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Abstract
In patients with peripheral artery disease (PAD), supervised exercise at near-moderate pain improves walking ability but 
not ankle-brachial index (ABI) values. In a retrospective observational study, we determined vascular and functional effects 
of a 6-month structured pain-free exercise program in patients with claudication and compressible vessels. Four-hundred 
and fifty-nine consecutive patients were studied. Segmental limb pressures were measured and ABI calculated during 
circa-monthly hospital visits. The 6-min (6MWD) and the pain-free walking distance (PFWD) during the 6-min walking 
test were determined. Two daily 8-min sessions of slow–moderate in-home walking at increasing metronome-paced speed 
were prescribed. After excluding patients with unmeasurable ABI or incompletion of the program, 239 patients were stud-
ied. Safe and satisfactory (88%) execution of the prescribed training sessions was reported. During the visits, bilateral ABI 
improved (+ 0.07; p < 0.001) as well as the segmental pressures in the more impaired limb, with changes already significant 
after 5 weeks of slow walking. Both systolic and diastolic blood pressure decreased overtime (F = 46.52; p < 0.001; F = 5.52; 
p < 0.001, respectively). 6MWD and PFWD improved (41[0‒73]m p < 0.001 and 107[42‒190]m p < 0.001, respectively) with 
associated decrease of walking heart rate (F = 15.91; p < 0.001) and Physiological Cost Index (F = 235.93; p < 0.001). The 
variations of most parameters at different visits correlated to the training load calculated. In a regression model, the PFWD 
variations directly correlated with rate sessions completed, training load and ABI change and inversely with the baseline 
value (R2 = 0.27; p < 0.001). In the PAD population studied, moderate pain-free exercise improved ABI with associated 
progressive functional and cardiovascular changes occurring regardless of subjects characteristics.

Keywords Peripheral artery disease · Cardiovascular risk · Atherosclerosis · Physical exercise · Blood pressure · Ankle-
brachial index

Introduction

Physical exercise is an essential component of the manage-
ment program in peripheral artery disease (PAD) [1, 2], a 
highly prevalent vascular disease associated to low physical 
function and high risk of cardiovascular events [3, 4]. Rec-
ommended exercise programs carried out under supervision 
three-weekly over 6–8 weeks at an intensity such as to evoke 
moderate-to-severe pain, are effective at improving walking 
ability [4–6].

These improvements are attributed to muscle adaptations, 
walking economy or greater accommodation to pain [4, 7] 
in absence of reported ankle-brachial index (ABI) or col-
lateral blood flow changes [7, 8]. Various factors related to 
the hemodynamic picture have been hypothesized to explain 
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this missed outcome [7]. However, vascular adaptations 
might theoretically occur in PAD patients engaged in exer-
cise programs [7] in the light of the well-described effects 
of exercise training on vasculature [9–12]. Interestingly, 
hemodynamic improvements have been observed following 
pain-free home-based exercise program [13–18] based on 
the FITT (frequency, intensity, time, type) principles which 
are differently combined with respect to the recommended 
programs [4, 19]. This structured walking intervention 
[13–15, 20, 21], designed to minimize lactate accumulation 
and favor aerobic adaptations in the ischemic regions [16, 
17] was translated into a clinical program. The so-called Test 
in–Train out (Ti–To) program is based on serial controls at 
hospital where adherence, patient’s mobility and hemody-
namics are assessed.

The hypothesis is that in a population of patients with 
claudication during the course of this program hemody-
namic dose-dependent adaptations are observable with 
associated functional improvements.

The study aims to describe time course and extent of the 
effects associated to the progressive training load, in a real-
world population of PAD patients consecutively enrolled in 
a structured rehabilitative program.

Methods

This is an observational study conducted at Unit of Reha-
bilitation Medicine at University Hospital of Ferrara. The 
Ethics Committee CE-AVEC approved the study (277/Oss). 
The study is reported according to the STROBE statement 
guidelines.

Subjects

For the purpose of the study, between January 2015 and 
December 2019, 459 consecutive patients were screened 
from Vascular Surgery and enrolled in the rehabilitative pro-
gram which is available free of charge for PAD patients. The 
program receives PAD patients at Leriche-Fontaine stage 
II‒IV, able to walk unassisted or with the habitual device for 
at least 10 m and without severe cardio-respiratory condi-
tions contraindicating exercise (e.g. unstable angina).

For this study, patients were excluded in case of PAD at 
stage III–IV; unmeasurable–unreliable ABI (≥ 1.4) [5]; non-
completion of the 6-month exercise program for personal or 
health reasons.

Intervention

All patients were enrolled in the Ti–To program that was 
prescribed to the patients during five consecutive hospi-
tal visits (baseline or week 0, weeks 5 ± 1; 12 ± 1; 19 ± 1; 

26 ± 2). The program, fully executed at home, includes two 
8-min sessions/day (6 days/week) of intermittent walking 
(1-min work and 1-min rest while seated) at controlled 
speed. The prescribed speed, converted into a walking 
cadence, is paced at home using a metronome (digital or in 
form of a smartphone application). Exercise is preferably 
performed inside home (e.g. in a hallway) to reduce pos-
sible barriers to exercise (weather, traffic, limited time, fear 
to fall, etc.) The program, updated at each hospital visit, is 
reported in Fig. 1.

A training diary to be returned at the subsequent visits 
is handed to each patient to note the completion of exercise 
and any possible associated symptoms. The rehabilitation 
team, composed of a physician and a sports science expert, 
is available to the patients throughout the entire study period 
via phone. More details about the exercise program protocol 
and execution are reported elsewhere [14, 15].

Study variables

The following variables were collected at baseline and at 
every hospital visit (T0, T1, T2, T3, T4), by the same skilled 
operators in a temperature-controlled environment in the 
morning between 9:00 and 12:00 AM. The same time of 
measurement was kept for each patient throughout the entire 
observation.

Hemodynamics

Ankle-brachial index was measured according to the pub-
lished standard [5], with the patient laying down in supine 
position and after 5 min of rest, using Doppler ultrasound 
transducer (Dopplex SD2, Huntleigh Healthcare Ltd. Diag-
nostics, Cardiff, United Kingdom) and a standard blood 
pressure cuff. Blood pressure was measured and recorded 
at both the posterior tibial arteries (PTA) and dorsalis pedis 
arteries (DPA) of both limbs. Systolic and diastolic blood 
pressures at both arms were also assessed.

Functional capacity

The 6-min walking test (6MWT) was administered during all 
visits in the same 20-m corridor. Patients were instructed to 
walk as far as possible for 6 min, with the possibility to rest 
and restart in case of impossibility to continue walking. The 
distance at the onset of symptoms referred (pain-free walk-
ing distance, PFWD) and the total distance covered (6-min 
walking distance, 6MWD) were recorded. The habitual 
speed of each patient was also measured in steps per minutes 
during the first minute of the test.

The heart rate (HR) was recorded by a pulse oximeter 
connected via wireless to a smartphone (iHealth, Paris, 
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France) before the test with the patient standing, and during 
the 6MWT.

At the end, the mean HR and the increasing of HR during 
the test (ΔHR) were determined. The Physiologic cost index 
(PCI), or the oxygen expenditure during walking, was also 
calculated in beats per meter as the ratio between the differ-
ence of mean and resting HR and the mean walking speed 
measured during the 6MWT.

Training features

The total training load was calculated according to the FITT 
components [22]. Frequency was the number of weekly 
sessions reported in the diary, Time was the minutes pre-
scribed for the session (or the actual value reported on 
the diary in case of incomplete execution). The Intensity, 
expressed as relative intensity, was the ratio between the pre-
scribed speed (steps/min) and the patient’s habitual walking 
speed assessed during the baseline 6MWT (e.g.: prescrip-
tion = 60 steps/min; habitual speed = 100 steps/min; relative 
intensity = 60/100 = 0.6).

The training load was calculated per week as follows: 
days/week * min/day * steps/min * relative intensity. For 

each period, the training load was calculated by summing 
up the weekly loads.

Statistical analyses

Data distribution were verified by a Shapiro–Wilk test. Over-
time comparison of all variables was performed through a 
repeated-measures analysis of variance or a Freidman test 
according to data distribution. The variations between each 
time point was verified by a paired-samples Wilcoxon test.

Rank correlations between study variables were obtained 
with a Spearman rho. Univariate regression analyses were 
conducted to determine the relationship between hemody-
namic and performance variables and the total training load 
for each period. Multiple regression analyses with a forward 
method of selection were carried out to determine the impact 
on dependent variables (variations of ABI, PFWD, SPB and 
segmental pressures) of baseline characteristics of partici-
pants and variations of hemodynamics and performance 
parameters. No missing data were present in the dataset.

A p value < 0.05 was considered as significant. Statis-
tical analyses were performed with  MedCalc® Statistical 

Fig. 1  Schematic representation of the training program
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Software version 19.6 (MedCalc Software Ltd, Ostend, 
Belgium).

Results

Four-hundred and fifty-nine PAD patients were screened and 
enrolled in the rehabilitation program. For the purpose of 
this study, 220 patients were excluded for the following rea-
sons: incompressible vessels (n = 173), incomplete program 
execution for health or personal reasons (n = 47). A final 
sample of 239 patients was analyzed.

The anthropometric and clinical characteristics of the 
population that completed the program are reported in 
Table 1.

All patients included in the analyses safely executed the 
exercise program without any adverse events related to the 
training sessions. Patients reported in the diaries a median 
execution of the 88% (interquartile range 75‒100%) of the 
training session prescribed. Training features are reported 
in Online Resource 1.

Hemodynamic parameters

Ankle-brachial index of the most affected limb progressively 
improved (F = 19.71; p < 0.001) from T0 to T4, with signifi-
cant differences observed between the various time points 
(Table 2).

A similar trend was observed also for the contralateral 
limb, that significantly improved (F = 8.73; p < 0.001) from 
T0 to all the other time points.

In the more impaired limb, segmental pressure values 
also improved (DPA, F = 3.08; p = 0.015; PTA F = 2.60; 
p = 0.035) (Table 2, Fig. 2).

At the contralateral limb for both arteries, a stable non-
significant trend was observed.

For arm pressure, SBP exhibited a marked overtime 
decrease (F = 46.52; p < 0.001) with significant differences 
between T0 and all subsequent visits and DBP also signifi-
cantly decreased (F = 5.52; p < 0.001) (Table 2, Fig. 2).

Functional parameters

In the whole population, a median variation of 6MWD of 41 
(interquartile range 0‒73) meters was observed. From T0 to 
the end of the program the 6MWD showed a positive trend 
(F = 58.81; p < 0.001) with significant differences observed 
between the first two visits (T0 and T1) and the remaining 
ones.

Pain-free walking distance showed a variation of 107 
(42‒190) meters from baseline to the end. A greater trend 
was recorded (F = 203.56; p < 0.001) with any time point 
which was significantly different from the other ones.

Resting HR values were stable, while mean HR progres-
sively decreased (F = 15.91; p < 0.001) with values recorded 
at T0 significantly different from all the other visits. Accord-
ingly, also the ∆HR during the test was progressively 
reduced (F = 173.33; p < 0.001) with significant differences 
within each time point.

Physiological cost index confirmed the decreasing trend 
(F = 235.93; p < 0.001) with an over 100% reduction from 
T0 to T4 and significant differences between all the time 
points. (Table 2, Fig. 2).

Analyses for subgroup of patients

Superimposable hemodynamic and functional results were 
observed when classifying the PAD population for disease 
severity (baseline ABI < 0.5 in the more impaired limb), 

Table 1  Characteristic of the population included in the study

ABI ankle-brachial index

Analyzed (n = 239)

Age (years) 72 ± 8
Males, n (%) 185 (77)
Education, n (%)
 Elementary school 103 (43)
 Inferior middle school 103 (43)
 Superior middle school 26 (11)
 Degree 7 (3)

Risk factors, n (%)
 Smoking 209 (87)
 Current smoking 23 (10)
 Obesity 88 (37)
 Hypertension 211 (88)
 Hyperlipidaemia 180 (75)
 Diabetes 107 (45)
 Chronic kidney disease 53 (22)

Comorbidities, n (%)
 Coronary artery disease 91 (38)
 Cerebrovascular disease 31 (13)
 Osteoarticular disease 62 (26)
 Rheumatic diseases 12 (5)
 Chronic-obstructive pulmonary disease 25 (10)
 Age-adjusted Charlson Comorbidity Index 6 ± 2

Peripheral artery disease
 Disease duration (years) 5 ± 5
 Lower limb revascularization 27 (28)
 Leriche-Fontaine Stage IIa 118 (49)
 Leriche-Fontaine Stage IIb 122 (51)
 ABI more affected limb 0.66 ± 0.22
 ABI less affected limb 0.86 ± 0.21
 Pain-free walking distance (m) 114 ± 70
 6-min walking distance (m) 288 ± 97
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presence of diabetes or sex. All groups showed similar favora-
ble hemodynamics and functional adaptations since T1 until 
the end of the program (Online Resource 2).

Relationship between hemodynamic, functional 
and FITT parameters

At baseline, hemodynamic and performance parameters were 
significantly correlated. In particular, the 6MWD was related, 
considering the more impaired and less impaired limb, respec-
tively, to ABI (r = 0.23; p < 0.001; r = 0.23; p < 0.001) and 
to segmental pressure at PTA (r = 0.25; p < 0.001; r = 0.24; 
p < 0.001) and DPA (r = 0.18; p = 0.006; r = 0.27; p < 0.001).

During the exercise, the training load was significantly 
related to the values overtime of the hemodynamic and func-
tional parameters. In particular, significant direct correla-
tions were observed for ABI and segmental pressure at DPA 
of the more impaired limb, PFWD and 6MWD, with congru-
ent negative correlations for SPB, ΔHR and PCI (Fig. 3).

In a significant regression model, the variations of PFWD 
(R2 = 0.27; p < 0.001) were related with the baseline value 
(partial r = ‒0.35), adherence (partial r = 0.15), total train-
ing load (partial r = 0.24) and variations of ABI of the more 
impaired limb (partial r = 0.18).

Discussion

The study shows that pain-free exercise induces ABI 
changes in PAD patients as measured during a progressive 
program. These adaptations, with associated functional 

changes, are related with the training load regardless of 
disease severity, walking ability or sex of patients.

For the first time to our knowledge, the study describes 
the hemodynamic response to a structured progressive 
training in a real-world population of PAD patients with 
claudication enrolled in a home-based program.

Ankle-brachial index changes at discharge of rehabili-
tation, not reported following the recommended SET [1, 
6], as uncommon report were previously highlighted by 
our research group following TiTo pain-free aerobic pro-
gram [14–18] and supported by variations of near-infrared 
spectroscopy (NIRS)-based markers [25, 26]. The study 
confirms these observations, with an exercise-associated 
leveled improvement among patients. Its magnitude, cor-
responding to the decrease of ABI observed in a PAD 
population in a 4.6 years period [23], is also associated to 
a lower risk of revascularization at 3 years from discharge 
of the program [24]. Interestingly, more favorable varia-
tions, up to 20% of the basal value, were observed in the 
patients at more severe hemodynamic status and impaired 
mobility, where exercise may have contributed to reverse 
vascular deconditioning related to the disuse [25].

However, hemodynamic improvement after exercise 
training, even unusual or not reported [6] in PAD patients 
enrolled in exercise programs, should be expected. It 
is known that exercise and muscle contractions evoke 
structural vascular remodeling with different shear stress 
dependent and independent mechanisms, with nitric oxide-
mediated or hypoxia induced effects and with different vas-
cular targets [26, 27]. A possible result is an arteriogenetic 

Table 2  Overtime values of hemodynamic and functional parameters under study

ABI ankle-brachial index; PTA posterior tibial artery; DPA dorsalis pedis artery; PFWD pain-free walking distance; 6MWD 6-min walking dis-
tance; SBP systolic blood pressure; DBP diastolic blood pressure; HR heart rate; PCI physiological cost index
* Different from W0; ** different from W5; † different from W12; ‡ different from W19. Data are expressed as mean (95% confidence interval)

Week 0 Week 5 Week 12 Week 19 Week 26

More impaired limb
 ABI 0.66 (0.63–0.69) 0.70* (0.67–0.73) 0.71* (0.68–0.74) 0.72*,**,† (0.69–0.76) 0.73*,**,† (0.70–0.76)
 PTA pressure, mmHg 96 (91–101) 97 (92–102) 95 (90–100) 99 (94–104) 100* (95–105)
 DPA pressure, mmHg 85 (79–91) 92* (87–98) 94* (89–99) 95* (90–100) 97* (92–102)

Less impaired limb
 ABI 0.86 (0.83–0.89) 0.89 (0.86–0.92) 0.88 (0.85–0.91) 0.89 (0.86–0.92) 0.91 (0.88–0.94)
 PTA pressure, mmHg 128 (123–134) 127 (122–131) 123* (119–128) 123* (119–128) 125 (120–130)
 DPA pressure, mmHg 123 (118–128) 124 (118–129) 120 (115–125) 120 (116–125) 122 (117–127)
 PFWD, m 114 (105–123) 174* (161–186) 207*,** (193–220) 224*,**,† (210–238) 238*,**,†,‡ (223–253)
 6MWD, m 288 (275–300) 299 (287–310) 316*,** (304–328) 324*,** (312–337) 328*,** (316–340)
 SBP, mmHg 159 (156–162) 150* (148–153) 148 * (146–151) 147*,** (144–149) 147*,** (144–149)
 DBP, mmHg 76 (75–77) 74* (73–75) 74* (73–75) 74* (73–75) 74* (73–75)
 ∆HR, bpm 10 (10–11) 8* (7–8) 7*,** (6–7) 6*,**,† (6–6) 5*,**,†,‡ (5–6)
 PCI 0.25 (0.23–0.26) 0.17* (0.16–0.18) 0.14*,** (0.13–0.15) 0.12*,**,† (0.11–0.13) 0.11*,**,†,‡ (0.10–0.12)
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Fig. 2  Time course adaptations of hemodynamic and functional parameters during the program. Data are expressed as mean and 95% confidence 
interval. PTA posterior tibial artery; DPA dorsalis pedis artery
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Fig. 3  Relation between training load for each period and hemodynamic and functional parameters. Regression line, bold; 95% confidence inter-
val lines, dashed. PTA posterior tibial artery; DPA dorsalis pedis artery
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response with enlargement of existing arterial vessels and 
increased blood flow capacity [7, 28].

Furthermore, the kinetics of the onset of adaptations 
and the relationship with the intensity of exercise and with 
walking performance represent further important issues for 
discussion.

For the first point, we highlight that already at the first 
follow-up visit, after 5 weeks, corresponding to the very 
slow-speed phase of the program (60–66 steps/min or 
1.5–2.0 km  h−1), the ABI value is significantly higher than 
baseline.

A training slower than the habitual walking speed, not 
evoking a critical ischemia in the muscle might therefore 
represent the key issue for favoring hemodynamic adap-
tations in the less perfused regions [13, 14]. Notably, this 
approach differs completely from the training recommended 
based on faster walking speed, longer bouts of exercise, rest 
according to patients’ sensation after tolerating ischemic 
pain [4, 6, 19]. A dose–response effect of exercise on vessels 
has also been reported [29], with a favorable effect on the 
endothelial function deriving from low- to moderate-inten-
sity exercise in murine models and in humans [29–31] and 
recently specifically in PAD patients after submaximal train-
ing [9]. Lower inflammation and oxidative stress induced 
by moderate intensity may contribute, unlike high-intensity 
exercise [29, 31], also followed by a decrease in vascular 
function immediately post-exercise [32], by an increase of 
all blood inflammatory markers in PAD patients and of reac-
tive oxygen species production [9, 33].

Positive changes in vascular tone and endothelial function 
may also account for the blood pressure variations [34]. In 
our study, a highly significant decrease in systolic pressure 
occurs, which drops by nearly 15 mmHg over the course of 
the program. This fact is relevant in general, and more in 
PAD patients where an exaggerated BP response to exer-
cise has been observed with an increased cardiovascular 
risk linked with endothelial dysfunction and arterial stiff-
ness [35–37]. Again, a significant drop in systolic pressure 
is observed after the first 5 weeks, in the early, slow-speed 
phase. Such response of the systolic pressure to exercise 
training was previously reported [38] in particular in hyper-
tensive subjects (5–12 mmHg). This benefit in some cases, 
especially but non-exclusively in animal models, was associ-
ated to low–moderate-intensity exercise [39]. The reported 
systolic pressure decrease does not diminish the significance 
of the increase of ABI, considering that in the worst limb the 
segmental pressure did not decrease at the posterior tibial 
artery and significantly increased—between 8 and 10% from 
baseline—at the dorsal artery of the foot.

The training stimulus offered by the program seems 
effective on vascular adaptations. The intensity of exercise 
namely the walking speed, is apparently low but matches 
the limits of energy sustainability in the ischemic regions 

considering the early deoxygenation occurring in the mus-
cles of PAD patients [40]. The fixed brief walking time and 
equal standardized passive recovery, avoid a progressive 
energetic default and a muscular damage related to repeated 
bouts of ischemia–reperfusion [41]. This aspect is even more 
important in patients with diabetes where the late perception 
of ischemic symptoms has been reported [42]. Furthermore, 
pain-free exercise together with other factors favored the 
adherence [15, 24, 43–45], with patients at different hemo-
dynamic picture and physical capabilities performing a simi-
lar training load from 135 to 155 km/6 months.

The next issue is whether the ABI changes have an impact 
on the walking capabilities. Despite a previous reported lack 
of correlation [4], in this study, we observed a relationship 
between ABI and 6MWD at baseline. As a physiological 
consequence, a significant relationship between the increase 
in ABI of the worst limb and changes of the most “aerobic-
related” walking distance PFWD were observed after pain-
free exercise. In the significant regression model the ABI 
changes represent a relative percentage of the variations of 
PFWD, with adherence, training load and baseline PFWD 
accounting for around 30% of its changes. After all, several 
exercise-related factors may contribute to the aerobic perfor-
mance in terms of oxygen transport, delivery and exchange 
[26, 46]. The angiogenetic response with formation of new 
capillaries and changes of microvascular function within the 
muscle may play a role [28]. Notably, selective increase in 
angiogenetic factors or microvascular density [47, 48], were 
associated to low-to-moderate-intensity aerobic exercise 
unlike intense exercise, which represent a weaker stimulus 
for angiogenesis [48, 49]. A lower sympathetic activation 
of the arteriolar tone, typical of the low–moderate-intensity 
exercise, [50, 51] might reduce endothelial dependent cap-
illary reactivity [48]. Finally, adaptations in mitochondrial 
function may account for the functional improvement. In 
PAD, such adaptations were reported after an oxygen-guided 
exercise training assisted by NIRS [52] as well an increase of 
biomarkers referable to oxygen extraction was documented 
by NIRS following the program here discussed [17].

As further highlight, considering these potential benefits 
on the whole aerobic machinery, an increase in 6MWD in 
a meaningful range [53] and similar to other studies [4] has 
been observed together with a highly significant change, 
largely exceeding the large minimal clinically important 
difference [54] for PFWD. The changes in terms of walking 
HR with a decreased cardiovascular load and of PCI also 
support an increased aerobic energy availability with lower 
cardiac strain.

We underline that the results are limited to the study 
population. In particular, 36% of the enrolled patients were 
excluded from the analyses for incompressible arteries and/
or unreliable ABI (on the basis of a 66% of subjects that are 
affected at least by diabetes or chronic kidney disease). This 
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aspect may be related to the real-world design of the study, 
however, the final sample still included a 45% of patients 
with diabetes with ABI measurable and progressively 
improving throughout the program (Online Resource 2).

The study is also limited at patients at Fontaine’s stage II 
to report the results of a homogenous population in which 
exercise therapy is recommended by the guidelines. How-
ever, in our clinical practice, we observed similar responses 
to the program also in patients at Fontaine’s stages III and 
IV able to walk.

The study presents several limitations. First, the retro-
spective analyses despite a prospectively collected dataset 
and the absence of a control group. In addition, the outpa-
tient condition of blood pressure data collection may have 
influenced the results. ABI was not simultaneously arm-limb 
measured, however, the same expert operators performed 
all the measurements for the patients included in the study. 
The proportion of patients lost to vascular stiffness is sig-
nificant, but the goal was to have determinable values on 
which to base the study. We, therefore, cannot claim that the 
same adaptive responses occurred in that subpopulation of 
patients. Finally, the training load was calculated on reported 
diaries and not on objectively measured data.

In conclusion, the study in a real-world population sup-
ports the concept that hemodynamic response can occur 
and be quantified in patients with intermittent claudication 
engaged in exercise training. The proper combination of 
intensity, duration and frequency of the training bouts to 
maintain a pain-free exercise is the possible key to induce 
profitable hemodynamic adaptations in the ischemic dis-
tricts. However, this intriguing concept referred to a chal-
lenging model of performance represented by the PAD 
patient needs to be confirmed in a larger prospective trial.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11739- 021- 02827-4.
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