogenesis of many diseases, including can-
cer, thereby providing a strategic target in tumor therapy [41]. Yu et al. reported that
tryptanthrin-derived indoloquinazolines induce apoptosis through caspase-3/7 activation
in breast cancer cells [42]. Our results showed that A1 and A6 increased caspase-3 activity
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and decreased the expression of caspase 8. It is worth noting that the deregulation of
Akt and MAPK pathways is implicated in HCC carcinogenesis [43,44]. In a clinical study,
activation of the PI3K/Akt pathway was correlated with tumor progression and decreased
survival rate in HCC patients [45]. NF-κB, a pleiotropic transcription factor, regulates
inflammation and cell survival, playing an important role in inflammation and tumorigen-
esis [46]. Our results demonstrated that A1 and A6 downregulated the levels of p-Akt and
p-NF-κB, accompanied by the inhibition of the translocation of NF-κB to nuclei in Hep3B
cells. The level of IκBα was not changed which suggested that inactivation of NF-κB of
A1 and A6-treated cells might be involved in the non-canonical NF-κB pathway [47]. It
has been reported that p38 enhances the production of proinflammatory cytokines and
controls the proliferation of lung progenitor cells and hepatocytes [43]. Yu et al. reported
that tryptanthrin induces apoptosis by decreasing the interaction between GSTpi and
JNK in doxorubicin-resistant breast cancer cells [35]. In the present study, we observed
that the levels of p-JNK were diminished after treatment with A1 and A6. Shankar et al.
reported that tryptanthrin suppressed phorbol 12-myristate 13-acetate (PMA)-induced
p-p38 expression in skin cancer cells [19]. However, our results showed that A1 and A6
inhibited p-ERK and increased p-p38 in Hep3B cells. This discrepancy might be attributed
to structural modifications and the use of different cancer cell lines.

Previous studies have shown that strong oxidative stress, including exposure to
hepatitis virus, chronic inflammation, and DNA damage, is associated with the pro-
gression of HCC [31,48,49]. Tsukiyama-Kohara et al. reported that gene expression of
hepatitis C virus suppresses p53 activity which, in turn, causes apoptotic resistance to
oxidative stress [50]. Interestingly, a recent study reported that the crude extract of Ban-
Lan-Gen protected against hydrogen peroxide-induced injury in neuroblastoma cells [51].
Coriat et al. reported that sorafenib induced HCC cell death through increasing ROS
production and the higher concentration of serum of advanced oxidation protein products
is an early predictor in HCC patients which treated with sorafenib [52]. Similar to sorafenib,
our results revealed that A1 and A6 induced ROS generation in Hep3B cells. Meanwhile,
we found that A1 and A6 increased the phosphorylation of p53 in both Hep3B and SK-
Hep1 cell lines. Additionally, we observed that A1- and A6-induced apoptosis was not
affected by the administration of pifithrin-α. Taken together, the above results suggested
that the efficacy of A1 and A6 against HCC cells might be impactful in the therapy of other
solid tumors.

Although our results have demonstrated the anti-tumor effects of A1 and A6 in HCC
cells, several limitations of our study should be noted. First, the reversal of A1- and A6-
mediated cell death was not observed in the combination of SB203580 or pifithrin-α, which
suggested that other molecules except p38 and p53 were involved. Second, although A1 or
A6 treatment increased ROS generation, it is still unknown whether ROS exert their effects
in A1- or A6-mediated apoptosis. In addition, the in vivo data of A1 and A6 has not been
performed in this present study.

5. Conclusions

In summary, our data suggest that tryptanthrin derivatives A1- and A6-induced cyto-
toxicity in HCC cells partly through caspase activation, ROS generation, and modulating
Akt and MAPK signaling. Based on these findings, A6 is the most potent anti-tumor agent
among all the synthesized tryptanthrin derivatives and might be considered a promising
lead compound for the further development of therapeutic agents for HCC therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9111527/s1, Pages S4–S9: general materials and methods for synthesis of
tryptanthrin and compound A1–A12, Pages S10–S29: 1H NMR spectra, HPLC spectra, and mass
spectra of tryptanthrin and compound A1–A12.
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