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Abstract

Background

Large and giant dog breeds have a high risk for gastric dilatation-volvulus (GDV) which is an

acute, life-threatening condition. Previous work by our group identified a strong risk of GDV

linked to specific alleles in innate and adaptive immune genes. We hypothesize that varia-

tion in the genes of the immune system act through modulation of the gut microbiome, or

through autoimmune mechanisms, or both, to predispose dogs to this condition. Here, we

investigate whether differences in the canine fecal microbiome are associated with GDV

and are linked to previously identified risk alleles.

Methodology/Principle findings

Fecal samples from healthy Great Danes (n = 38), and dogs with at least one occurrence of

GDV (n = 37) were collected and analyzed by paired-end sequencing of the 16S rRNA

gene. Dietary intake and temperament were estimated from a study-specific dietary and

temperament questionnaire. Dogs with GDV had significantly more diverse fecal micro-

biomes than healthy control dogs. Alpha diversity was significantly increased in dogs with

GDV, as well as dogs with at least one risk allele for DRB1 and TRL5. We found no signifi-

cant association of dietary intake and GDV. Dogs with GDV showed a significant expansion

of the rare lineage Actinobacteria (p = 0.004), as well as a significantly greater abundance of

Firmicutes (p = 0.004) and a significantly lower abundance of Bacteroidetes (p<0.004).

There was a significant difference in the abundance of 10 genera but after correction for mul-

tiple comparisons, none were significant. Bacterial phyla were significantly different between

controls and dogs with GDV and at least one risk allele for DRB1 and TRL5. Actinobacteria

were significantly higher in dogs with GDV and with one risk allele for DRB1 and TLR5 but

not DLA88 genes. Furthermore, Collinsella was significantly increased in dogs with at least

one risk allele for DRB1 and TLR5. Logistic regression showed that a model which included
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Actinobacteria, at least one risk allele,and temperament, explained 29% of the variation in

risk of GDV in Great Danes.

Conclusions

The microbiome in GDV was altered by an expansion of a minor lineage and was associated

with specific alleles of both innate and adaptive immunity genes. These associations are

consistent with our hypothesis that immune genes may play a role in predisposition to GDV

by altering the gut microbiome. Further research will be required to directly test the causal

relationships of immune genes, the gut microbiome and GDV.

Introduction

Large and giant dog breeds have a high risk for gastric dilatation-volvulus (GDV) [1–6] This

life threatening condition involves the accumulation of gas in the stomach (dilatation) primar-

ily from bacterial fermentation in the stomach [7]. Torsion of the stomach on its axis (volvu-

lus) results in increased pressure leading to compression of gastric, cardiac, and other blood

vessels. We previously posed the hypothesis that variations in certain genes of the immune sys-

tem may predispose dogs to GDV, through modulation of the gut microbiome [8]. Briefly, this

hypothesis is based on four types of evidence, as described more fully below: 1) that GDV has

been associated with inflammatory bowel disease (IBD) in dogs, 2) that IBD is associated with

dysbiosis of the gut microbiome, 3) that specific variants of certain immune genes play a signif-

icant role in both microbiome dysbiosis and the etiology of IBD, and 4) that our previous

work has established an association of specific immune gene alleles to GDV in Great Danes.

[9–17] In contrast, others have posited that aerophagia (gulping of air) may increase risk of

GDV, however, analysis of gas composition from dogs with GDV suggests that the gas is from

fermentation and not atmospheric sources. Regardless, if left untreated, GDV can progress to

tissue damage, shock, and death. Several risk factors have been identified including diet [18,

19] and feeding regimes [2], age [1, 4], behavior [2, 20], and genetics [1, 3–5] suggesting that

both environmental and genetic factors influence the risk of GDV.

Previously, we identified variants of genes in both the adaptive and innate immune systems,

toll-like receptor 5 (TLR5) and the dog version of human leukocyte antigen of the Major

Histocompatibility Complex genes (DLA88; Class 1 and DRB1, Class 2), that were associated

with increased risk of GDV [8]. Toll-like receptor 5 detects pathogen-associated molecular pat-

terns (PAMPs) that recognize bacterial flagellin [21]. Mutations in the TLR-5 gene or bacterial

modification of flagellin are associated with increased risk of inflammation-based diseases [13,

22–27]. DLA88 and DRB1 are Class I and Class II DLA genes. They encode an array of pro-

teins that serve both to signal “self” to the immune system, to block auto-immune destruction,

and to present microbial antigens to the immune system. Class I genes code proteins that sig-

nal cytotoxic T cells and Class II code genes that signal T helper cell proteins that regulate the

expansion of antigen-specific response by B-and T-cell clones. In particular, Th17 produces

IL-17 a cytokine that has been associated with microbial infections. Class I and II genes also

play a role in regulating the exposure of the host to pathogenic bacteria and maintain homeo-

stasis of the gut microbiome. Mutations in these genes can influence host health by failure to

detect certain pathogens or by mounting an autoimmune response against host tissues and

cells which are factors in autoimmune-based diseases such as rheumatoid arthritis or celiac

disease [28–33]. In dogs, our recent work showed that mutations in these genes were associ-

ated with increased risk of GDV [8].

Gut microbiome risk factors in canine GDV
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The healthy gut microbiome in dogs is complex, and like the human microbiome, a stable

microbiome is critical to canine health [33, 34]. In dogs, the microbiome is affected by many

factors including diet, age, breed, or environment [33–35]. Alpha diversity, which determines

the species richness and evenness within the microbial community, and beta-diversity which

determines the shared diversity between microbiota in terms of various ecologic distances are

often used as indicators of canine health [33, 34]. In healthy dogs, the dominant phyla include

Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria although the proportions may

vary in individual dogs [33, 34]. Actinobacteria represent a rare but ubiquitous lineage [28]

and canines also have micro-organisms in non-bacterial domains of life including eukaryote,

archaea, and viruses [34].

A microbiome that is out of balance (dysbiosis) may predispose dogs to increased risk of

diseases associated with the immune system. Relevant to a dysregulated immune function in

GDV, an altered abundance of Bacteroidetes, and Proteobacteria has been associated with irri-

table bowel disease [17] and other autoimmune-mediated diseases in dogs [36]. Underlying

mechanisms include 1) loosened tight junctions between gut epithelial cells which allow endo-

toxin to enter systemic circulation mounting an immune response through innate immune

receptors, 2) mutations in immune genes that reduce detection of pathogens [37, 38], 3) modi-

fication of flagellin by bacteria to evade host surveillance [39], and 4) shifts in the microbial

community that enrich for microbial metabolites associated with increased inflammation [35,

40]. GDV is reported to co-occur in dogs with inflammatory bowel disease [9], another inflam-

mation-based condition with an auto-immune component, and a link to microbial dysbiosis

[41]. Here, we address the hypothesis that variation in the genes of the immune system act

through modulation of the gut microbiome, or through autoimmune mechanisms, or both, to

predispose dogs to this condition. We hypothesize that the diversity and composition of the

gut microbiome in dogs with higher risk of GDV are different than that in dogs without GDV,

and that these differences are associated with the genetic variants previously linked to GDV

[8].

Materials and methods

Study animals

Animal welfare statement. Owner consent was obtained for all participating dogs. All

procedures, authorization forms, information packets and questionnaires used in this study

were submitted to, and approved by the Institutional Animal Care and Use Committee

(IACUC #50836) at Fred Hutchinson Cancer Research Center.

Selection of study animals. The purpose of this collection was to observe the steady-state

profile of the gut microbiome in these dogs. In order to minimize the potential effects of the

GDV event itself, or of the subsequent surgery and/or antibiotic treatments, we restricted stool

sample collections to at least 3 months after any surgery, antibiotic treatments, or symptoms of

gastric problems.[42] This restriction applied to both control and GDV dogs. Great Danes

were recruited through an email network of breeders and owners. All interested owners were

sent a questionnaire about their dog’s diet, exercise, temperament, coat color, medical history

and family history of GDV. Two groups of Great Danes were selected, based on the presence

or absence of GDV in their lifetime. Dogs chosen for the GDV group had at least one episode

of GDV that required emergency intervention by a veterinarian. Dogs chosen for the control

group had never experienced either severe gastric dilatation or torsion, nor had they experi-

enced any other major gut-related problems. All dogs that had received prophylactic gastro-

plexy were excluded from the study as were all dogs that received antibiotics in the three

months prior to stool collection. No attempt was made to restrict participation based on sex,
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diet, exercise level, coat color, or age. The owners of 178 Great Danes volunteered to enroll

their dogs in the study. Of these, 80 dogs met the inclusion criteria for the study, including

complete questionnaire data, confirmation of specific group criteria, and willingness to collect

and send blood or buccal swab samples: 38 dogs met the criteria for the GDV group and 42

met the control group criteria. Samples were genotyped as previously described [8].

Diet. Dietary information was collected using a questionnaire that asked owners about

feeding regime and diet content. If a commercial dog food was identified, we used the nutrient

analysis given by the manufacturer and adjusted for daily total amount fed. If a non-commer-

cial diet was fed, we estimated kcal and macronutrient content based on average values for red

meat, poultry, and crude fiber, and adjusted for the total amount fed (Table 1). Data are pre-

sented as g/day.

Stool samples

Collection. Stool samples were collected in RNAlaterTM, frozen in home freezer, returned

to the clinic, and then stored at −80˚C, as previously described [43, 44].

DNA extraction and sequencing. DNA extraction and 16S rRNA gene sequencing meth-

ods have been previously described [43, 44]. Briefly, DNA was extracted from stool using phys-

ical and chemical lysis. The V1-V3 region of the 16S rRNA gene was amplified and sequenced

using paired end MiSeq primers 27f and 519r (Illumina Mi-Seq; San Diego) 27F mod forward

PCR primer sequence 5’-AGRGTTNGATCMTGGCTYAG-3’ and the 519R reverse PCR

primer sequence 5’- GTNTTACNGCGGCKGCTG-3’.[45] following standard protocols

(Molecular Research, Shallowater, TX).

Stool microbiome bioinformatics analysis. To classify sequences to bacterial taxonomy,

sequences were processed using QIIME (v.1.8) [46]. Sequences were joined with the fastq-join

method, using min_overlap = 15 and perc_max_diff = 12. Sequences were filtered with spli-

t_libraries_fastq.py with q parameter set to 25, and defaults otherwise. The Nelson two-step

method was used for OTU generation using the SILVA database (release 111 [47–49], clus-

tered at the 97% similarity level) in the closed reference OTU picking step. The OTU table was

filtered using the QIIME script filter_otus_from_otu_table.py with—min_count_fraction set

to 0.00005 as recommended in Navas-Molina et al. [50]. An additional filtering step set entries

in the OTU table to zero if the number of observations was less than 10 per-sample, per-OTU.

Additional OTU entries were filtered out if they were detected as chimeras using QIIME’s

identify_chimeric_seqs.py script with method blast_fragments. Sequences were aligned to the

Silva 16S rRNA gene reference alignment using the NAST algorithm [51]. The sequences were

classified using MOTHUR’s naive Bayes classifier trained against the SILVA database (release

Table 1. Dietary� and demographic characteristics for dogs with and without GDV. Data presented as mean (SD).

Control�� GDV�� P ��

Protein, g/day 173.3 (57.2) 186.5 (71.1) ns

Fat, g/day 103.4 (36.5) 105.2 (45.6) ns

Carbohydrate, g/day 301.7 (121.9) 276.0 (138.3) ns

Crude Fiber, g/day 22.5 (8.2) 21.4 (11.2) ns

Energy, kcal/day 2211.8 (746.2) 2157.5 (697.0) ns

Age, y 4.5 (2.4) 6.6 (2.9) 0.036

Age at GDV onset, y 4.6 (2.9)

�Dietary data are presented as g fed per day

��Logistic regression

https://doi.org/10.1371/journal.pone.0197686.t001
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111, clustered at the 97% similarity level) [52]. Files were generated with number of sequences

per sample at the phyla and genera taxonomic level classification and OTUs were used in subse-

quent statistical analysis. Following rarefaction, alpha diversity was assessed using OTU abun-

dance for the Shannon diversity estimate, beta diversity was estimated using OTU abundance

using the using weighted UNIFRAC and both estimates were used in statistical analysis [53].

Statistical analysis. Temperament, at least one risk allele for DLA88, DRB1, or TRL5, age

at onset, and age were determined previously to be associated with increased risk of GDV and

are included in the present analysis. In addition, we assessed whether diet was different

between control and GDV dogs by sex using two sided t-tests (Table 1). Correlation analysis

(Pearson’s) was used to assess associations between dietary intake, alpha diversity, and Phyla.

For more details of other variables that were measured in the population see Harkey et al. [8].

Alpha diversity between control and GDV dogs and whether alpha diversity was associated

with having at least one risk allele for TLR5, DLA88, or DRB1 was assessed by t-tests [54].

Global differences in the microbial communities between control and GDV dogs were assessed

using MRPP on the UNIFRAC distance matrix [55–57].

Data are presented as the mean and standard deviation of untransformed relative percent

of total sequencing counts per sample. Prior to statistical analysis, sequence counts of phyla

and genera in each sample were normalized using centered log ratio [58]. All values had one

added to the sequence count prior to calculating the centered log ratio. We assessed the abun-

dance of phyla and genera in control and GDV dogs using Kruskal-Wallis nonparametric

tests. Multiple comparisons were adjusted for using the Benjamini-Hochberg approach [59].

Backward stepwise logistic regression was used to model the effect of the microbiome (repre-

sented as the phyla Firmicutes, Bacteoridetes, and Actinobacteria), temperament, and at least

one risk allele on risk of GDV. Five variables were added to the model with probability of entry

(0.1) and removal (0.2).The performance of the model was assessed using an ROC curve.

Results and discussion

Characteristics

Of the 178 Great Dane owners that volunteered to include their dogs in this study, 83 dogs had

stool samples collected. Of those stool samples, 8 did not pass our DNA QC criterion (i.e., low

yield or poor quality) and were not sent for sequencing. Stool samples were obtained from 38

dogs in the control group and 37 in the GDV group. Of the 75 samples that were sequenced,

we lacked genetic data for 8 dogs in the control group. Complete information about the family

sets and SNP analysis were published previously [8]. We were able to obtain dietary informa-

tion from 64 dogs, 34 control dogs and 30 GDV dogs (Table 1).

Bioinformatic analysis

In total, we generated 2.3 million reads with an average of 25 K reads per sample and the aver-

age length of the joined reads was 371bp (±115). After bioinformatic processing, we identified

7 phyla, 51 genera and 464 OTUs in the stool samples. Sequence files are available in the Short

Read Archive under submission number SUB3668349.

Statistical analysis

We found that the GDV dogs were significantly older than the control dogs (p = 0.036) by

about 2 years although our previous study showed that the control dogs had the same mean

age as the GDV dogs at the time of GDV event. There were no significant differences in dietary

intake between the two groups (Table 1).
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Alpha and beta diversity were used to assess global differences in the microbiome in the

GDV and control dogs. Alpha diversity determines the species richness and evenness within

the microbiota while beta-diversity determines the shared diversity between microbiota in

terms of various ecologic distances [54, 60]. Alpha diversity varied between the control and

GDV dogs. There was a significantly higher Shannon diversity index in dogs with GDV

(n = 37, 4.1 ±0.65) compared to control dogs (n = 38, 3.37 ±0.92; p = 0.002). In addition, there

were significant differences in diversity between control and GDV dogs with at least one risk

allele in TLR5 (4.29 ±0.55; p = 0.0005), DRB1 (4.13 ±0.49, p = 0.012), or DLA88 genes (3.90

±0.89; p = 0.02). When beta diversity was assessed using the weighted UNIFRAC metric, it

explained 26.6% of the variation in the overall microbiome composition in three axes. Axis 1

explained most of the variation (13.8%) (Fig 1), although there was no evident clustering of

dogs by disease state.

In the canine microbiome, the phyla included Actinobacteria, Bacteroidetes, Firmicutes,

Fusobacteria, Proteobacteria, Tenericutes, and Verrucomicrobia (Table 2). We found signifi-

cant differences in the abundance of bacterial phyla between control and GDV dogs (Table 2).

Bacteria in the phyla Actinobacteria (0.14% vs 0.49%, p = 0.004) and Firmicutes (25% vs 38%;

p = 0.004) were significantly higher in dogs with GDV whereas Bacteroidetes were significantly

Fig 1. Multivariate analysis using a weighted Unifrac distance matrix of the gut microbiome in control (gray) and dogs with GDV (black).

https://doi.org/10.1371/journal.pone.0197686.g001
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lower (62% vs 47% (p = 0.004). In addition, there were differences in the phyla Actinobacteria

(KW, p<0.06) and Bacteroidetes (KW, p<0.02) between control dogs and GDV dogs with at

least one risk allele for DRB1, TLR5, or DLA88. More specifically, Actinobacteria were signifi-

cantly higher in dogs with at least one risk allele in TLR5 (KW;p<0.02) and Firmicutes were

significantly enriched in dogs with one risk allele in DRB1 (KW; p<0.012).

The broad phylogenetic trends were further reflected at the genera level (Table A in S1

Tables). We found differences in the abundance of 10 genera between control and GDV dogs.

These genera were Collinsella, Prevotella, Lactobacillus, three members of the Clostridales,

and three members of the Proteobacteria, including Helicobacteria and Escherichia/Shigella

group. In the dogs with GDV, Collinsella, Lactobacillus, two member of the Peptostreptococ-

caceae, a member of the Escherichia_Shigella group in the Enterobacteriaceae, and another

gamma-Proteobacteria were enriched in the microbiome. It is important to note that the phyla

Actinobacteria only contained one genera, Collinsella. In contrast, Helicobacter and Prevotella

were lower in the GDV group. However, upon correction for multiple comparisons (124 com-

parisons), they were no longer significant.

Backward stepwise logistic regression showed that a final model included Actinobacteria,

having at least one risk allele of TLR5, DRB1, or DLA88, and nervous temperament explained

29% of the variation in risk of GDV (Tables A and B in S2 Tables). ROC curve analysis for the

same variables resulted in an AUC of 0.86 suggesting that this model discriminates well

between control and dogs at risk of GDV (S1 Fig).

Discussion

Both environmental and genetic factors can influence disease outcomes that are linked to the

composition of the microbiome and canine health [33–35]. In a previous analysis of this study

population of Great Danes, we showed that variants of DLA88, DRB1, and TLR5 were associ-

ated with increased risk of GDV [8]. Differences in the canine microbiome have been associ-

ated with inflammation-based diseases, which are often linked to innate and adaptive immune

deficiencies. We tested the hypothesis that the presence of at least one risk allele and the micro-

biome may influence the risk of GDV. In the present analysis, there was a significantly higher

alpha diversity in dogs who previously had GDV. Differences in the composition of the micro-

biome and having at least one risk allele in TLR5, DLA88, and DRB1 were linked to increased

risk of GDV.

The gut microbiome in healthy dogs has been characterized as diverse with abundant repre-

sentation of bacterial, archaeal, and fungal microorganisms [33–35, 61]. In healthy dogs, after

adjusting for diet, gut microbial communities vary with age, size, and breed [35]. We found

that dietary intake was not associated with risk of GDV, although age was an important factor

Table 2. Phyla (%) in cases vs controls.

Controls� (n = 38) GDV� (n = 37) P ��

Bacteria;__Actinobacteria 0.14 (0.34) 0.49 (0.66) 0.004

Bacteria;__Bacteroidetes 62.98 (21.95) 47.93 (22.41) 0.004

Bacteria;__Firmicutes 25.68 (17.46) 38.71 (20.27) 0.004

Bacteria;__Fusobacteria 7.80 (7.45) 6.56 (6.89) 0.341

Bacteria;__Proteobacteria 3.09 (4.61) 5.84 (9.30) 0.455

Unknown;Other 0.02 (0.08) 0.04 (0.08) 0.107

�

Mean (SD)
��

Non parametric t-test (Kruskal Walis) Benjamini Hochberg correction for multiple comparisons.

https://doi.org/10.1371/journal.pone.0197686.t002
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(Table 1). In our study, healthy dogs without GDV had a similar alpha diversity to that of

healthy dogs in other breeds [33–35]. In the healthy, control Great Danes, Bacteroidetes and

Firmicutes were the most abundant and prevalent phyla (Table 2). Fusobacteria and Proteo-

bacteria also comprised between 3 and 8% of the canine microbiome. Actinobacteria were

more rare (<1%). Studies of healthy dogs that showed that the three most abundant phyla

were Bacteroidetes, Firmicutes, and Fusobacteria in other canine breeds [61, 62]. Low abun-

dance of Actinobacteria has been reported in both healthy humans and dogs [28, 63].

Several lines of evidence suggest that there may be an interaction between diet and micro-

bial diversity. We found a borderline significant inverse correlation with protein intake and

alpha diversity. Different diets may cause the expansion of microbiota that specialize in the

metabolism of particular dietary components and this can be captured in diversity measures

[64]. Li et al found that dogs responded with increased diversity to a diet high in protein and

low in carbohydrate [65]. Interestingly, others have found that a diet that included raw meat

also increased the gut microbiome diversity which may reflect the structural complexity of the

types of tissues in raw meat that need to be metabolized by the microbiome compared to pro-

cessed kibble or canned food. In contrast, other studies that have shown prebiotics or complex

carbohydrates in dog food can increase diversity [64].

Expansion of rare lineage intestinal microbes, such as the Actinobacteria Collinsella, has

been associated with autoimmune diseases in humans and may be important in dogs as well

[10, 17, 41]. In our dog population, we identified one genera, Collinsella, in the Phyla Actino-

bacteria. We found that a significantly higher abundance of Actinobacteria (Table 2) in the

Great Danes with GDV and at least one risk allele (Table A in S1 Tables, Tables A and B in S2

Tables, S1 Fig). An increase in Actinobacteria was also noted in mixed breed dogs by Allen-

spach et al in cases of chronic enteropathies [66]. The Actinobacteria Collinsella, has been

linked autoimmune diseases in humans and humanized mice [28]. Similar to our GDV dogs

(Table A in S1 Tables, Tables A and B in S2 Tables), humanized mice expressing a rheumatoid

arthritis (RA) susceptible HLA gene had in a dysbiotic microbiota which was significantly

enriched in Actinobacteria and, specifically, Collinsella [28]. Both mouse and cell line models

showed stimulation of autoimmune response when exposed to Collinsella compared to E. coli
controls. Collinsella appears to play a role in enhancing low level systemic inflammation as

stimulated through the Th-17 regulatory network of cytokines. Exposure of Caco-2 cells to

Collinsella resulted in increased permeability accompanied by decreased levels of zonulin,

increased expression of IL-17A and inflammatory pathways activated through NFkB.

Recent studies have shown that mutations in microbial sensing genes, such as TLR5, can

influence cross-talk between the host and the microbiota [13, 67]. In dogs with at least one risk

allele of TLR5 and GVD, we found a significant decrease in alpha diversity coupled with the

significant changes in bacterial community structure at the phyla which were reflected in the

genera level. Actinobacteria (Collinsella by default) were significantly higher in dogs with one

risk allele for TLR5). Strategies that influence the surveillance of the microbiome include

mutation of the TLR5 genes and protein modification of flagellin by bacteria to make it unrec-

ognizable by the TLR5 protein [26, 27, 39, 67]. Mutations in these genes are associated with

dysbiotic microbial communities exhibiting decreased alpha diversity and when the altered

microbiome is transferred to germ-free hosts, the communities are capable of inducing the dis-

ease state in a new host [27]. Other studies have shown a reduction in alpha diversity in TLR5

deficient and TLR5 mutant mice [26, 27, 67]. Studies showed that mice deficient in TLR5 were

ineffective at controlling levels of the gamma- Proteobacteria, E. coli [37]. The gamma Proteo-

bacteria were able to evade immune surveillance and proliferate due to reduced levels of anti-

flagellin antibodies produced in mutant TLR5 hosts. In contrast, the bacteria may alter flagellin

to evade host surveillance by TLR5. In human intestinal epithelial cells (IECs) exposed to

Gut microbiome risk factors in canine GDV
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flagellated Lactobacillus and isolated Lactobacillus flagellin, there was a robust inflammatory

response by increased secretion of IL8 through the NfkB pathway [39]. Characterization of the

Lactobacillus flagellin showed a protein modification that affected host recognition by TLR5.

These data suggest that multiple strategies that impair the host’s ability to detect bacteria may

lead to an altered microbiome as seen in GVD.

Adaptive immune genes play a role in controlling the composition of the microbiome in

both humans and mice [30, 32, 68]. The MHC includes HLA class I and class II genes in

humans, and similarly, DLA class I (DLA88) and DLA Class II (DRB1) genes in dogs. These

two classes are responsible for antigen presentation and pathogen clearance and, thus, are

among the most polymorphic (within species) and conserved (between species). In our study,

we found that there were significant associations of bacterial phyla with mutations in Class II

genes in GDV dogs compared to the controls. Firmicutes were significantly higher in GDV

dogs (Table 2) and one risk allele for DLA Class II. In humans, mutations in Class II genes have

been associated with autoimmune diseases such as celiac disease and rheumatoid arthritis [69–

75]. Similar patterns have been observed in a humanized mouse model of rheumatoid arthritis

[38]. The class II HLA-DRB1�04 allele was associated with increases in Clostridium (Phylum

Firmicutes) with concomitant decreases in members of the Porphyromonadaceae family in the

Phylum Bacteroidetes [38]. In contrast, Bifidobacteria, in the phylum Actinobacteria, were asso-

ciated with increased Th17 profiles and loss of age- and sex-dependent microbiome [38]. In

humans, mutation in HLA-DR genes have been associated rheumatoid arthritis, and increases

in P. copri and reduced numbers of Bacteroides [76]. Mutations in the HLA genes have been

associated with celiac disease and higher numbers of Firmicutes and Proteobacteria, and lower

numbers of Actinobacteria were found in infants that carried the HLA mutation [68].

Our cross-sectional study has uncovered several associations that suggest underlying micro-

bial and genetic associations in this multifactorial disease. One of the strengths of this study is

we were able to associate host genetic mutations to the carriage of specific bacterial groups to a

disease outcome. This is due to the study design which let us analyze host genotype and the

microbiome. There are some weaknesses in the study. The timing of the sample collection rela-

tive to event may affect the microbiome. Since we collected stool sample after the GDV event,

we cannot be sure that the data reflects the predisposing profile of the microbiome as opposed

to the lingering effects of the GDV event, or the subsequent surgery and antibiotic treatment.

While we tried to minimize the effects of these variables, by restricting sample collection to at

least 3 months after any gastric distress, surgery or antibiotics, they cannot be ruled out. The

best way to control for this caveat would be to sample a large pool of healthy dogs, and wait to

see which ones experienced GDV. Such a longitudinal approach can be prohibitively expensive

and time consuming. The sample size is small for a cross-sectional study and some trends were

attenuated upon correction for multiple comparisons. Nonetheless, we found significant dif-

ferences in the microbiome of dogs that had experienced GDV. The microbiome data are com-

positional data which has methodological artifacts associated with the standard normalization

approach. Although we used a metric to account for this, it is an active area of computational

research [58]. Despite this limitation, strong data signals are apparent in any normalization

approach used. To understand the physiological interaction between the dog and the micro-

biome that leads to GDV, understanding the functional metabolism of the microbiome is

important. In this study, we used 16S rRNA genes to measure composition. In the future,

metagenomic and metatranscriptomic approaches coupled with isolation of novel canine bac-

teria using novel community culturing techniques would broaden our understanding of the

microbial mechanisms involved in GDV. This will lay the groundwork to develop a prevention

strategy that targets the microbial mechanisms involved in GDV. However, the stool samples

from the dogs were taken subsequent to the GDV event and cannot establish causality or rule
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out effects of the disease or treatment. Future studies that follow a high-risk breed prospec-

tively over time would establish the role of the dynamic microbiome in GDV and potentially

lead to preventive measures therapeutics which may alter the trajectory to GDV.

Conclusions

Multifactorial diseases are dependent on interactions between genetic and environmental fac-

tors. While genetic factors may impact both adaptive and innate immunity and may provide

the highest risk factor for these diseases, environmental factors also appeared to be important.

Here, we addressed an alternative hypothesis for a genetic link to GDV, namely, that variations

in the genes of the immune system act through modulation of the gut microbiome and predis-

pose dogs to this condition. Differences in the microbiome composition suggest that microbial

mechanisms may underpin the etiology of GDV, modulating the phenotypes associated with

the genetic factors that predispose the large breed dogs to GDV. While the cross-sectional

nature of our study design only allows us to establish associations between genetics, the micro-

biome, and risk of GDV, it lays the foundation for future studies to establish the causality and

develop a therapeutic approach to reduce risk of GDV in large breed dogs.
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