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Abstract

Nonsense-mediated decay (NMD) degrades mRNAs that include premature termination

codons to avoid the translation and accumulation of truncated proteins. This mechanism

has been found to participate in gene regulation and a wide spectrum of biological pro-

cesses. However, the evolutionary and regulatory origins of NMD-targeted transcripts

(NMDTs) have been less studied, partly because of the complexity in analyzing NMD

events. Here we report NMD Classifier, a tool for systematic classification of NMD events

for either annotated or de novo assembled transcripts. This tool is based on the assumption

of minimal evolution/regulation–an event that leads to the least change is the most likely to

occur. Our simulation results indicate that NMD Classifier can correctly identify an average

of 99.3% of the NMD-causing transcript structural changes, particularly exon inclusions/

exclusions and exon boundary alterations. Researchers can apply NMD Classifier to evolu-

tionary and regulatory studies by comparing NMD events of different biological conditions or

in different organisms.

Introduction

Nonsense-mediated decay (NMD) is a molecular mechanism whereby potentially defective

messenger RNAs (mRNAs) are degraded. The term “nonsense” refers to the type of mutation

(i.e. nonsense mutation, or a mutation that results in generation of a stop codon) that induces

this mechanism. According to the “scanning model” of protein translation, the translation

machinery scans an mRNA from the translation start site downwards until it encounters a stop

codon and decouples from the mRNA [1–4]. However, if the translation machinery detects a

premature translation-termination codon (PTC), it starts to recruit the NMD machinery, which

then serves to degrade the “problematic” mRNA to avoid yielding a truncated peptide [1].

NMD has been conventionally regarded as an important mechanism for mRNA quality

control. NMD-targeted transcripts (NMDTs) could result from point mutations, insertions/

deletions, or alternative splicing events that give rise to a PTC [5,6]. NMD is observed in all

investigated organisms, from bacteria to mammals [1,7,8]. This mechanism is involved in gene
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regulation and a wide spectrum of biological processes [9–11]. Importantly, NMD has been

associated with human diseases [12–17]. For instance, Ullrich disease, an autosomal recessive

congenital muscular dystrophy, has been found to be regulated by NMD factors [18,19].

Despite the biomedical importance of NMD, the evolutionary and regulatory origins of

NMDTs have been less explored [20,21].

One major regulatory source of NMDT is alterations in transcript structure [22–25]. This is

because inclusion/exclusion of coding exons or changes in exon boundaries may result in frame-

shift events, which in turn can generate PTCs. Of note, transcript structural alterations per se
may be influenced by other mechanisms such as splice site mutations or structural variations in

the genome. As mentioned above, NMD is mainly a translation-dependent mechanism. When

the translation machinery halts at the first stop codon, and the stop codon is located more than

50–55 nucleotides (NTs) upstream of the last exon-exon junction, the NMD machinery will be

engaged to initiate degradation of the mRNA [23,26]. This stop codon is defined as a PTC. Nota-

bly, however, exceptions to this rule have been reported. A transcript may be degraded even

when the PTC is located within 50 NTs from the last exon junction (e.g. T cell receptor β-tran-

script), or be resistant to degradation when the PTC is far upstream (e.g. PTCs within β-globin

exon 1) [2].

Evolutionary and regulatory studies of NMD require correct classification of NMD events.

For example, it has been reported that the conservation level of many exon-inclusion-caused,

but not exon-exclusion-caused NMD events have emerged and been conserved in placental

mammals [25]. Meanwhile, intron-retention-caused NMD events have been reported to regu-

late gene expression in retinitis pigmentosa and Taybi-Linder syndrome [27]. Despite the

importance of NMD classification, there have been no publicly available tools to serve this

purpose.

Here we report NMD Classifier, a tool for systematic classification of NMD events. NMDTs

have been suggested to emerge during the evolution of vertebrates because of changes in splicing

patterns [25] or point mutations [5,28]. NMDTs are also observed to result from single nucleo-

tide polymorphisms in the human population [29]. Theoretically, an evolutionary/regulatory

event that involves the smallest number of changes is the most likely to occur. We thus develop

the NMD Classifier on the assumption of “minimal evolution/regulation”. We hypothesize that

an NMDT has resulted from an evolutionary or regulatory event that alters the reading frame of

a non-NMDT (i.e. a “normal” coding transcript). By comparing an NMDT against its most simi-

lar coding transcript isoform, we could identify the transcript structure-altering event that has

led to the NMD event. Our simulation results indicate that NMD Classifier yields highly accurate

results in the identification of NMD-causing changes in transcript structure. This tool will be

useful for future NMD-related studies, and is available at https://sourceforge.net/projects/

transcriptome-analysis/files/NMD_Classifier.tar.gz

Result

Overview of NMD classifier

The analysis flow of NMD Classifier is shown in Fig 1. The analysis starts with input data,

which are either user-generated transcript assembly annotations (in GTF format) or annota-

tion files from Ensembl (in GTF format) or NCBI (in GFF format). For user-generated tran-

script assembly, NMD Classifier detects NMDTs according to the 50-NT rule (see the next

section) before analyzing transcript structural changes. For Ensembl/NCBI annotation files,

the NMDT detection step is optional. NMD Classifier by default skips the detection step, and

takes the annotated NMDTs for classifications. Next, for each NMDT, NMD Classifier identi-

fies the best matching coding transcript isoform (“best partner”, see Methods), which
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Fig 1. The analysis flow of NMD Classifier.

https://doi.org/10.1371/journal.pone.0174798.g001
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supposedly is the splicing isoform most similar to the interested NMDT. Each NMDT is then

compared against its best partner. Each exon from an NMDT is “grouped” with an exon (or

exons) from its best partner if the corresponding genomic regions of these exons overlapped

with each other by at least one nucleotide. NMD Classifier then scans for frameshift events

starting from the first exon group (the one that contains the translation start codon). If an

upstream frameshift event is “rescued” by a downstream event (or events), the search for

frameshift re-initiates downstream of the rescue event and continues until the last PTC is

detected. Except in complex NMD events, the first transcript structure-altering event that

results in the non-rescued frameshift event is considered as the cause of NMD, and is classified

according to the splicing type of the specific event. In cases where no NMD-causing events are

identified between an NMDT and its best partner, the NMD event is classified as “UTR alter-

ation”. If an NMD event is caused by multiple types of transcript structural changes, it is classi-

fied as a “complex event” (Methods).

Detection of NMDTs

Ensembl and NCBI annotation files include NMDT annotations. However, if the user performs

de novo transcriptome assembly, we must first correctly detect NMDTs before we can classify

them. To this end, we have tested several commonly recognized NMDT detection criteria and

used the Ensembl NMDT annotations (version 75) as a gold standard. Ensembl-annotated

NMDTs are mostly supported by experimental evidence. The strength of supporting evidence is

shown as the “Transcript Support Level (TSL)”. Approximately 56% of the Ensembl-annotated

NMDTs have at least one supporting EST (TSL 1–3; S1 Table). The tested NMD-detection crite-

ria include a PTC located 50 NTs or 55 NTs upstream of the last exon junction, the presence of

an upstream open reading frame (uORF), and inclusion of a long (> 650 NTs or> 2000 NTs)

3’untranslated region (3’UTR) (Fig 2A) [30]. We applied these NMDT detection criteria to all

of the transcripts of coding genes annotated in Ensembl V75 (including 21,037 coding genes

that encoded 42,637 coding transcripts and 9,357 NMDTs). An annotated coding transcript

erroneously detected as an NMDT was defined as a false positive, while an annotated NMDT

not detected was considered as a false negative. Fig 2A also shows that the 55-NT rule yielded a

1.83% false positive rate and a 2.42% false negative rate. The corresponding rates of the 50-NT

rule were 1.92% and 1.57%, respectively. Both of the 55-NT and 50-NT rule yielded an overall

accuracy of 97.8%. In comparison, detection based on the presence of uORFs or 3’UTR length

yielded unacceptably high false positive and negative rates.

To more precisely determine which PTC-last exon junction distance was the best for detect-

ing NMDTs, we calculated the Mathews Coefficient of Correlation (MCC)[31] for different

distances. Interestingly, the largest MCC value occurred at 51 NT (Fig 2B), which was very

close to 50 NT. According to these results, we selected the 50-NT rule to detect NMDTs for de
novo assembled transcripts, and integrated it into NMD Classifier.

Evaluation of the accuracy of NMD classifier

To evaluate the accuracy of NMD Classifier, we conducted a simulation study based on anno-

tated human transcripts (Ensembl V75). We generated artificial transcript structure-altering

events by randomly inserting or deleting an exon from a coding transcript, or changing the 5’

or 3’ boundary (or both) of an exon. Specifically, we randomly selected one coding transcript.

Then a coding exon of this transcript was randomly selected and removed (random deletion).

For random insertion, an intron between two coding exons was randomly selected from a

transcript. Part of the intronic sequence was then “turned into” a coding exon. The length of

this artificial exon followed the length distribution of real coding exons. A similar approach
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was applied to generate random boundary changes—an exon length and a target coding exon

were randomly selected. If the random length was larger (or smaller) than that of the target

exon, the target exon was extended (or abridged) at 5’, 3’, or both ends with equal probabilities.

Only one transcript structure-altering event was generated in each transcript. Five thousand

artificial transcripts were created in each simulation. NMD Classifier was then tested on the

mock transcriptome. A total of one thousand simulations were conducted. Fig 3A shows that

NMD Classifier could correctly identify an average of 99.3% of the NMD-causing transcript

structural changes. Note that whether an artificial transcript represented an NMDT was deter-

mined by the 50-NT rule. Our results demonstrate that NMD Classifier was highly accurate in

identifying NMD-causing transcript structural changes.

On potential concern in the above simulation study is that the “best partner” transcripts

may have specific features not considered in the simulation. To address this issue, we com-

pared the lengths and expression levels between the “best partner” transcripts and the other

transcript isoforms from the same genes. Indeed, the “best partner” transcripts of NMDTs

tended to be longer and less expressed (S1A and S1B Fig). However, the accuracies of NMD

Classifier stayed at 98~99% regardless of length and expression level of the best partner tran-

script (S1C Fig).

Of note, here we only conducted simulations of single-exon transcript structural alterations

(insertion/deletion or extension/shortening). In reality, multiple-exon alteration events might

occur. However, the simulation of multiple-exon events is far more complex than single-exon

simulations. Furthermore, in complex transcript structure-altering events, it is difficult to clar-

ify the evolutionary/regulatory path leading to the emergence of an NMDT. Therefore, at this

moment we may not be able to correctly assess the accuracy of NMD Classifier in detecting

complex NMD-causing events. Nevertheless, complex transcript structural changes appear to

be infrequent in NMDTs (Table 1), and thus may be less important.

Application of NMD classifier to real data

We applied NMD Classifier to the transcriptomes of paired tumor-normal tissues from one

lung adenocarcinoma patient. (Methods) [32]. Table 1 shows that each transcriptome included

more than 9,000 NMDTs, with exon inclusion/exclusion-caused NMDTs (NMD_in and

NMD_ex) representing the largest groups (~3,500 and ~2,300 NMDTs, respectively). The next

largest group of NMDTs resulted from exon boundary changes (A3SS–alternative 3’splice site,

A5SS–alternative 5’ splice site, and A3SS+A5SS), which represented ~2,300 NMDTs. Together

NMD_in/ex and exon boundary changes accounted for ~87% of all of the NMDTs. The obser-

vation that NMD_in constituted the largest group was consistent with the result of a previous

study [25]. About 6.6% (617 in 9,397) and 5.7% (525 in 9,207) of the NMDTs in normal and

tumor tissue, respectively, were not annotated by Ensembl. This result indicated that most of

the identified NMDTs in these transcriptomes have been previously annotated. However, cau-

tion should be taken because this might have resulted from insufficient RNA-sequencing depth

[25] or the assembly approach adopted here (reference-based de novo assembly; see Methods).

Meanwhile, the vast majority (92.8–94.7%) of the identified NMDTs were shared between

tumor and normal tissue (Fig 3B). Nevertheless, hundreds of NMDTs were observed in tumor

or normal tissue only, indicating that disease state-specific NMD events were present for lung

adenocarcinoma. This observation is intriguing considering that the two transcriptomes were

Fig 2. (a) The distribution of MCC values across different distances between a PTC and the last exon-exon junction. A positive (negative)

distance indicates that the PTC is located upstream (downstream) of the last exon-exon junction; (b) False positive and false negative rates

of different NMD prediction rule.

https://doi.org/10.1371/journal.pone.0174798.g002
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derived from the same organ of the same individual. Of note, even if tumor and normal tissue

shared the same NMDTs, these NMDTs might have different expression levels. To illustrate this

phenomenon, we defined a “D value” to measure the relative expression level of an NMDT

between tumor and normal tissue (see Methods). D falls between -1 and +1, which indicate an

NMDT is expressed exclusively in normal and tumor tissue, respectively. Fig 3C shows that

~2,000 NMDTs had their D values fall between -0.8 and -1.0, and another ~2,000 with D values

between +0.8 and +1.0. Of note, a D value close to +1 indicated that the expression of the inter-

ested NMDT was close to zero in normal tissue, but its expression in the paired tumor tissue

might not be high because D was an index of “relative expression”. Note that the large numbers

of NMDTs at both D-value extremes might have resulted from very low expression levels of the

relevant NMDTs. We thus screened out NMDTs with< 0.5 FPKM expression level in both of

the samples. Indeed, the numbers of NMDTs at both extremes decreased (S2 Fig). The biomedi-

cal implications of these NMD events are worth further explorations.

Discussion

In this study, we develop a convenient tool for identification and classification of NMD-caus-

ing transcript structural changes. Of note, these transcript structural alterations result from

changes in RNA splicing pattern (exon inclusion/exclusion, exon boundary changes, intron

Fig 3. (a) Distribution the accuracy of NMD Classifier in 1,000 simulation experiments. (b) The numbers of NMDTs identified in the

transcriptomes of paired normal-tumor tissues from lung adenocarcinoma; the numbers in the parentheses indicate the percentages of

NMDTs that are annotated by Ensembl; (c) The distribution of relative expression level (D value) of NMDTs between tumor and normal

tissue.

https://doi.org/10.1371/journal.pone.0174798.g003

Table 1. An exemplar classification of NMD events in paired normal-tumor tissues from a lung adenocarcinoma patient.

Sample ID ERR164502 ERR318893

Tissue Type Normal Tumor

NMD_ex 2346 2328

NMD_in 3531 3452

multi_NMD_ex 414 399

multi_NMD_in 28 27

A5SS 1320 1341

A3SS 152 141

A5SS+A3SS 834 779

NMD IR 87 89

nNMD IR 40 38

UTR_Diff 573 543

UTR_Diff_CDSdiff_NoFrameDiff 39 34

Complex 33 36

Total 9397 9207

NMD_ex: exclusion of an exon; NMD_in: inclusion of an exon; multi_NMD_ex: exclusion of multiple exons; multi_NMD_in: inclusion of multiple exons;

A5SS: the changes occurred at 5’ splicing site; A3SS: the changes occurred at 3’ splicing site; A5SS+A3SS: the changes occurred at both 5’ and 3’ (A3SS)

splicing site; NMD_IR: intron retention that occurred in NMDT; nNMD_IR: intron retention that occurred in NMDT’s best partner; UTR_Diff: the NMDT and

its best partner has identical coding sequences but different untranslated regions; UTR_Diff_CDSdiff_NoFrameDiff: the NMDT and its best partner has

different coding sequences but no frame shift, the NMD may be caused by differences in untranslated regions; Complex: multiple types of transcript

structure-altering events are involved.

https://doi.org/10.1371/journal.pone.0174798.t001
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retention. . .etc). What NMD Classifier does not address is mutation-caused generation of

stop codon, which may also be a PTC in an NMDT. The detection of mutation-caused PTC

requires another analysis flow, and is not included in NMD Classifier. However, if a muta-

tion leads to a change in splicing pattern (such as a mutation at a splice site), NMD Classi-

fier could detect this change in de novo assembled transcripts given an adequate number of

exon junction reads.

We demonstrated by a simulation study that NMD Classifier could identity nearly 100% of

the structural changes that led to NMD events. The small number of events not detected by

NMD Classifier resulted from “erroneous selection” of best partner. Recall that NMD Classi-

fier relies on pair-wise comparison between an NMDT and a best-matching coding transcript

isoform from the same gene. We found that occasionally an annotated “coding transcript”

selected as a best partner could be an NMDT according to the 50-NT rule. This inconsistency

between 50-NT rule and annotation undermined the accuracy of NMD Classifier. Fortunately

the number of such events was fairly small (<1% of all the analyzed cases). This observation

suggests that selection of best partner is crucial for the accuracy of NMD Classifier. In case of

de novo assembly, some of the assembled transcript structures may be less reliable. The quali-

ties of transcript assembly can be examined by using RSEM-EVAL [33]. For the two transcrip-

tomes examined in this study (ERR164502 and ERR318893), the de novo Cufflinks-assembled

NMDTs actually had higher RSEM-EVAL scores than Ensembl-annotated NMDTs (S3 Fig).

However, users are encouraged to examine the assembly qualities of their transcriptomes

before applying NMD Classifier.

NMD Classifier can be applied to evolutionary and regulatory studies. For example, NMD

Classifier can be used to identify NMD-causing events in one interested species. The evolu-

tionary trajectory of these events can then be studied by using comparative approaches [25].

For regulatory and disease-oriented studies, one could compare the patterns and activities of

NMD in different conditions such as diseased vs. normal tissues or the same tissue at different

developmental stages. Such comparisons may lead to discoveries of the roles that NMD plays

in important biological functions.

Methods

Preprocessing of transcriptome data

NMD Classifier takes a GTF or GFF annotation file as input to identify and classify NMDTs.

These annotation files can be downloaded from Ensmebl (GTF) or NCBI (GFF). The user can

also generate his/her own annotation file in GTF format from RNA-sequencing raw data.

Firstly, the RNA-sequencing data (in FASTA or FASTQ format) should be mapped to the cor-

responding genome by using a sequencing read-mapping tool (e.g. TopHat or STAR) [34,35].

The mapping output file (in BAM or SAM format) then can be submitted to an assembly tool

(e.g. Cufflinks or Trinity) [32,36] to yield a GTF file. A GTF file contains transcript structure

information and genomic coordinates, which can be analyzed directed by NMD Classifier. In

the current analysis, two transcriptomes (ERR164502 and ERR318893) were mapped to the

human genome by using STAR [34](version 2.4.2) with default parameters. The mapping

results were input to Cufflinks for reference-based de novo assembly and estimation of expres-

sion level. The example files are included in the downloadable NMD Classifier package.

Analysis procedure

If the user uses standard annotation files downloaded from Ensembl or NCBI, NMDT annota-

tions have been included in these files. However, if the user performs de novo assembly of tran-

scripts by using tools such as Cufflinks, whether a transcript contains a PTC is unknown. In
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this case, NMD Classifier must predict the translation start site and the first in-frame stop

codon. Since the transcriptional orientation was given by the assembler, NMD Classifier deter-

mined the coding region of a de novo assembled transcript by using three-frame conceptual

translation. The reading frame that yielded the longest coding region was considered as the

“correct” frame, and this longest coding region was defined as the main coding sequence of

the de novo assembled transcript. The locations of the translation termination site and the last

exon-exon junction could then be determined, and the distance in-between could be evaluated

according to the 50-NT rule.

NMD Classifier classifies NMD-causing events based on the minimal evolution/regulation

hypothesis. Particularly, it is hypothesized that an NMDT resulted from transcript structural

alteration(s) of a coding transcript isoform, and that a minimal alteration was more likely to

occur than a major one. Except in complex NMD events, the first structure-altering event that

resulted in the non-rescued frameshift was considered as the cause of NMD. Therefore, for

each NMDT, we selected the most similar coding transcript isoform (best partner) for compar-

ison. Specifically, the coding transcript isoforms that shared translational start site with the

interested NMDT were identified. Among these coding transcripts, the one that shared the

largest proportion of nucleotides with the NMDT was chosen as the best partner of the inter-

ested NMDT.

Based on pair-wise comparisons between NMDTs and their best partners, NMD-causing

events were classified into five groups: (i) boundary alterations: the changes occurred at either

5’ (A5SS) or 3’ (A3SS) splicing site, or both (A5SS-A3SS) (Fig 4A); (ii) cassette exons: inclusion

(NMD_in) or exclusion (NMD_ex) of an exon or multiple exons (multi_NMD_in, multi_-

NMD_ex) resulted in NMD (Fig 4B); (iii) intron retention: intron retention that occurred in

NMDT (NMD_IR) or in its best partner (nNMD_IR) (Fig 4C); (iv) UTR alterations: the

NMDT and its best partner had identical coding sequences but different UTRs; and (v) com-

plex events: the difference between an NMDT and its best partner included multiple types of

transcript structural changes. An exemplar complex event comprises an exon inclusion in the

NMDT and an intron retention event in the best partner.

Specifically, for each NMDT and its best partner, the genomic coordinates of each exon

(retrieved from the GTF file) were compared. Exons whose corresponding genomic regions

overlapped with each other by at least one nucleotide were grouped together as an “exon

group”. For example, if an exon of an NMDT was located at genomic coordinates 100–500,

whereas an exon of its best partner was located at 300–700, these two exons were considered as

an exon group that spanned coordinates 100–700. In another example, if an exon of an NMDT

was located at 2000–2500, and two exons of its best partner were located at 1800–2200 and

2300–2700, respectively. The resulting exon group would span coordinates 1800–2700. In each

exon group upstream of the PTC, the difference in reading frame between NMDT and its best

partner was calculated and summed up from 5’ to 3’. Except in complex events, the first (most

upstream) frameshift event was considered as an NMD-causing event (Fig 5A) unless the

frameshift was “rescued” by a second, downstream event. If a “rescue” event occurred, the first

frameshift event downstream of the “rescue” event was regarded as the NMD-causing event

(Fig 5B).

Test transcriptome data source and data processing

Two transcriptomes (ERR164502 and ERR318893) from lung adenocarcinoma were down-

loaded from the Gene Expression Omnibus (GEO) database [37] with accession number

GSE40419. The transcriptomes were mapped to the human genome (Hg19, Ensembl V75) by

NMD Classifier: A tool for analyzing nonsense-mediated decay events

PLOS ONE | https://doi.org/10.1371/journal.pone.0174798 April 3, 2017 10 / 15

https://doi.org/10.1371/journal.pone.0174798


NMD Classifier: A tool for analyzing nonsense-mediated decay events

PLOS ONE | https://doi.org/10.1371/journal.pone.0174798 April 3, 2017 11 / 15

https://doi.org/10.1371/journal.pone.0174798


using STAR [34]. The transcripts were assembled with the reference-based de novo assembly

function of Cufflinks [32], and then analyzed by using NMD Classifier.

To analyze the relative expression level of NMDTs in tumor and normal tissues, we defined

the “D” value as follows:

D ¼
0 if the FPKM values in normal and tumor tissue are both 0;

ET � EN

ET þ EN
otherwise

ð1Þ

8
<

:

Fig 4. Alternative splicing events that result in NMDTs. (a) Changes at exon boundaries; (b) inclusion or exclusion of

one or more coding exons; (c) Intron retention. Changes in untranslated regions and complex NMD events are not shown

here. The orange boxes indicate the exon groups identified to be the cause of NMD events. NMDT: NMD transcript; nNMDT:

non-NMD transcript; A5SS/A3SS: alternative 5’/3’ splice site; A5SS-A3SS: exon boundary changes at both 5’ and 3’ ends;

NMD_in/ NMD_ex: inclusion/exclusion of an exon causes the NMD event; multi_NMD_in/multi_NMD_ex) inclusion/

exclusion of multiple exons causes the NMD event; NMD_IR/ nNMD_IR: intron retention in the NMDT/non-NMDT causes

the NMD event; CDS: coding sequence; UTR: untranslated region.

https://doi.org/10.1371/journal.pone.0174798.g004

Fig 5. Examples of how NMD Classifier identifies NMD-causing event by calculating differences in reading frame between an NMDT and its best

partner. (a) Insertion of a single exon [exon group (ii)] causes a one-base frameshift and therefore an NMD event; (b) A one-base frameshift occurs at exon

group (ii) but is offset downstream at group (iii). NMD Classifier thus continues to scan for the next frameshift event, which occurs at group (iv). This latter

frameshift is maintained throughout to the stop codon, and is identified as the NMD-causing event.

https://doi.org/10.1371/journal.pone.0174798.g005
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Where ET and EN, respectively, indicated the expression level (in FPKM) of the interested

NMDT in tumor and normal tissue.
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