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Abstract

Functional analysis of large sets of genes and proteins is becoming more and more necessary with the increase of
experimental biomolecular data at omic-scale. Enrichment analysis is by far the most popular available methodology to
derive functional implications of sets of cooperating genes. The problem with these techniques relies in the redundancy of
resulting information, that in most cases generate lots of trivial results with high risk to mask the reality of key biological
events. We present and describe a computational method, called GeneTerm Linker, that filters and links enriched output
data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method
uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. The
algorithm is tested with a small set of well known interacting proteins from yeast and with a large collection of reference
sets from three heterogeneous resources: multiprotein complexes (CORUM), cellular pathways (SGD) and human diseases
(OMIM). Statistical Precision, Recall and balanced F-score are calculated showing robust results, even when different levels of
random noise are included in the test sets. Although we could not find an equivalent method, we present a comparative
analysis with a widely used method that combines enrichment and functional annotation clustering. A web application to
use the method here proposed is provided at http://gtlinker.cnb.csic.es.
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Introduction

Genome- and proteome-wide analyses performed using high-

throughput techniques are providing many collections of genes

and proteins that are associated to studies performed over specific

sets of samples in definite biological contexts. One of the major

challenges of current computational biology is to provide robust

automatic methods for a meaningful functional annotation of the

long lists of genes or proteins derived from such high-throughput

studies. Functional enrichment analysis (EA) is at present the most

popular available methodology to derive functional implications of

sets of cooperating genes. It uses statistical testing to find

significant annotations in groups of genes. A recent review of

enrichment tools categorizes them in three major classes: singular

(SEA), modular (MEA) and gene-set (GSEA) [1]. Modular analysis

(MEA) can be considered a second generation of functional

enrichment since it uses concurrent gene annotation improving

coverage [2,3,4]. Gene set enrichment analysis (GSEA) has

become a popular tool to extract biological insight from complete

ranked gene lists without the need of pre-selecting top genes [5].

Functional enrichment analysis, however, does not address

several key problems associated to the biological annotations: (i)
Redundancy of the biological terms, that are repeated in many

different annotation resources (e.g. cell cycle GO:0007049, cell cycle

KEGG hsa04110, etc) or that are segregated in very similar terms

with the same biological meaning (e.g. GO:0007049 cell cycle and

GO:0022402 cell cycle process). (ii) Bias in the annotation space due

to highly frequent use of certain ‘‘promiscuous’’ terms that are

unspecific (e.g. GO:0050789 regulation of biological process includes

more than 44% of all human genes annotated to GO-BP). (iii)
Inadequate functional annotation of many genes that are well-known

(e.g. NRAS human gene product P01111 is not annotated to

GO:0043410 positive regulation of MAPKKK cascade, but the role of

this gene in the MAPK signaling is well-known, since it is

paralogous to gene HRAS, which has a central role in such

pathway).

To overcome these limitations and challenges we have

developed a new computational method that finds significant

and coherent metagroups of genes and terms, performing several

steps to eliminate redundant and non-informative data. The

method takes the output of an enrichment analysis and produces a

simple result that includes genes and co-annotations associated in

metagroups. These metagroups are ranked by analysis of their

significance and coherence, as a way to find the most relevant

functions present in the query gene list. The algorithm is tested

with a small set of well known interacting proteins and with a large

reference set of data from three heterogeneous resources:

mammalian multiprotein complexes (CORUM), yeast cellular
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pathways (SGD) and human diseases (OMIM). Statistical Precision,

Recall and balanced F-score are calculated for each test, and we

observe robust results even introducing different percentages of

randomly selected genes in the queries. The computational

method can be applied to the output result of any enrichment

analysis. We provide a web application to use the method (http://

gtlinker.cnb.csic.es) that only needs as input a gene list, because in

a first step it runs an enrichment analysis tool [3] implemented

within the same workflow.

Results

Analysis of the distributions of terms/genes in different
Annotation Spaces

Functional annotation and enrichment analysis relies on the use

of biological databases that include groups of genes associated to

specific biological functions, such as: metabolic and signaling

pathways, cellular processes and apparatus, organisms, etc. Some

of the biological databases most used in functional profiling are:

GO (repository of gene and gene product ontological attributes

across species) [6], KEGG (atlas of biological pathways) [7],

UniProt (catalog of structural and functional information on

proteins) [8]. In these databases the functions are annotated with

specific terms that define and describe the biological roles and

actions. They usually apply controlled vocabularies, i. e. structured

collections of terms with numerical IDs. As it happens in language

evolution, the use of the terms can modulate their meaning,

because when some expressions become too trendy, fashionable or

promiscuous they can lose significance. In addition, most of these

vocabularies are defined to be organism-independent and

therefore in some cases they encode global definitions that are

not useful to explain very specific biological processes.

We have analyzed and compared the frequency distributions of

the biological terms in two worldwide used databases (GO and

KEGG). This analysis counts the number of genes assigned to

each term and reveals that the distributions are quite uneven,

existing a large proportion of terms that include very small number

of genes and a considerable amount of outliers assigned to many

genes. In fact, for the case of GO-BP (Biological Process), GO-MF

(Molecular Function) and GO-CC (Cellular Component) more

than 50% of the terms have less than four genes assigned in human

(see Figure 1A, boxplots of the distributions of GO and KEGG

terms assigned to human genes). The distribution is more

homogeneous for the case of KEGG terms, which shows a

Gaussian-like curve (Figure 1C and 1D). The black vertical lines

in these plots indicate the percentage of genes per term with

respect to the total number of human genes (i.e. 29095 genes using

ENSEMBL v57, March 2010). The results show that the most

used GO-BP term is assigned to 6.43% human genes (1872 genes

assigned to signal transduction, GO:0007165). Figure 1B presents

for each GO category (BP, MF, CC) the three terms most

frequently annotated to human genes. Such terms (e.g. term protein

binding) are outliers in the distributions (Figure 1A) and therefore

they can be considered terms with low-information-content, too

generic to provide clear and meaningful functional annotation on

their own.

Identification of over-represented terms to improve
functional annotation

The analysis of the distribution of terms indicates that there are

some biological annotations that are over-represented, mainly in

GO. Such over-representation can be quantified by the deviation

from the average number of assignments (red and green vertical

lines in Figure 1C and 1D). Based on such average ( �XX ) and on

the standard deviation (sx) of the distributions of terms in each

annotation space for each organism, we set up a Z-score threshold

to identify the outlier terms that had a number of genes assigned

(Ng) deviated from average: Ng.( �XX+nsx). The deviation factor n
was set up at 4 for human. This threshold allows identification of

the biological terms that are ‘‘generic’’ and ‘‘promiscuous’’, and –

on their own– they can be considered not very informative. These

generic terms affect a significant proportion of genes. In the case of

human, generic GO-BPs include 10,038 genes (34.5% of the total),

generic GO-MFs include 12,991 genes (44.6% of the total) and

generic GO-CCs include 15,179 genes (52.2% of the total). In the

case of KEGG only 2 terms were considered nonspecific and they

only affect to 700 genes. All the generic terms were tagged in order

to further use them only in the case that they appear in co-

occurrence with other terms.

Definition of GeneTerm-sets as a type of Frequent Itemsets
Most of the enrichment analyses are based in searching for

frequent patterns of association between biomolecular elements (e.g.

genes, proteins) and the corresponding annotations or descriptions

found in biological databases. In the data-mining field those

patterns are called frequent itemsets [9]. A formal mathematical

definition of frequent itemsets can be as follows: given a set of items

I~ i1, i2::: inf g and a database of transactions T~ t1, t2::: tmf g
where each transaction is a subset of I , F(I is a frequent itemset if it

is included in a number of transactions greater than a specified

threshold, e. That number of transactions is called the support of the

itemset.

Translating these concepts to the biological context of

enrichment analyses, the items will be the ‘‘terms’’ (i.e. the

biological annotations) from the different databases, and the

transactions will be the ‘‘genes’’ (i.e. the biological entities). In this

way, it is possible to generalize the frequent patterns obtained by any

enrichment analysis as a list of annotations related with a subset of

genes, both associated by the score or p-value of the enrichment

that measures the strength of the relationship. Formally, such

combination of terms/genes/p-value is a frequent itemset derived

from a functional annotation procedure, and we define such as

GeneTerm-set element: Ei~SGi ,Ai ,piT. Where Ei is the ith element

in the results, Ai is a set a1,a2,:::anf g of biological annotations or

terms, Gi is a set of genes g1,g2,:::gmf g and pi the p-value. In

terms of enrichment Ai is a set of annotations over-represented in

a list of genes and Gi is the subset of genes that support that over-

representation with a p-value of pi. When using singular (SEA) or

concurrent modular (MEA) enrichment analyses, the difference in

the data structure of the result consists only in the number of

elements in Ai, that is 1 in the first case and $1 in the latest. Most

of the enrichment tools provide large lists of these GeneTerm-set

elements derived from the analysis on different annotation spaces.

Such multiple lists are many times very redundant, provided as

independent or non-related and including many generic terms.

This hampers the extraction of meaningful biological insights

because the interpretation of such redundant and complex data

sets is quite difficult, time-consuming and daunting, many times

dependent on the expertise and the area of interest of the biologists

that analyze the lists.

Method: non-redundant reciprocal linkage of GeneTerm-
sets to go beyond Enrichment

We have developed a computational method to find

metagroups of genes and annotations composed by linked

GeneTerm-sets, eliminating redundant and non-informative ele-

ments. The method, called GeneTerm Linker has 2 major

goals: (i) to provide a robust automatic way to analyse the large

Functional Linkage of Genes and Biological Terms
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collections of GeneTerm-sets produced by enrichment methods; (ii)
to produce significant and coherent metagroups of genes

associated to concurrent terms and annotations that describe

the specific biological functions of the metagroup. In the

following paragraphs we describe the four major procedure steps

that the method includes:

Step 1
Filtering GeneTerm-sets that only include over-repre-

sented terms. As we showed above, those terms whose

frequency of appearance in databases is strongly greater than

average can provide obvious and non-interesting results, while

masking significant functional patterns present in the query

genes. Such over-represented terms are considered outliers.

Once the outliers are found in each biological annotation

category for each organism, the first step of the method consists

in removing the GeneTerm-set elements that only correlate

groups of genes with over-represented terms. If one element in

the enrichment result includes outliers in its set of annotations

but also contains other terms, the element is not discarded

because the generic terms are related with other specific

annotations. In this way, given an element Ei from the

enrichment result, the whole element will be set aside only if

its set of annotations Ai is composed by outliers. This first step

of the method significantly reduces the number of elements in

the list of results, removing useless information.

Figure 1. Distributions of biological terms in GO and KEGG databases. Distributions of biological terms from GO and KEGG databases
counting the number of genes assigned to each term. The data correspond to human genes. (A) Boxplots of the distributions for GO categories (BP,
MF, CC) and for KEGG. (B) Most frequent GO terms. (C) Left: density distribution of GO-BP -marking the average with a red line-; right: proportion of
genes per term with respect to the total number of genes (%). (D) Same as C for KEGG.
doi:10.1371/journal.pone.0024289.g001
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Step 2
Retrieve metagroups using reciprocal linkage between

GeneTerm-sets. The second step of the algorithm creates

metagroups of elements that are related by sharing common genes

or by sharing common terms. The method is reciprocal because it

considers both the genes and the terms included in each GeneTerm-

set. First, to find the linkage between genes it uses a similarity

coefficient that provides a preliminary grouping of GeneTerm-sets.

Second, to find the linkage between terms it uses a greedy

algorithm that explores the annotations to merge the common

ones.

Gupta et al. showed that the use of the Jaccard Similarity coefficient

to measure the distance between the transactions that support

frequent patterns get better results than the distance between the

items, demonstrating its fitness to catch the interactions between

those sets in the data and its robustness regardless the size of the

data [10]. This is an approach that does not take into account the

strength of the relationships between transactions and items, i.e.

between genes and terms in our case. Considering these ideas, our

method finds the linkage between GeneTerm-set elements by

creating for each Ei a vector vi which contains the occurrence

of each gene with respect to the whole gene list of the input (in

binary numbers 1/0) and incorporates as an additional component

the p-value of each element Ei weighted by factor M (the total

number of genes in the list). This additional parameter represents

the strength of the relationship within each GeneTerm-set. The pair-

wise distances between all vectors vi are calculated using Cosine

Similarity, a generalization of the Jaccard Similarity coefficient for non-

binary attributes. Once the similarity is calculated, the distances

are analyzed using Ward’s hierarchical clustering in order to find the

linkage between GeneTerm-sets (i.e. the clusters formed by the

elements). This linkage is considered fuzzy because each gene or

combination of genes can be included in several GeneTerm-sets. A

heuristic threshold consisting of a cutoff set up at a given depth of

the cluster tree is used to define the preliminary metagroups. By

default the threshold is set up at 20% of the tree depth, but if it is

not enough to define metagroups, the algorithm increases the

cutoff in 10% steps till at least one metagroup is found. In this way,

we identify coherent modules of information based on common

genes.

After this process, the algorithm proceeds performing a greedy

recursive exploration of terms within the preliminary clusters (pre-

metagroups) to merge the ones that share the same terms. At the

end of this second step the method provides metagroups where the

convergence of genes and terms is maximized. A formal

mathematical description of the process is included in the

Materials and Methods.

Step 3
Remove redundancy within the selected metagroups. Once

the metagroups are created, it is possible to compact and reduce their

size by removing the redundant elements included inside each

metagroup.

Toivonen et al. proposed the concept of cover of a set of

association rules (a special case of frequent itemsets) as the minimal

subset that contains all the relationships present in an original set

[11]. To avoid losing any item, we extend the concept of cover of a

collection of itemsets (i.e., in our case, a metagroup of GeneTerm-sets)

with the requirement of completeness of the data. In this way, in our

algorithm we redefine and apply the concept of complete cover. The

mathematical description to calculate this parameter is presented

in Materials and Methods.

To assess the complete cover we do not contemplate only the terms

included in the metagroups, but also the genes that support them.

Each metagroup is described by the total set of terms and the total

set of genes included in their elements. So, to find redundant

elements inside a metagroup the method searches for the ones with

all its genes and terms included in another elements of the same

metagroup. In this search the GeneTerm-sets are always ordered by

increasing p-values to eliminate consistently the less significant

sets. Following this approach, redundant GeneTerm-sets present in

the enrichment outputs are found and removed.

Step 4
Calculate significance and coherence of the meta-

groups. After the final metagroups have been generated and

the redundant GeneTerm-sets removed, a series of parameters are

calculated to evaluate their significance and coherence. Our

assumption is that a functional coherent metagroup should be

compact and well separated from other, therefore such coherence

tries to measure both the intra-groups compactness and the inter-

groups distance.

In order to evaluate the statistical significance a Hypergeometric test

is performed with all the genes and terms assigned to each

metagroup [2,12]. The resultant p-values are adjusted for

multiple tests using the FDR method [13].

In order to assess the compactness (maximum distance in

between data points of clusters) and proximity (minimum distance

between clusters) the main parameter calculated is the Silhouette

Width, which ranges from 1 to 21 and measures both the

compactness and proximity of multiple groups [14]. The method

also calculates the Diameter, that is the maximum Cosine distance

within the GeneTerm-sets of each metagroup and ranges from 0 to 1;

and the Similarity Coefficient, which is [1 – average Cosine distance]

within the GeneTerm-sets of each metagroup and also ranges from 0

to 1. All these distance and similarity calculations are done based

on the genes present in the metagroups.

Testing the method with a set of yeast nuclear proteins
We investigate the ability of GeneTerm Linker method to

find metagroups of functionally related genes using as test set of 59

nuclear proteins from yeast (Figure 2A) that have been

characterized by protein interaction methods and form five well-

defined protein complexes [15]. This set had been previously used

in the evaluation of a method to find densely connected regions in

protein interaction networks [15] and it includes a collection of

well-annotated proteins with strong functional links.

A network of experimentally proven interactions between these

proteins was build, using APID and APID2NET [16,17], showing

that they form 5 distinct clusters (Figure 2B). These clusters

constitute a good set for use as a benchmark.

The analysis of the set of yeast proteins is shown in Figure 2C.

The output of the algorithm shows that five compact metagroups

are found, all having a Silhouette Width.0.5, that is a good

indication of the internal tightness of each metagroup and its

external separation from the other metagroups [14]. Moreover,

the Hypergeometric test also indicates that the metagroups are

significant. The size of the 5 metagroups found was: [1] 13 genes

and 9 GeneTerm-sets; [2] 11 genes and 4 GeneTerm-sets; [3] 14 genes

and 9 GeneTerm-sets; [4] 14 genes and 13 GeneTerm-sets; [5] 14 genes

and 14 GeneTerm-sets. The terms corresponding to each metagroup

are presented in Figure 2C (co-annotations column), showing the

main functions and biological roles found associated to each

metagroup (a complete version of this table is included in Table
S1). Some concurrent terms are synonymous, like in the 3rd

metagroup ‘‘proteasome complex’’ (GO:0000502) and ‘‘protea-

some’’ (KEGG:03050); but other terms are complementary, like in

the 4th metagroup ‘‘U4/U6 tri-snRNP complex’’ (GO:0046540)

Functional Linkage of Genes and Biological Terms
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and ‘‘Like-Sm ribonucleoprotein (LSM) domain’’ (IPR001163).

The overall result shows that the method finds the 5 complexes

expected, including in each one all its proteins. In the case of

metagroups 3, 4 and 5 some extra proteins are included: APC2

and DOC1 in the 3rd metagroup; PAP1, PTA1 and YSH1 in the

4th metagroup; and RPN6 and CFT2 in the 5th metagroup.

Comparison of the method with another functional
annotation approach

To perform a comparative analysis with other methods, we

carried out a systematic identification of the gene pairs that

compose the test set of five yeast complexes, described above, and

all the gene pairs found by the functional association method. In

this way, we count all possible gene pairs and all true positive (TP)

gene pairs found in the reference complexes, and we can calculate

the Accuracy (i.e. Rand statistic) and the Jaccard coefficient defined as:

Accuracy~
TPzTNð Þ

TPzTNzFPzFNð Þ ;

Jaccard Coefficient~
TPð Þ

TPzFPzFNð Þ

These parameters measure the relationship between pairs of

points using the co-occurrence matrices for the expected partition

and the partition generated by a given method [18]. The statistical

evaluation was done (see Table 1) for the results obtained with

our method and for the results obtained with a widely used

Functional Annotation Clustering (FAC) method developed by DAVID

Bioinformatics Resources [4]. This is the only method that we

found in the literature that has a similar goal of finding functional

modules (that include genes and terms) and use data derived from

enrichment analysis.

The results indicate that GeneTerm Linker method is quite

accurate to find the biological complexes present in the test set of

59 yeast nuclear proteins (Accuracy = 0.95). Such Accuracy drops

when using the agglomeration algorithm FAC [4], which by

default finds many more groups or modules of genes and terms (15

functional modules). Tuning the parameters of FAC algorithm to

find just the 5 expected metagroups the Accuracy still does not reach

90% (0.88).

The Jaccard coefficient measures the proportion of gene pairs that

belong to the same metagroup in both the expected and the

computed partition, relative to all pairs that belong to the same

metagroup in at least one of the two partitions. This coefficient for

the case studied was 0.769 using our method and 0.562 using FAC

method.

Testing the method with reference sets from three
heterogeneous resources: Complexes, Pathways and
Diseases

To achieve a more comprehensive evaluation of the method, we

did a series of trials with reference sets of gene metagroups defined

in three broad biomolecular resources: (1) sets composed of

multiprotein complexes identified in mamals (from CORUM)

[19], (2) sets composed by groups of genes involved in yeast

pathways (from SGD) [20], (3) sets of groups of genes involved in

human diseases (from OMIM) [21]. We select from each database

ten of sets with at least 8 genes/proteins each (Figure 3).

Using this collection of reference gene sets we run the method

once for each set, to investigate how many of the reference genes

are included in the first, most significant, metagroup found. We

performed the analyses using not just each reference metagroup

alone, but also mixing it with randomly selected genes to introduce

two levels of noise in the set: 20% and 60% (i.e. in order to acquire

20% noise, if the reference group had 10 genes then 2 genes were

randomly selected from the whole gene list of such resource and

included with the 10 true genes).

The results using GeneTerm Linker over the whole collection

of reference gene sets is shown in Figure 3, which presents in each

row the most significant metagroup found and its overlap with the

corresponding reference gene set used as query. For example, in

the case of the first group (1c): the C complex spliceosome is composed

Figure 2. Analyses of a highly connected set of yeast proteins with GeneTerm Linker. Analyses of a set of 59 yeast proteins using the
algorithm proposed. (A) Lists of the proteins that form 5 known protein complexes. (B) Protein interaction network form by such 59 yeast proteins.
Each node is a protein and the color scheme corresponds to GO-BP and InterPro terms marked using APID2NET [17]. (C) Output of the analysis of the
59 genes with the algorithm proposed (full table in Table S1).
doi:10.1371/journal.pone.0024289.g002

Table 1. Comparison of methods: GeneTerm Linker and Functional Annotation Clustering.

GeneTerm Linker DAVID FAC (used by default) DAVID FAC (tuned to find 5 groups)

Total groups reference 5 5 5

Total groups found 5 15 5

All possible gene pairs 1711 1711 1711

TP 320 320 254

FN 82 1179 132

FP 0 0 66

TN 1309 212 1259

Jaccard Coefficient 0.769 0.213 0.562

Accuracy 0.952 0.311 0.884

Comparative results for the set of 59 yeast proteins: Accuracy and Jaccard Coefficient obtained using the present method and using Functional Annotation Clustering
(FAC) method with its parameters by default or tuned to find 5 groups.
doi:10.1371/journal.pone.0024289.t001

Functional Linkage of Genes and Biological Terms
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of 80 genes, 96 genes are tested (introducing 20% extra randomly

selected genes) and the method finds 68 genes, all included in the

reference set and functionally linked to 6 terms with a significance

of 5.25 e2138 (adjusted p-value). Following the same steps, we

calculate the results for each one of the thirty reference gene sets.

As indicated above these reference sets were taken from three

heterogeneous biological sources: complexes (c), diseases (d) and

pathways (p). A complete table, including all the results about the

specific genes and terms found in each metagroup, is provided as

Table S2.

Calculating the Precision, Recall and F-score of the
method

Since the correct answer is known for each metagroup of the

reference gene sets, we can calculate the error rates and estimate

the Precision and Recall of our method. In an information retrieval

scenario, Precision is defined as the number of relevant document-

items retrieved by a search divided by the total number of

document-items retrieved by that search, and Recall is defined as

the number of relevant document-items retrieved by a search

divided by the total number of existing relevant document-items

(which should have been retrieved). The document-items in our

context are the genes. The balanced F-score is a measure that

combines Precision and Recall evenly weighted, being the harmonic

mean of both. In statistical terminology these parameters –related

to type I and type II errors– are defined as:

Precision~
TPð Þ

TPzFPð Þ ; Recall~
TPð Þ

TPzFNð Þ ;

F � score~2
Precision:Recallð Þ

PrecisionzRecallð Þ

The Precision is a measure of exactness and fidelity, whereas the

Recall is a measure of completeness. The results (Figure 3) reveal

that the new functional analysis method proposed is quite precise,

because it shows an average Precision of 100%, 99.7% and 97.8%

in the identification of gene metagroups from protein complexes,

diseases and pathways, respectively. Such Precision was obtained

using a noise level of 20%. This also indicates that it is a rather

robust method which allows perturbation in gene lists without

losing the major functional signal included in a given metagroup.

The Recall –also with 20% noise– was 93.6% and 81.5% for the

gene sets obtained for multiprotein complexes and pathways,

respectively; and 54.4% for gene sets assigned to protein diseases.

This is an interesting observation because it seems that the

decrease of the Recall follows the same tendency expected if we

were considering the strength of ‘‘functional units’’. It is easy to

understand that the average cohesion and tightness of the genes

associated in multiprotein complexes (i.e. in ‘‘molecular ma-

chines’’) should be higher that the cohesion of the genes associated

within a pathway, and much stronger that the cohesion of the

Figure 3. Analysis of gene sets from 3 biomolecular resources: CORUM, OMIM, SGD. Results of the analysis of thirty gene sets derived
from three biomolecular resources: mammalian multiprotein complexes (CORUM), human diseases (OMIM) and yeast cellular pathways (SGD). Each
row corresponds to an independent gene set and it includes the result of the functional analysis showing the first metagroup obtained running the
method. Each analysis is evaluated with respect to the reference gene sets calculating the Precision, Recall and F-score (in %). The analyses are done
introducing 20% random noise; meaning the proportion of random-selected genes added to each query gene set. The number of terms found is
indicated in each row. Not all the terms are described due to space restrictions (last column). A complete table, including also the results at 60%
random noise and all the information about the specific genes and terms found in each metagroup, is provided as Table S2.
doi:10.1371/journal.pone.0024289.g003

Functional Linkage of Genes and Biological Terms

PLoS ONE | www.plosone.org 7 September 2011 | Volume 6 | Issue 9 | e24289



genes associated to a disease. In fact, many times there is not a

clear functional reason about why a human gene is associated to a

given disease [21]. The association is most times heuristic,

observational, phenomenological, and not really linked to a

known biomolecular cause. This reasoning also provides support

to the method, since it shows its power to unravel different types of

functional associations, and to disclose cases where the ‘‘functional

units’’ holding the linkage between genes are not so well defined.

Finally, it seems that the size of the query groups does not affect

the error rates of the method, because sets from 8 to 84 genes were

assayed and the values of Precision and Recall were not dependent

on the size. The only need is that each metagroup has to include a

minimal number of genes to retrieve enough annotations and

terms that allow functional associations. We observed that bellow

seven genes it was quite difficult to achieve the linkage between

genes and terms, although we do not consider it a critical

constraint for high-throughput analysis.

Discussion

Inferring functional linkage between genes and
biological terms

Some eloquent studies have asserted that functional annotation has

become a bottleneck in biomedical science in the current era of

high-throughput sequence and structure determination [22,23].

Many genes and gene products are normally annotated by

homology, assigning known functions to similar sequences. This

procedure can be a potential error-prone which propagates and

can contaminate most of the biomolecular databases [23]. The

lack of specific knowledge about the biological function of many

genes added to a recurrent annotation by simple homology and

the frequent use of some terms that become ‘‘fashionable’’ or

‘‘promiscuous’’ under the influence of certain biomedical areas

(e.g. cancer) can be a pitfall for many functional enrichment

approaches.

Using several information theory principles, we propose a new

method for biological functional analysis called GeneTerm
Linker, developed with a clear aim of avoiding redundancy and

reducing complexity in computational functional annotation,

also aiming to combine multiple annotation resources. In

Figure 4 we present a scheme that illustrates the rational

followed by GeneTerm Linker. The power of the method is

given by the fact that it combines all sources of annotations and

biological information regardless of their internal structure in

order to provide a single result, in this way it brings together all

annotation spaces where a gene list had been interrogated. Lots

of efforts have been devoted to use gene ontology (GO) as a main

functional annotation space and to find functional similarity

metrics in GO using its hierarchical structure and the

relationship between its terms. While this is a valid approach,

its application cannot be exported to other resources of non-

hierarchical but very relevant biological information. As shown

in Figure 4, our method is able to locate in the same frame

terms from GO and from other annotation spaces (KEGG,

InterPro, etc) providing metagroups of genes and terms linked

with significance scores.

A secondary contribution of our study is to present a

comparative analysis of different annotation resources. Figure 1
reflects that KEGG annotations are more stable and contain less

outliers than GO. This is caused by the existence of a thorough

curation in KEGG and the fact that GO is, by definition, an

ontology resource based on a controlled vocabulary, that many

times has to take general broad terms applicable to genes present

in very different organisms. We showed that the lack of specificity

and the overuse of certain popular terms (e.g. signal transduction or

regulation of transcription, Figure 1B) produce a strong influence on

the power of the annotation resources and on the quality of their

specific application to large query gene lists. Functional charac-

terization of large gene lists, derived from genome-wide experi-

ments, aims ideally to provide a set of annotated groups of genes

that should be smaller than the number of genes in the query list

[24]. However, currently most researchers in the field realize that

is quite difficult to obtain a single and meaningful result using the

functional enrichment tools available. The method here proposed

(Figure 4) solves this problem providing a unique result where the

related genes and terms are fuzzy enclosed in metagroups which

are evaluated by enrichment, functional coherence and similarity.

In conclusion, after search and comparison with other methods,

we can say that the innovation and genuine value of the algorithm

presented is to provide a single coherent solution to the problem of

functional annotation of lists of genes or proteins. To achieve this,

it address the problem of using multiple non-orthogonal and non-

homogeneous biological annotation spaces, going beyond enrich-

ment analysis (EA) approaches that provide many lists of genes

and annotations usually not integrated, redundant or with low

information content. Knowing the use and value of these

enrichment approaches, a clear practical problem remains for

many biologists that try computer-driven exploration of their

candidate gene lists. We expect that the method here presented,

GeneTerm Linker, will help to alleviate such difficulties offering

a step forward to many gene-based biomedical and biomolecular

studies.

Materials and Methods

Reference sets to test the method
A reference set of 59 nuclear proteins from yeast (Saccharomyces

cerevisiae) that form five well-defined protein complexes [15] was

selected as first test set and used in the comparative analysis versus

the FAC method [4]. The method was also tested using 30

reference sets of gene metagroups from three biomolecular

resources: (1) CORUM, comprehensive resource of mammalian

multiprotein complexes [19]; (2) SGD, yeast resource that

includes a collection of groups of genes involved in cellular

pathways [20]; (3) OMIM, resource that includes groups of genes

involved in human diseases [21]. We downloaded these 3

resources and searched for groups composed of at least 8 genes/

proteins assigned to specific biological entities within each

database, i.e.: assigned to specific multiprotein complexes (c),

diseases (d) or pathways (p). Then, we select from each database 10

groups and consider them as reference metagroups in order to test

how our method was able to find such groups. The groups are

numbered 1c-10c, 1d-10d and 1p-10p. The names of the 10

groups selected from each database are included in Figure 3 and

all the details about the genes included in each reference

metagroup are provided in Table S2.

Formal definition of GeneTerm-sets
The input to the algorithm are elements defined as GeneTerm-sets

that correspond to combinations of genes/terms/p-value (con-

sidered frequent itemset) derived from functional annotation

enrichment:

Ei~SGi,Ai,piT

Ei ith element; Gi g1,g2:::gmf g set of genes; Ai a1,a2:::anf g set of

terms; pi p-value
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Mathematical description of the calculation of distances
For each element Ei a vector vi contains the occurrence of each

gene with respect to the whole input gene list and the p-value of

each element Ei weighted by factor M = total number of genes in

the list:

vi~ d(g1,Gi),d(g2,Gi), . . . ,d(gM ,Gi),Mpið Þ

d(gk,Gi)~
1 gk[Gi

0 gk=[G

�

Figure 4. Scheme of the rational followed by GeneTerm Linker method. Scheme that illustrates the rational followed by the GeneTerm Linker
method proposed. The method provides a single result combining all annotation spaces where a gene list has been interrogated. The method uses
filters for promiscuous and redundant terms/annotations as it is described in the step 1 and 3 of the algorithm.
doi:10.1371/journal.pone.0024289.g004
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The pair-wise distances between all vectors vi are calculated using

the Cosine Similarity that is derived from the Jaccard Similarity

coefficient:

D(Ei,Ej)~1{cos(vi,vj)~1{
vi
:vj

vik k vj

�� ��

Mathematical description of complete cover and
application to redundancy removal

Each resulting metagroup is formed by a selected collection of

GeneTerm-sets that keep maximum similarity. The redundancy

within the preliminary metagroups is eliminated calculating the

complete cover of each metagroup (to guarantee the completeness of

the data) and then removing the GeneTerm-sets that do not include

any new gene or any new term. Formally:

given a metagroup C~ E1,E2 . . . ENf g

and a subset D(C, D is a cover of C if

D is cover of Cu
[

Ek[D

c(Ek)~
[

Ek[C

c(Ek)

0
@

1
A^

[
Ek[D

a(Ek)~
[

Ek[C

a(Ek)

0
@

1
A

c(Ei)~Gi

a(Ei)~Ai

Supporting Information

Table S1 Complete functional analysis of 59 yeast
proteins using GeneTerm Linker method. Data file (.xls)

containing the complete results provided by GeneTerm Linker
corresponding to the functional analysis of the 59 nuclear yeast

proteins (which has been partially presented in Figure 2C). The

file has two spreadsheets: (A) includes a complete view of the same

table as Figure 2C; (B) includes the complete output results

provided by GeneTerm Linker algorithm, showing the five

metagroups found with all GeneTerm-sets assigned to each

metagroup.

(XLS)

Table S2 Complete functional analysis of 30 gene sets
from 3 resources (CORUM, OMIM and SGD) using
GeneTerm Linker method. Data file (.xls) containing the

complete results provided by GeneTerm Linker corresponding

to the analysis of 30 gene sets derived from 3 biomolecular

resources: CORUM, OMIM and SGD (which has been partially

presented in Figure 3). Each row corresponds to the functional

analysis of one gene set and shows only the first metagroup found by

the method. All genes and terms found in the first metagroups of each

gene set are included, together with the statistical parameters

(Precision, Recall and F-score in %) and the adjusted p-value
corresponding to such metagroups. Each analysis is done twice for

each gene set, introducing 20% or 60% random-selected genes.

(XLS)
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