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Abstract: Background: Human adenovirus (HAdV)-D56 was first described in 2011 by genomics
analysis of a strain isolated in France in 2008 from a fatal case of neonatal infection. Since then, it has
been reported in cases of keratoconjunctivitis and male urethritis. Three epidemiologically unrelated
fatal cases of neonatal sepsis associated with infection by HAdV-D strains with a similar genetic
makeup were documented in the United States between 2014 and 2020. Methods: Whole genome
sequences were obtained for the isolated strains, and genomics analyses were conducted to compare
them to phylogenetically related HAdV-D genomic sequences available in GenBank. Results: The
three new US strains were indistinguishable by in silico restriction enzyme analysis. Their genome
sequences were 99.9% identical to one another and to the prototype strain isolated in 2008 from a
similar context of disease. The phylogenetic reconstruction revealed a highly supported clustering
of all HAdV-D56 strains isolated in various countries since 1982. Our comparison to serologically
intermediate strains 15/H9 described in the literature indicated that HAdV-D56-like viruses have
circulated worldwide since the late 1950s. Conclusion: As with other HAdV-D genotypes with
the ability to infect ocular and genital mucosae, the risk of severe prenatal or perinatal HAdV-D56
infection must be considered.

Keywords: adenovirus; neonatal sepsis; genomics; intermediate strain; species HAdV-D

1. Introduction

Neonatal disease associated with human adenovirus (HAdV) infection, although
relatively rarely reported, is frequently disseminated and can be fatal [1,2]. The types
classified within species B, C, and D have been the most frequently detected among the
published cases for which virus typing was conducted [3,4].

Since the description of serotype 51 by De Jong et al. [5] in 1999, more than 40 new
HAdV-D genotypes have been described based on the bioinformatics analysis of whole
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genome sequences, revealing novel intertypic genetic recombinants or novel penton base,
hexon, or fiber gene sequences. A current list of recognized types can be found at http:
//hadvwg.gmu.edu. Human adenovirus-56 was first described in 2011 as an emergent
pathogen by Robinson et al. [6] via genomics analysis of a respiratory isolate obtained from
a 2008 fatal case of neonatal infection in France [7]. This virus was originally described
as having a type 15/29-like hexon gene, by amplification and sequencing of the hexon
hypervariable regions 1–6, and a serotype 9-like fiber by hemagglutination inhibition.
Importantly, its transmission to unprotected healthcare staff was documented to cause
keratoconjunctivitis [7]. Since 2011, and under a new designation, HAdV-56, this virus
has been reported in cases of epidemic keratoconjunctivitis (EKC) in Japan [8] and in an
outbreak in China [9] as well as in cases of male urethritis with concurrent conjunctivitis in
Japan and Spain [10–12].

In this paper, we report the comprehensive genetic characterization of three new
strains of HAdV-56 isolated from epidemiologically unrelated fatal cases of neonatal sepsis
detected in the United States between 2014 and 2020. We also report the results of a
comparative analysis that allowed us to demonstrate that viruses with very similar, if not
identical, characteristics have circulated in various continents since the late 1950s.

2. Materials and Methods
2.1. Case Identification and Clinical Data Abstraction

Cases were retrospectively diagnosed and originally investigated based on the clini-
cal interest they elicited at Nationwide Children’s Hospital, the University of Rochester
(UoR), and the Children’s Hospital of Philadelphia (CHOP), where medical records were
retrospectively reviewed.

• Case 1 (Ohio, 2014). An 8-day old, 23-week gestational age, premature female infant
developed sepsis, pneumonia, hepatitis, and thrombocytopenia. Human adenovirus
DNA was detected in the nasopharynx and blood prompting therapy with cidofovir
and intravenous immunoglobulin (IVIG). Despite these interventions, the infant died
at 18 days of age. Detailed clinical information for this case was previously reported
by Moallem et al. [13]. Human adenovirus DNA was detected in the nasopharynx
and blood. The HAdV strain isolated from a nasopharyngeal aspirate, NCH-PRO95,
was originally partially characterized at Lovelace Biomedical Research Institute (LBRI)
and typed as an intertypic recombinant HAdV-D with a type 15/29 hexon gene (H)
and a type 9 fiber gene (F) as reported [13];

• Case 2 (New York, 2019). A 9-day old, full-term male infant experienced fever and
poor feeding and was admitted to a local hospital in NY state. The infant was well
for the first week of life, and his New York State Newborn Screening was negative for
all diseases tested for in the standard screening program at the state newborn screen
laboratory (https://www.wadsworth.org/programs/newborn/screening/screened-
disorders). Physical examination and initial laboratory studies were nondiagnostic,
and intravenous ampicillin, gentamicin, and acyclovir were administered. Bacterial
cultures of blood and urine specimens were negative; surface cultures and blood
PCR for herpes simplex virus were negative as well. A PCR-based respiratory virus
panel test (Panther Fusion, Hologic, Inc., Marlborough, MA, USA) conducted on a
nasopharyngeal specimen was positive for both adenovirus and rhinovirus. Because
of progressive hypoxia and continued fever, the patient was transferred to a children’s
hospital after 72 h of therapy. Further history was obtained that the infant’s mother
and grandmother had recent episodes of conjunctivitis around the time of the child’s
birth. The physical examination continued to be unremarkable except for temperatures
up to 40.2 ◦C. A chest radiograph showed bilateral diffuse opacities indicative of either
infiltrates or atelectasis. Over the subsequent 48 h, he developed worsening tachypnea
and oxygen desaturation and was transferred to the pediatric intensive care unit (ICU).
Bacterial cultures of blood and urine continued to be negative. His respiratory function
rapidly declined, and intubation with mechanical ventilation, followed by provision

http://hadvwg.gmu.edu
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of inhaled nitric oxide and later extracorporeal membrane oxygenation (ECMO) were
required. Serum PCR assays conducted at Eurofins Viracor-IBT laboratories (Lee’s
Summit, MO, USA) for enterovirus were negative, but those for HAdV were positive
at 1.6 × 109 genome copies/mL. Cidofovir was administered intravenously and
ECMO maintained, but the infant had continued respiratory failure and developed
hepatorenal failure and coagulopathy. He died at 19 days of age;

• Case 3 (Pennsylvania, 2020). A 14-day old, full-term infant male presented with a
5-day history of poor feeding and new-onset respiratory distress and lethargy. He
previously had been noted to have bilateral conjunctival erythema at 6 days of life.
Due to the severity of his illness, he was taken to an outside emergency department,
where he was noted to have severe retractions and multiple apneic events. He was
intubated but continued to have hypoxemia despite escalation to high-frequency
oscillatory ventilation, so he was transferred to a children’s hospital where he was
cannulated onto ECMO. He required significant vasopressor support and also had
renal failure requiring renal replacement therapy. Cerebrospinal fluid studies were
unremarkable. He was given broad spectrum antimicrobials, including vancomycin,
cefepime, and acyclovir. Bacterial cultures were negative. An in-house respiratory
virus quantitative real-time PCR panel [14] was positive for HAdV. A serum HAdV
PCR also tested positive. Due to the severity of his presentation, IVIG was given
daily for 2 days. Cidofovir was held due to the concerns for renal toxicity. Because he
continued to have clinical instability and repeat serum HAdV PCR testing 3 days later
was positive, he was given cidofovir dosed at 5 mg/kg with hyperhydration. Over the
following weeks, serial serum HAdV PCR testing remained positive, and he received
2 additional doses of cidofovir on a weekly basis. He also received 5 additional doses
of IVIG. Despite these interventions, there was little change in his clinical status, and
he continued to require ECMO support due to the fact of respiratory failure and
severe hemodynamic instability. On day 42 of life, he was noted to have worsening
leukopenia and thrombocytopenia with associated hemodynamic instability. He then
developed both pulmonary and gastrointestinal hemorrhage. Due to the bleeding, he
was decannulated from ECMO and died on day 43 of life.

2.2. Virus Isolation and Initial Molecular Typing

All HAdV-positive clinical specimens were inoculated into conventional virus culture
tubes of A549 cells (American Type Culture Collection, Manassas, VA, USA, ATCC CCL-
185) for virus isolation and initial propagation. Infected monolayers were monitored
for development of cytopathic effect (CPE) for one week and harvested when extensive
CPE was observed. Virus isolates were propagated in 75 cm2 flasks for purification of
intracellular viral DNA as previously described [14]. Molecular typing was initially carried
out by PCR amplification and Sanger sequencing of hypervariable regions (HVRs) 1–6 of
the hexon gene and the complete fiber gene followed by BLAST (https://blast.ncbi.nlm.
nih.gov/Blast.cgi) analysis [13,14]. Molecular type identities were assigned based on the
identity of the closest match.

2.3. Whole Genome Sequencing and Annotation

Purified genomic viral DNA was prepared from the three isolates for whole genome
sequencing in an Illumina MiSeq instrument at the NY State Department of Health (NYS-
DOH) Wadsworth Center as previously described [15]. Paired fastq sequence files for each
sample were imported into Geneious Prime version 2020.2.4 (Biomatters, Ltd., Auckland,
New Zealand), trimmed using BBDuk, and error corrected and normalized using BBNorm,
before alignment to the reference genome HM770721. The consensus sequences were fur-
ther annotated using this genome as a reference in VAPiD [16] and uploaded to GenBank
using the NCBI Bankit tool. Uploaded sequences are available under accession numbers
MW805358, MW805359, and MW805360.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.4. Genomic Analyses

The genomic sequences of the three newly identified strains of HAdV-56 were com-
pared to publicly available whole genome sequences in GenBank within the Adenoviridae
family (taxid: 10508) using the online BLASTn program [17] with parameters e-value < 0.01
and word size 7. Identified HAdV genomic sequences with similarity > 98% and a selection
of reference genomic sequences were aligned using MAFFT with the FFT-NS-I [18]. The
analysis included the WGS for the first case of HAdV-D56 infection reported by Henquell
et al. (GenBank #HM770721), various complete genomic sequences available from Gen-
Bank for virus strains designated as HAdV-D56 or exhibiting similar genetic identities for
the penton base (P), hexon (H), and fiber (F) genes (Table 1), and the genomic sequences
for the prototype strains of the phylogenetically related genotypes HAdV-D9 (GenBank
#AJ854486), -D10 (GenBank #AB724351), -D15 (GenBank #AB562586), -D26 (GenBank
#EF153474), -D29 (GenBank #JN226754), -D88 (GenBank #MF476842), and -D94 (GenBank
#KF268201).

Table 1. Human mastadenovirus D genotypes and strains included in the genomic analysis.

Strain
Designation Genotype

Assigned ID
for This
Study

Source Clinical
Illness

Year of
Isolation

Place of
Isolation

Accession
No.

Molecular
Type

P H F

Hicks (p) D9 D9 Anal
specimen Arthritis 1954 MA,

USA AJ854486 9 9 9

J.J. (p) D10 D10 Conjunctival
swab Conjunctivitis 195X D.C.,

USA AB724351 10 10 10

CH38 (p) D15 D15 Conjunctival
scrapings Conjunctivitis 1955 SAU AB562586 15 15 15

BP-2 (p) D26 D26 Anal
specimen None 1956 D.C.,

USA EF153474 26 26 26

BP-6 (p) D29 D29 Anal
specimen NA 1959 D.C.,

USA JN226754 29 15 29

MEE-MOLD D88 D88 Respiratory
specimen NA 1963 MA,

USA MF476842 88 15 9

HEIM 00080 D94 D94 NA NA 1982 DEU KF268201 33 15 9

HEIM 00081 D56 D56-I NA NA 1982 DEU KF268329 9 15 9

MEEI 00078 D56 D56-II NA NA 19XX MA,
USA KF268209 9 15 9

CL 50 D56 D56-III NA NA 1992 PA, USA KF268333 9 15 9

Pitts 00150 D56 D56-IV NA NA 1992 PA, USA KF268313
+++ 9 15 9

MEE-CHBR D56 D56-V Vaginal swab NA 1995 MA,
USA MF476840 9 15 9

p D56 D56-VI Lung biopsy Sepsis N 2008 FRA HM770721 9 15 9

2307-S D56 D56-VII Conjunctival
swab EKC 2008 Sapporo,

JPN AB562588 9 15 9

20101537 D56 D56-VIII Conjunctival
swab EKC 2010 Kumamoto,

JPN LC215445 9 15 9

20121516 D56 D56-IX Conjunctival
swab EKC 2012 Kumamoto,

JPN LC215425 9 15 9

20121569 D56 D56-X Conjunctival
swab EKC 2012 Kumamoto,

JPN LC215430 9 15 9

20131505 D56 D56-XI Conjunctival
swab EKC 2013 Kumamoto,

JPN LC215431 9 15 9

NCH-Pro95 D56 D56-XII Respiratory
specimen Sepsis N 2014 OH, USA MW805359

§ 9 15 9

TKY3113Asew D56 D56-XIII Sewage
water — 2018 Tokyo,

JPN LC595640 9 15 9
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Table 1. Cont.

Strain
Designation Genotype

Assigned ID
for This
Study

Source Clinical
Illness

Year of
Isolation

Place of
Isolation

Accession
No.

Molecular
Type

P H F

TKYAd188507 D56 D56-XIV Urine Urethritis 2018 Tokyo,
JPN LC589687 9 15 9

IDR1900044114 D56 D56-XV Respiratory
specimen Sepsis N 2019 NY, USA MW805360

§ 9 15 9

VIR209329 D56 D56-XVI Respiratory
specimen Sepsis N 2020 PA, USA MW805358

§ 9 15 9

p: Prototype strain; NA: information not available; EKC: epidemic keratoconjunctivitis; N Neonatal sepsis; X: year unknown; § genomic
sequences obtained in this study; P: penton base gene; H: hexon gene; F: fiber gene; + described in GenBank as (P26H56F56).

A maximum likelihood phylogenetic tree to explore the relation among sequences
was inferred using RAXML-GUI v2.0 [19] with the GTRGAMMA as a substitution model
and 1000 repetitions to calculate the bootstrap branch support.

In silico restriction enzyme analysis with endonucleases Bam HI, Bgl II, Bst EII, Hind
III, Pst I, Sac I, Sal I, and Sma I was carried out in Geneious Prime version 2020.2.4
(Biomatters, Ltd., Auckland, New Zealand).

For a more detailed exploration of genomic sequence similarities, a sliding window
analysis was performed with Simplot V3.5.1 [20] using a 500-nucleotide sliding window,
a 50-nucleotide step size, using GapStrip, on a Kimura distance model, and Ts/Tv = 2.0.
The consensus sequence for the three strains characterized in this study was used as the
query in the comparison with the genomes of HAdV-D9, -D10, -D15, -D26, -D29, -D88,
and -D94 listed above. A pairwise analysis of sequence similarities across the entire panel
of genotypes and strains was carried out in MEGA7 v7.0.25 [21]. The similarity between
pairs of compared sequences was expressed as a percentage, and a heat map graphical
representation of the data matrix was built using R version 4.0.5 [22].

In order to parse amino acid differences for the polypeptides encoded in selected
regions of the genome among the different HAdV-D types, amino acid sequences were
examined with the method of proteotyping adapted from Obenauer et al. [23]. The con-
catenated protein sequences of penton base, hexon, E3 proteins, and fiber were analyzed.
Amino acid signature patterns were derived from the maximum likelihood phylogenetic
tree-guided sequence alignment, indicating amino acid sites with polymorphisms relative
to the most frequently occurring residues with a frequency-based color coding.

3. Results
3.1. Preliminary Virus Typing

Virus isolates were only recovered from respiratory specimens. As originally reported
for Case 1 [13], the initial molecular characterization of the HAdV isolated from the
nasopharyngeal specimen of case 2 at NYSDOH (strain IDR1900044114) and of the HAdV
isolated from the nasopharyngeal specimen of case 3 at LBRI (strain VIR209329), identified
a HAdV-D with a HAdV-D15/29-like hexon gene and HAdV-D9-like fiber gene indicating
them to be candidate HAdV-D56 strains.

3.2. Genetic Analysis of Virus Isolates

The complete genomic sequences of the three US strains isolated from epidemiologi-
cally unrelated fatal cases of neonatal sepsis described above were obtained with an average
coverage of 28X for strain D56-XII, 17X for strain D56-XV, and 31X for strain D56-XVI.
The genomic sequences were 99.9% identical to one another, and 99.9% identical to the
prototype strain isolated in 2008 in France from a similar context of disease [7] and to the
earliest clinical isolate available for comparison, D56-I from Germany, 1982. The maximum
likelihood phylogenetic reconstruction revealed a highly supported clustering of all exam-
ined HAdV-D56 strains, with other related genotypes segregating in distinguishable clades
(Figure 1). The HAdV-D56 cluster has a sister clade comprising genotypes: D9, -D88, and
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-D94 with overall sequence similarities around 98.5% (Figure 2). The in silico restriction
enzyme analysis (Figure 3) confirmed the close relationship among the four genotypes and
portrayed the examined HAdV-D56 strains as a group of closely related genomic variants
with identical Bgl II and Hind III digestion profiles. Fifteen of the 16 examined strains also
shared the same prototype-like Bam HI profiles.

The three US strains were indistinguishable from one another by in silico REA with
eight endonucleases, and, as shown in Table 2, only 14 non-synonymous point mutations
were identified in these genomes compared to the 2008 French strain.

A sliding window analysis along the genome was used to examine the similarity
among the closely related genotypes HAdV-D9, -D10, -D15, -D26, -D29, -D56, -D88, and
-D94. As shown in Figure 4, the divergence between HAdV-D56 and the other types
concentrated in the loci encoding the major capsid proteins penton base, hexon, and fiber,
and also in the E1, E4, and E3 transcriptional units with particularly high divergence in
windows located in the E3-CR1β coding region. As previously reported [6,24], HAdV-D56
showed high similarity in the penton base, hexon, and fiber to types -D9, -D15, and -D9,
respectively. As expected, differences to the closely related H15 F9 genotypes -D88 and
-D94 were evident in the penton base coding region, accounting for the separate clustering
in the phylogenetic tree.
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Table 2. Identified non-synonymous point mutations in the genomes of the US strains of HAdV-D56 (D56-XII, -XV, and
-XVI) compared to the prototype strain isolated in France in 2008 (D56-VI).

Nucleotide
Position §

Affected
Amino Acid

Position ¥

Gene Protein
Product

D56-VI
(HM770721)

D56-XII
(MW805359)

D56-XV
(MW805360)

D56-XVI
(MW805358)

AA Depth
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The phenotypic implications of the genetic diversity detected among the selected
panel of HAdV-D viruses were examined by proteotyping of the predicted sequences for
penton base, hexon, E3, and fiber proteins. As shown in Figure 5, the different profiles
confirmed the similarity of HAdV-D56 strains to genotypes -D9, -D10, and -D26 in the
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penton base; the similarity to genotypes -D15, -D29, -D88, and -D94 in the hexon protein
and the similarity to genotypes -D9, -D88, and -D94 in the fiber. Overall, the HAdV-D56 E3
cassette of proteins resembled more closely those of genotypes D9, D88, and D94 with two
readily distinguishable variants of CR1β and CR1γ present in the genomes of all the three
new HAdV-D56 strains and in those of all Japanese strains isolated since 2010.
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4. Discussion

The epidemiology of neonatal adenovirus infection is still poorly characterized and
the mechanisms of infection unclear but probably multiple. Vertical transmission during
vaginal delivery is a very plausible scenario in view of the various reports of detection
of HAdV in the female genital tract [25–27]. For some cases, strong evidence of prenatal
ascending intrauterine infection or transplacental transfer has been reported [28–30].

The possible sexual transmission of infection of various HAdV types, and HAdV-D
types in particular, has been considered and merits further investigation given the number
of reported cases of associated male urethritis and cervicitis [25,26,31–34]. In this context of
disease, HAdV-D56, an intertypic recombinant genotype (P9H15F9) described in 2011 [6],
has recently attracted a lot of attention as a result of its detection in cases of male urethritis
with concurrent conjunctivitis and in cases of epidemic keratoconjunctivitis [9–11]. Like
the prototype strain isolated in 2008 [7], the three strains characterized in this study were
isolated from cases of bacterial culture-negative neonatal sepsis, documenting the potential
for this viral infection to be fatal in the neonatal period. Notably, in case 2, a history of recent
conjunctivitis had been recorded for the patient’s mother and grandmother, indicating that
horizontal transmission may play a role in some cases.

Our genomics analysis included all available whole genome sequences in GenBank
identifiable as HAdV-D56 or as strains described as having the same penton base, hexon,
and/or fiber gene types, and the phylogenetically related genotypes D9, D10, D15, D26, D29,
D88, and D94. Collectively, the sixteen HAdV-D56 strains showed a percent identity above
99.9%. The representation in the panel of strains isolated from a diversity of specimens,
including conjunctival swabs, urine, vaginal, and neonatal nasopharyngeal swabs, could
not identify any specific sequence signatures correlating with any particular tropism. This
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strongly supports the notion that HAdV-D56, like other members of species HAdV-D, has
the ability to infect ocular, respiratory, and genital (both male and female) epithelia.

Our phylogenetic analysis, including complete genomic sequences available in Gen-
Bank for viruses with the same penton base, hexon, and fiber gene type identities circulating
in the US and Europe in the early 1980s and 1990s provided evidence of the circulation of
HAdV-56 prior to 2008. Importantly, the in silico restriction enzyme analysis conducted
in this study allowed us to extend our comparisons to published digestion profiles for
intermediate strains 15/H9 isolated between 1958 and 1979 in the USA and Europe and
characterized antigenically by neutralization and hemagglutination inhibitions assays and
by REA by Adrian and colleagues [35,36]. The majority of the D56 strains examined in
this study, including the prototype isolated in France in 2008 (D56-VI), showed identical
profiles to those reported by these investigators for strains 5399 (Netherlands, 1958), V360
(LA, USA, 1979), and 910 (CA, USA, 1973) [35,36]. Collectively, this body of data establishes
important epidemiological connections and strongly suggests that HAdV-D56-like viruses
have circulated in various parts of the world since the late 1950s and that HAdV-D56 is
not an emergent pathogen as initially thought. Our genomics and proteotyping analysis
also predict that, like D94 and D56-I (the only serotyped viruses in the examined panel), all
of these viruses with D15/29-like hexon genes and D9-like fiber genes will neutralize as
serotype 15 and as intermediate variants 15/H9 if hemagglutination inhibition assays are
carried out to contribute information on the fiber antigenic type.

Collectively, these three recent cases of HAdV-D56 neonatal disease contribute to
raising awareness of the existing major gaps in knowledge regarding the transmission
dynamics resulting in neonatal infection, the interplay between the ocular and genital mu-
cosae during infection by certain members of species HAdV-D, and the need for increased
surveillance. The possible sexual transmission of HAdV-D56 and other HAdV-D infections
merits further investigation.

Screening of pregnant women for evidence of active genital HAdV infection and
documentation of history of household conjunctivitis or acute ocular or respiratory infection
during pregnancy may help inform interventions to prevent neonatal infections. Human
adenovirus testing must be included in the differential diagnosis of neonatal sepsis
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