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Background: In recent years, nanotechnology has been playing an important role in designing smart fab-
rics. Nanomaterials have been employed to introduce in a sustainable manner, antimicrobial, ultraviolet
resistant, electrically conductive, optical, hydrophobic and flame-retardant properties into textiles and
garments. Nanomaterial based smart devices are now also being integrated with the textiles so as to per-
form various functions such as energy harvesting and storage, sensing, drug release and optics. These
advancements have found wide applications in the fashion industry and are being developed for wider
use in defence, healthcare and on-body energy harnessing applications.
Aim of review: The objective of this work is to provide an insight into the current trends of using nano-
technology in the modern textile industries and to inspire and anticipate further research in this field.
This review provides an overview of the most current advances concerning on-body electronics research
and the wonders which could be realized by nanomaterials in modern textiles in terms of total energy
reliance on our clothes.
Key scientific concepts of review: The work underlines the various methods and techniques for the func-
tionalization of nanomaterials and their integration into textiles with an emphasis on cost-effectiveness,
comfort, wearability, energy conversion efficiency and eco-sustainability. The most recent trends of
developing various nanogenerators, supercapacitors and photoelectronic devices on the fabric are
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highlighted, with special emphasis on the efficiency and wearability of the textile. The potential nano-
toxicity associated with the processed textiles due to the tendency of these nanomaterials to leach into
the environment along with possible remediation measures are also discussed. Finally, the future outlook
regarding progress in the integration of smart nano-devices on textile fabrics is provided.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Fig. 1. Outline illustration of futuristic smart clothing made from nanomaterial
processed fibers for on-body multifunctional devices.
Introduction

The modern textile industry faces incessant consumer demand
for innovative applications of new technology and a constant
stream of new and ever more innovative products. The ‘conven-
tional’ textile industries have seen huge improvements in their
products in terms of their mechanical strength and durability,
the surface texture and ‘feel’ of the fabric and the ability to dye
in a wide range of colours and printing patterns. Other develop-
ments include personal care factors such as anti-perspirant and
deodourant properties along with flame-retardancy, self-cleaning
and anti-microbial characteristics. However, recent years have
seen the emergence of so-called ‘smart textiles’ which are derived
from the combination of more conventional materials with smart
nanomaterials. A smart textile is one which can sense changes in
the environment and respond by modifying one or more of its
parameters to perform a function [1]. There have been three gener-
ations in the development of smart textiles. First generation - or
‘passive’ - smart textiles are those that sense changes in the sur-
roundings but cannot adjust their properties in response. For
example, fabrics coated with various metal oxide nanoparticles
can produce IR/UV resistant clothes; cotton impregnated with sil-
ver nanoparticles has anti-microbial properties. Second generation
– or ‘active’ - smart textiles include fabrics which first percieve the
changes or stimuli from the environment and then respond accord-
ingly. Examples include thermochromic textiles which respond to
changes in temperature by changing colour and shape-memory
textiles which can respond to mechanical deformations. Third gen-
eration - also called ‘super-smart’ - active textiles are integrated
with soft and smart electronics involving sensors, optical gadgets,
nano-generators and energy storage devices. For instance, on-
body electronics can offer sensing to various pollutants, diseases
or threats. Also, attractive optical devices on a smart textile can
be supported by nano-generators and energy storage devices [2,3].

The incorporation of nanotechnology enables manufacture of
smart and multi-functional textiles with many innovative applica-
tions in the areas of health, pharmaceuticals, fashion, sports, mili-
tary, advanced protection and transportation (Fig. 1) [1,2].
Connection to the ‘internet of things’ offers yet further potential
for advanced uses. Fabrication of microelectronic devices is now
at a level where they can be combined into textiles and allow
the unique capabilities of nanomaterials to be exploited to add
high added-value functionality to fabrics and garments while
retaining other desirable properties such comfort, flexibility, light-
ness and aesthetic appearance [4,6].

Many textile materials such as cotton, silk or polyester are ideal
substrates on which to integrate smart, functional nanomaterials
[3]. Various approaches have been developed to incorporate nano-
materials into textiles. The ‘bottom-up’ approach is used during
the production of fibres from which the facrics are manufactured.
By contrast, the ‘top-down’ approach is applied at the finishing
stages, for example by printing technologies, spray coating, or
impregnation. Electrospinning is a relatively new method for pro-
ducing fibres and fabrics from processed raw materials and has
been shown to be ideal for fabricating nanofibers [1,4]. In coating
technologies, various organic and inorganic compounds can be
produced as particles in the nano-size range and can be directly
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utilised. Examples that have been used include polyacetylene,
polypyrrole, polyaniline [5], Au [6], Ag [7], Pd [8], Cu [9], Si [10],
CuO [11], ZnO [12], carbon nanotube (CNT) [13,14], TiO2 [15,16],
chitosan [17], MXenes [18] and graphene oxide (GO) [19] nanopar-
ticles. Textiles modified with these nanomaterials have potential
applications in wound healing [23,24], air purification [25], drug
delivery [24], cosmetics, renewable energy generation and elec-
tronic applications such as fabrication of on-body diodes, transis-
tors and circuitry [7].

The objective of this paper is to provide the reader with an over-
view of current and applications of nanotechnology in smart fab-
rics and to speculate as to potential future uses. The aim is to
provide a comprehensive account of the latest advances in active
and passive smart textiles as well as to give an insight to the latest
research trends in modern textile industries. Possible environmen-
tal concerns associated with these novel textiles will also be high-
lighted. Hopefully, this will stimulate and inspire further research
in this field.
Current research trends for smart textile

In terms of ‘conventional’ textiles, modern fabrics have been
developed that show high levels of performance with respect to
hydrophobicity (wearer comfort), UV-resistance, antimicrobial,
antistatic, anti-wrinkle, stain-free or shrink-resistance properties.
However, these are ‘passive properties’ and researchers are inter-
ested in incorporating new fabrication and surface finishing meth-
ods to employ nanotechnology to inculcate smart and innovative
applications. Their main motive is to introduce new applications
with high efficiency without compromising on comfort, flexibility
and light weight of the fabric. Table 1 summarizes some of the
nanomaterials that have found application in this area.
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Table 1
Summary of applications of smart textile integrated with various nanomaterials and nano-devices.

Functionality Textile Substrate Synthesis Method Integration
Method

Nanomaterial Applications Ref

Antimicrobial Cotton Sonochemical In-situ
deposition

Ag nanoparticles Antimicrobial, anti-fouling [270]

Antimicrobial Cotton Sonoenzymatic Sonochemical
deposition

ZnO/Gallic Acid Biocompatible and
antimicrobial fabrics

[54]

Antibacterial/Dye
Degradation

Cotton Hydrothermal/
Sol- gel

Impregnation
method

TiO2 Self-cleaning textile [271]

Photo-degradation/
Self-cleaning

Cotton Sol-gel Photo-
deposition

Au/TiO2 film Self-cleaning textile [49]

Self- cleaning Polyester fabric Micro emulsion
Water-in-oil

Silks screen
printing

Copolymer/SiO2 nanocomposite Textile coloration [272]

Super-hydrophobicity Cotton Emulsion Spray coatings SiO2 nanoparticles Absorbed in Oil-water
interfaces

[273]

Super-hydrophobicity Cotton Sol-gel Sol-gel Perfluorooctylated quaternary ammonium
silane /SiO2

Oil Repellency [68]

Super-hydrophobicity poly-(ethylene
terephthalate)
(PET)

Chemical
deposition

Chemical
deposition

Janus SiO2 Water-repellent textiles [69]

Hydrophobicity and
Insulation

Polyester-woven
fabric

Fluorocarbon
finishing

Electro-
spraying

Silica aerogel Hydrophobic and Heat
insulating textiles

[274]

UV-Resistant Cotton In-situ
polymerization

——— PANI/TiO2 UV Protective clothes [82]

UV-Resistant Cotton Acid extraction/
Sol-gel

Spray coating polyurethane based MnO2-FeTiO3 UV Protective clothes [83]

Fire retardancy Wool fabric Precipitation Pad batch Nano-kaolinite Fire proof textile [275]
Antistatic Properties Polyethylene

therephthalate/
Cotton

Acid hydrolysis Dip Coating Aminoalkyltrialkoxysilanes Textile finishing [86]

Antistatic Properties/
Breathability/
Moisture-Wicking

Polyacrylonitrile Electrospinning ——— b-Cyclodextrin/Polyacrylonitrile wearing comfortability in
textile

[276]

Antistatic Properties Polyethylene
terephthalate

Melt-spinning ——— Carbon black/Polypropylene/polyamide
(Nylon)

Antistatic textile [277]

High conductivity Nanofiber Chemical method Electro-
spraying

Mn@ZnO/CNF Energy storage on textile [73]

High conductivity Polyacrylonitrile
nanofiber

Electro-spinning ——— Graphene oxide Wearable electronic
devices on textile

[278]

Supercapacitors Stainless steel
fibers

Twist-bundle-
drawing
technique

——— PPy@MnO2@rGO@Conductive Yarns Energy Storage on textile [103]

Supercapacitors Stainless steel
yarn

Microwave-
assisted
hydrothermal
method

——— Fe3O4/PPy Self-healing textile fibers
for energy storage

[104]

Battery Al and Cu based
fibers

Fiber drawing
method

——— Al–NaOCl galvanic cells Energy Storage on textile [115]

Battery poly ethylene
oxide

Drawing/
Extrusion method

——— LiFePO4 (cathode)/Li4Ti5O10 (anode)/solid
poly ethylene oxide (electrolyte)/PVDF

Flexible Energy Storage
fibers for textile

[279]

Light Emitting Diodes
(LEDs)

Soft Fabric lamination and
spin-coating

——— Polyurethane/poly(vinyl alcohol) (PVA)
layers

Lighting effect on textile [117]

Light Emitting Diodes
(LEDs)

polyester surface-
replicating
method

——— Poly-vinyl alcohol/SU-8 (planarization
layer)/Si-base elastomeric (strain buffer)

Clothing-type displays [280]

Photonics gold-coated
fabric

single-pulse laser
ablation
technique

——— Au nanoparticles Printable holography on
textiles

[281]

Photonics multi-walled
carbon nanotube
sheets

Chemical vapor
deposition

Anchoring MWCNT/Fluorescent dyes Fluorescent supercapacitor
fibers

[126]

Photonics computerized
Jacquard loom

——— layer-by-layer
deposition

polymer photonic bandgap (PBG) fibers smart cloths, signage and
art

[282]

Photonics Silicone fibers Extrusion Warp and
weft weaving

Geniomer 200 (polysiloxane-urea-
copolymer with a polysiloxane)

Pressure sensor based
flexible optical fibers for
textiles

[283]

Biomedical Cotton fabric Anionic exchange
method

Impregnation NanoTiO2@DNA Delivery of drugs based on
nanomedicine

[284]

Biomedical grooved solid
and hollow
hydrogel fibers

3D-printing and
casting

weaving,
braiding, and
embroidering

polylactic acid/polydimethylsiloxane
(PDMS)

Tissue engineering;
wearable or implantable
medical devices; and soft
robotics

[285]

TENGs PTFE film Sputtering/
Etching

Sputtering
method or
simple
adhesion

PTFE/Cu film Sustainable wearable or
portable electronics and
smart sensor networks

[203]

(continued on next page)

Mudasir Akbar Shah, Bilal Masood Pirzada, G. Price et al. Journal of Advanced Research 38 (2022) 55–75

57



Table 1 (continued)

Functionality Textile Substrate Synthesis Method Integration
Method

Nanomaterial Applications Ref

TENGs spring and
elastomer

——— Laser cutting
and gluing

Acrylic sheets/spring/Silicone/Carbon
nanofiber

Harvesting and sensing of
vibrational energy, such as
from vehicle, building,
waves, wind, walking, etc.

[204]

PENGs Silicone Rubber freeze-drying
method

doctor-blade
deposition

Bi1�xSmxFe1�xTixO3 /Cellulose self-powered
mechanosensation system[

[222]

PENGs micropatterned
P(VDF-TrFE)
polymers

Photolithography
process

Spin Coating poly(vinylidenefluoride-co-
trifluoroethylene) (P(VDF-TrFE)

Vibrational sensor/weather
sensor

[223]

BFCs CNT yarn vapour-phase
polymerization

Biscrolling MWCNT/PEDOT/Glucose oxidase On-body glucose energy
harvesting

[286]

BFCs Metallic Cotton
Fibers

——— Layer-by-
layer
assembly

poly(ethylenimine)/(tetraoctylammonium
bromide-stabilized Au nanoparticle (TOA-
Au NP)/tris-(2-aminoethyl)amine (TREN))n,
m-GOx: GOx/tris-(2-aminoethyl)amine
(TREN)m

On-body glucose energy
harvesting/Sensing

[251]
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Functionalities explored over the past couple of decades include
bacterial resistance [20], ease of dyeing [21], hydrophobicity [22],
flame retardancy [3], UV protection [23], colorfastness [24] and
ability for self-cleaning [25]. As described below, an area of intense
current activity is to develop fabrics, and hence garments, that can
harness, store and deliver energy to the wearer to power daily
activities. Possibilities include the incorporation of piezoelectric
generators, solar cells or biofuel cell modules. In this regard, vari-
ous kinds of nanogenerators [26] and supercapacitors [27] have
been designed and integrated with the textile. Researchers have
also developed devices which can sense external stimuli and gen-
erate electronic signals for various monitoring systems [28].

Many of these innovations began in designs for the fashion
industry as reviewed by Yetisen et al. in reference [3]. In this direc-
tion, Philips has designed a range of clothing (Bubelle) which
shows change in colour on the basis of the disposition of the
wearer. Black Eyed Peas developed the fashion clothings on the
basis of Organic Light Emitting Diode (OLED) materials so as to
decorate the wearer with range of lighting patterns and colour
effects [3]. Fashion industry also featured three dimensional
(3D)-printed bubble machine dress (Anemone), Parametric Sculp-
ture Dress, Cipher-a cloth embroided with animated black mirrors,
and a flying drone like dress called ‘Volantis’ using advanced nano-
materials [3]. Researchers focus on exploring nanomaterial based
photonics over the textile so that highly aesthetic, colourful and
smart clothes, which can change the colour of the clothe as per var-
ious stimuli, can be developed.

Although there have been a number of advances in this field,
there remain limitations and challenges which hold back the
smooth progess of this industry. The main challenges lie in the
integration process as the fabricated devices and on-body electron-
ics often spoil the smoothness, appearance, comfort and wearabil-
ity of the clothes. Moreover, the efficiency and durability of the on-
body devices and electronics needs significant improvement so
that completely self-reliant clothes can be realized. As well as loss
of performance, leaching and loss of the nanomaterials raises envi-
ronmental issues as concerns persist regarding potential
nanotoxicity.

A number of categories of smart textiles will now be discussed
in detail.
Antimicrobial textiles

The antibacterial guard to the textile is very interesting and
beneficial for human health. Various antimicrobial agents such as
TiO2 [29], chitosan [30], N-Halamine [31], Ag [32] Cu2O [33] and
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metal/hemp fibers [34] etc. have been incorporated into fabrics
for antimicrobial activities [35–37]. To develop an antimicrobial
textile, the active nano-materials can be incorporated chemically
or physically into the fabrics [38]. Muñoz-Bonilla and Fernández-
García [39] developed antimicrobial nano-materials by using vari-
ous methodologies, such as electrospinning, nano-precipitation
and self-assembly. They investigated the surface of nanostructured
polymeric films and their antimicrobial behavior.

Among themost primitive antimicrobial nanoparticles used over
textile surfaces is silver (Ag). It acts as a doping antimicrobial agent,
and reveals to have outstanding antimicrobial activity without
changing itsmechanical properties [11]. Agnanoparticlesbeingvery
small in size, contains a very high surface area which eventually
helps them to interact with bacterial proteins and inhibits their cell
growth. Ag nanoparticles also interfere with the electron and sub-
strate transport system [40]. TheAg+ ions produced on reactingwith
moisture, diffuse fast across the cell wall and cell membrane and
reach into the cytoplasm. On the cell membrane, the Ag+ ions react
with the S-containing proteins and alter the cell wall morphology
[41]. As a result, the cell membrane gets deteriorated and releases
the cytoplasm due to osmotic action. The Ag+ ions also interact with
the phosphate containing proteins to condense DNA, which eventu-
ally causes cell death [42]. The extent of antimicrobial action by Ag
nanoparticles is the function of size, surface area, concentration
and production of Ag+ ions [43]. Patil and co-workers [44] investi-
gated fast one step sono-chemical synthesis and depositionmethod
to obtain silver coated cotton nanoparticles. They revealed that the
silver nanoparticles were stable, mono-dispersed, uniformly depos-
ited on the cotton fabrics and exhibited highest antimicrobial activ-
ity. Ag doped SiO2 nanoparticles with core � corona morphology
were also explored for antibacterial and self cleaning function on
cotton fabrics [45]. These corona-structured nanoparticles can be
made graves for the bacteria by loading antibacterial compounds
such as quaternary ammonium salts on these structures [46]. TiO2

can produce reactive oxygen species (ROS) such as superoxide,
hydroxyl radical or a positive hole [47]. These ROS can interact with
the cell wall and cell membrane of the bacteria and eventually lead
to cell death. This property of TiO2 nanoparticles have been
exploited in antibacterial textiles [48]. The ROS can also decompose
the organic matter or oily dirt and hence can impart self-cleaning
property to textiles. This self-cleaning property can be further
enhanced if TiO2 is doped with some other active species like Ag,
Au or SiO2, ZnO etc. [49]. Riaz and co-workers [50] investigated the
applications of TiO2 with 3-(trimethoxysilyl) propyl N,N,N-dimethy
loctadecylammonium chloride and 3-glycidoxypropyltrimethoxysi
lane in textiles industry. They concluded that treated cotton showed
durable super-hydrophobicity, self-cleaning and antibacterial



Mudasir Akbar Shah, Bilal Masood Pirzada, G. Price et al. Journal of Advanced Research 38 (2022) 55–75
activity. ZnO nanoparticles also behave like TiO2 and exhibit
antibacterial and self cleaning properties for textiles loaded with
Gram-negative Escherichia coli and aerobicGrampositive Staphylo-
coccusaureus. Patil andco-workers [51] investigated sono-chemical
synthesis processes for production of ZnO nanoparticles and its
incorporation on cotton fabrics. The ZnO nanoparticles finished
upon cotton fabrics exhibited flexural rigidity, tensile strength,
water contact angle and air permeability. They showed excellent
deposition properties of the nanoparticles on cotton fabric yarns
along with significant antibacterial properties. Fouda and co-
workers [52] combined bio-active macromolecules secreted by
bio-synthesized ZnO and fungi nanoparticles for antibacterial activ-
ity and UV protection. They extracted proteins that have an affinity
to cap ZnO nanoparticles using an isolated fungus, Aspergillus ter-
reus. They revealed that biosynthesized ZnO nanoparticle coated
on textile could inhibit pathogenic bacterial growth with respect
to the untreated fabrics. Karthik and co-workers [53] employed
green synthesis to make ZnO nanoparticles which showed signifi-
cant antibacterial action. Salat and co-workers [54] also carried
out coating of cottonmedical textiles with gallic acid and antibacte-
rial ZnOnanoparticles. Theydemonstrated that gallic acidprovides a
safe contact of the coated materials with the antibacterial agent,
cross-linked phenolic network and human skin. Hiremath and co-
workers [55] developed magnetite nanoparticles using green syn-
thesis with the help of ultrasonicationmethodwhich exhibits effec-
tive microbe protection. Yu and co-workers [56] fabricated nano-
fiber core-spun yarn with a highly efficient antibacterial properties
with the help of electrospinning. The yarn structure possesses
almost 100% antibacterial characteristics.

Nanomaterial processed face masks have been in wide focus
since the outbreak of COVID-19. Various researchers developed
antiviral face masks and Personal Protective Equipment (PPE) kits
which could filter various pathogens including SARS-CoV-2. Tale-
bian and co-workers (2020) proposed two methods to control
COVID-19 involving nanomaterial based disinfectants and biosen-
sors, respectively on mask or PPE fabrics. They suggest that metal-
lic nanoparticles such as Ag, Cu, TiO2 etc. can be alternatives to the
traditional disinfectants viz; chlorides, quaternary amines, perox-
ides, and alcohols; owing to their excellent antiviral activities. They
also propose that highly efficient biosensors can be integrated on
face mask or PPE kits so that early detection of SARS-CoV-2 or
other viruses can be realized [57]. Lustig and co-workers (2020)
developed multi-layer face masks containing alternate hydrophilic
and hydrophobic layers. They found that the hydrophobic layer
repels the aqueous aerosol on the hydrophilic layer which inhibits
the wicking movement. These face masks are proposed to prevent
spread of virus via sneezing and coughing [58]. El-Atab and co-
workers (2020) prepared a nanoporous and flexible Si-based tem-
plate on which a flexible and lightweight polymeric membrane
was developed. The membrane was attached on a reusable N95
mask which could filter microbes upto the size of 5 nm [59]. Thus,
various nanomaterial combinations can be integrated with the tex-
tile fibers by drawing them into nanofibers or by coating methods,
so that optimum activity can be obtained [60–63].
Hydrophobicity and oleophobicity in textiles

Nature is the true designer of smart functional materials. It has
often inspired the researchers to mimic the biological phenomena.
Same thing can be observed in case of hydrophobicity phe-
nomenon. For example, the ducks are bestowed with preening oil
coated feathers; which helps them to survive in water. The
researchers mimic this natural phenomenon by using chitosan
coatings over cotton and polyester textiles. The chitosan coating
solution was developed by a precipitation method; which was
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further processed using a silicone compound so as to obtain lower
surface energy [64]. Similarly, the researchers employed pristine
and surface modified carbon nanotubes (CNTs) on the cotton fibers
so as to mimic the surface texture of lotus leaves (Lotus effect) to
produce superhydrophobic surfaces [65]. A large contact angle of
more than 150� was obtained. One more such work was done by
Ramaratnam and co-workers [66] which involved the development
of hydrophobic nanocoatings (20 nm) so as to achieve hydrophobic
fabrics. Water repellent fibers can be also developed by using
hydrocarbon mounted nanowhiskers. These materials have dimen-
sions of the order of one-third to that of conventional cotton fibers.
These nanowhiskers can be introduced in the textile fiber so as to
achieve kind of peach fuzz effect. The distance among the individ-
ual nanowhiskers is less than the size of a water drop but more
than the molecular size of H2O. As a result, significant surface ten-
sion can be realized which doesn’t allow water to spread on its sur-
face. However, the breathability can be maintained owing to the
permeability of nanowhiskers. Hence, water repellent coatings
can be developed by nanoparticulate films on the textiles. Fluori-
nated mixtures are being regularly used for this application on tex-
tile polymers [67]. Using proper processing method for tuning the
texture of fibers, superhydrophobicity can be attained without
deteriorating the comfort, softness and durability of the fabrics.
Tuning of contact angle is instrumental in attaining the hydropho-
bicity or oleophobicity. A significant contact angle of more than
130� was achieved when SiO2 nanoparticles (143–378 nm) were
used along with a water repelling agent. SiO2 nanoparticles can
also be used along with perfluorooctylated quaternary ammonium
silane (PQAS) as the coupling agent [68]. A nice contact angle of
145� was obtained which lead to excellent hydrophobicity, owing
to the diminishing of surface energy by PQAS. The oleophobicity
was also enhanced; exhibiting contact angle of 131� when a dro-
plet of diiodomethane (CH2I2) was used on the cloth surface.
Amphiphilic Janus type micro/nanoparticles were also mounted
on the textile surfaces to achieve hydrophobicity [69]. The
microparticles help in crosslinking between the fibers, while the
nanoparticles stuck to the surface of fiber.

SiO2 nanoparticles along with an epoxy-containing poly(gly-
cidyl methacrylate) (PGMA) was used for making a primary
nanocoating layer on the fabric surface which was then further
processed by different functional polymers containing amino,
anhydrido, carboxy, and hydroxyl functional groups [66]. The
researchers are trying to impart both the hydrophobic and oleo-
phobic properties to textiles. For example, SiO2 nanoparticles were
used on cotton fabrics followed by hydrophobization with poly
(dimethylsiloxane) (PDMS). As a result, a nice contact angle of
155� was obtained for a water droplet [70]. They further intro-
duced the oleophobicity in it by treating it with a perfluoroalkyl
chain. Using oil droplets, a static contact angle of 140� and a roll-
off angle of 24� was obtained. The various primary applications
considering hydrophobicity/oleophobicity are waterproofing [71],
anti-fouling [72], controlled wettability [73], self-cleaning [74],
water repellency [75], oil/water separation [76], anti-icing [77],
and anti-corrosion [78].
Ultraviolet-resistant textiles

The UV protection materials are obtained by treatment of fab-
rics with UV-blocking (UVB and UVA radiations) nano-materials
so as to improve the UV shielding. The UV protection efficiency is
measured by ultraviolet protection factor (UPF) and depends on
the nature of the fabric.

The nanomaterials responsive to UV light such as TiO2 and ZnO
are capable to scatter or absorb UV radiations [47]. These materials
are stable and non-toxic and can be stable even at higher
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temperatures. The scattering of UV light by the nanoparticles is a
function of nanoparticle size and wavelength of the radiation.
TiO2 nanoparticles have been used on cotton as the UV blockers.
The durability of the TiO2 finishing was found to be good even after
50 washings [79]. ZnO nanorods have also been used as the effi-
cient UV scattering layer on the cotton fabric [80]. Furthermore,
ZnO nanoparticles have been applied on cotton and polyester fab-
rics as UV absorbing layer [81]. Yu and co-workers confirm the
anti-UV properties of polyaniline/titanium dioxide (PANI/TiO2)
and polyaniline (PANI) cotton fabrics [82]. Dhineshbabu and Bose
endorsed that combination of MnO2-FeTiO3 nanoparticles with
thermoplastic polyurethane cotton textiles helps to block UV rays
[83]. The results confirm that nano-coated materials on the textile
fabrics possess strong UV-blocking capacity, an intelligent and dur-
able fabric as compared to uncoated materials. UV-absorbing phe-
nomena is of great application in textiles as it can be useful in
protecting the humans from harmful UV exposure.
Antistatic properties in textiles

Nylon and polyester being hydrophobic exhibits larger static
charge. Contrary to this, the cellulosic fibers have higher moisture
which decreases their static charges. Various nanomaterials have
been employed to achieve antistatic properties in synthetic fibers
viz; ZnO whiskers [84], TiO2 nanoparticles, Sb-doped SnO2

nanoparticles etc. These nanomaterials dissipate the static charge
on the textile due to their conductive nature. Some nanosols based
on silanes have also been used as antistatic agents as they absorb
moisture from air by interacting through its surface hydroxyl
groups. Commercially, poly(tetrafluoroethylene) (PTFE) antistatic
membrane was developed which has conductive nanoparticles
attached to the membrane [85]. Some researchers developed
sol � gel coatings on the surface of the fiber to achieve antistatic
properties [86]. Various hydrophobic chemical species such as
alkoxysilanes are also employed after modifying it with hydrophi-
lic compounds or amino group containing alkoxysilanes. Sol � gel-
coated textiles exhibit antistatic properties as they contain
hydrophobicity on the surface but moisture deep under the coat-
ings. Silver nanoparticles with fluorine hydrophobic finish can
achieve antistatic properties in polyester fabric [87]. ZnO nanopar-
ticle coatings have also been reported to show antistatic character-
ictics [88]. The silver nanoparticles could decrease the static
voltage of polyester fiber by 60.4%. Whereas, when Au, and ZnO
nanoparticles were combined, the decrease in the static voltage
was by 77.7%. One more study reported Sb-doped SnO2 for anti-
static properties in polyacrylonitrile (PAN) fibers [89]. These
nanoparticles when diffused into the fibers generated conductive
channels, which eventually lead to antistatic characteristics.
Electrically conductive textiles

Introduction of sensors and actuators in the textile industry is
mainly pivoted on the conductive properties of the textile material.
Conducting polymers find a vast application in this regard in textile
industry. The tuning of resistivity in these materials produces elec-
tric response on textile surface when it is exposed to an external
stimulus. These polymers can be modified to a desired property
by incorporating a variety of nanomaterials into its matrix. For
example, nanostructured polyaniline (PANI), polypyrrole (PPy)
and polythiophene (PT) are the widely used conducting polymers
which can impart enhanced mechanical strength, optical and con-
ducting characteristics. These polymers have many advantageous
features for integration with the textile industry viz; lower produc-
tion costs, flexibility and light weight.
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Many conductive nanomaterials have been introduced to
modify the surface structure of the fibers so that various smart
functionalities can be achieved. Surface processing of fibers by
conductive polymers enhances their conductivity by magnitude
of one order [90]. For example, SiO2 nanoparticles have been
blended with polyimidoamide fibers using a spinning method.
Electrically conductive channels have been developed in the
fibers when nanoparticles were introduced in polyacrylonitrile
(PAN) fibers. This lead to increased antistatic and mechanical
features [89]. SiO2 nanoparticles along with diamine (diamin-
odiphenylmethane) and montmorillonite have been used to coat
the fibers to enhance their tenacity and thermal resistance [91].
Conductive polymers such as PANI, PPy and PT can be used to
inculcate enhanced tensile strength and thermal stability in the
synthetic fiber by employing chemical oxidative deposition.
These composite fibers can find wide applications in electromag-
netic shielding, microwave attenuation and reduction of static
electrical charge. Many conductive matrices have been developed
for coating cotton to impart electrical conductivity. Shim and co-
workers [92] developed a polyelectrolyte-based coating mixed
with multiwalled carbon nanotubes for conducting textiles. Mat-
tana and co-workers [93] used a blending mixtures of different
metal nanoparticles conformally mounted around the heteroge-
neous contour of cotton fibers. The mechanical deformations in
the cotton based transistors can be mitigated by introducing
in-situ polymerization as it leads to the formation of flexible
bridges between the nanoparticles. Graphene has also been
introduced in textile fibers to inculcate the conductive features.
For example, two sets of graphene microribbons were interlaced
to prepare a fabric [94]. The as-prepared fabrics exhibited good
durability. The conductivity of this fabric was tuned and opti-
mized by changing the density of packing ribbon. Atmospheric
chemical vapor deposition (CVD) was employed to generate gra-
phene fibers while using Cu meshes as the substrate which con-
tained wires of �60 lm in diameter. Similarly, graphene can be
immobilized on a fabrics using conventional dip and dry meth-
ods. In this method graphene oxide is reduced to graphene
and multilayers are produced which enhance the fabric conduc-
tivity upto 3 folds [95]. This surface conductivity can be tuned
by choosing a proper reducing agent and its concentration. In
this case, an electrical resistivity of 103 to 106 kX-cm�1 was
achieved in the graphene coated cotton fabric [95]. Trovato
and co-workers [96] developed a versatile and new method to
achieve a dispersion in water-based paste of short sized carbon
nanotubes (CNT) for the production of electro-conductive tex-
tiles. They showed nanotubes are well dispersed on coatings
and fabricate wearable conductive materials. This suggests that
various conducting 2D and 3D nanomaterials which can be
drawn into wires and films; or coated on the textile fibers, can
find multiple on-body electronic applications.
Energy storage by textiles

Supercapacitor for energy storage applications have been
applied in the textile technology. Researchers are looking for intro-
ducing supercapacitor electrodes into the fabric without disturbing
the flexibility and wearable characteristic of the fabric [97]. Cotton
and polyester fabrics have been modified using activated carbon in
poly(methyl methacrylate) (PMMA) and polyethylene glycol (PEG).
Screen printing was adopted on polyester microfibers so as to
arrange the supercapacitor cells in a conventional symmetrical
two-electrode setup. The activated carbon coated electrodes on
cotton/polyester exhibited a gravimetric and areal capacitance of
85 Fg�1 at 0.25 Ag�1 [97]. Recently, Zhou and co-workers (2021)
[98] prepared in situ cross-linked polyvinyl alcohol/phase (PVA/
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PCM) nano-fiber materials using an emulsion-electrospinning pro-
cess. They revealed that, PVA/PCM nano-fibers possess excellent
durability, thermal stability, energy storage, improved water resis-
tance and tensile strength that leads to significant applications in
heat storage and temperature regulation as compared to the nor-
mal PVA/PCM nano-fibers. Lai and co-workers [99] analyzed a
new strategy to synthesize the wire-shaped solid-state superca-
pacitors using a soft aerogel in a facile dip-coating process. They
electro-spunned polyacrylonitrile nano-fibers hydrophilically
using glycerol on titanium metal wire to form the sacrificial aero-
gel with a huge void volume. They showed that the capillary effect
in the natural drying process can slow dissolution of template in
the solvent, and the polystyrene-sulfonate (PSS) etching may lead
to a mesoporous morphology. They concluded Ti/poly (3,4-
ethylenedioxythiophene) (PEDOT) is a very powerful source for
wearable electronics. Pan and co-workers [100] developed a flexi-
ble supercapacitor mounted textile by using CNT/PANI composite
fiber [100]. These supercapacitor textiles could do photoelectric
conversion and store energy in a stacked multilayer structure.
The carbon nanotubes have been developed by CVD which was
then woven into the fibers by first making a thicker film by stack-
ing. The as developed textile fiber was electrodeposited with PANI
to form an electrode. A gel electrolyte was used to coat the elec-
trode so that a supercapacitor is created. This material exhibited
a capacitance of 272 F-g�1 with maintenance of 96% even after
200 bending cycles [100]. Zhang and co-workers [101] looked to
enhance the performance of the textile by designing supercapaci-
tors where a metal wire is kept at the centre of the carbon nan-
otube yarn. A core or sheath shaped carbon nanotubes yarn is
formed by one-step continuous spinning which lead to the forma-
tion of linear supercapacitors.

Triboelectric nanogenerators are smart energy efficient devices
have also been developed on wearable textile [102]. The fabrica-
tion of a device involving nanopatterned PDMS structure has been
presented in Fig. 2 [3]. The polydimethylsiloxane (PDMS) nanopat-
terns developed over ZnO nanorod arrays have also been exploited
for the development of triboelectric nanogenerators. These devices
exhibit output voltage of 120 V at 65 lA, whereas, its four-layered
structure could generate output voltage of 170 V at 120 lA. There
was an insignificant drift even after 120,000 cycles which indicated
their stability [102].

Kim and co-workers [105] activated the cotton fibers by coat-
ing with carbon material for developing a energy producing tex-
tile. These processed textiles could generate electrostatic energy
frictional stimulations. An open-circuit voltage of � 60.9 V could
be obtained from these materials [105]. Some researchers
designed nanogenerators in textile by exploiting piezoelectricity
along with electrostatic forces [106]. The piezoelectric and elec-
trostatic effects could be hybridized when ZnO nanowires were
used in the textile fiber along with discharge films (Fig. 2b).
An output voltage of 8 V was obtained at 2.5 lA by this nano-
generator. This power source was capable to work in liquid crys-
tal displays (LCDs) and OLEDs [106]. Twist-bundle-drawing was
a new technique used to produce pristine soft conductive yarns
[103] (Fig. 2c). When processed PPy, MnO2 nanosheets or
reduced graphene oxide (rGO), weavable supercapacitors could
be produced. Huang and co-workers [107] developed stretchable
supercapacitors based on PPy by electrodepositing PPy on
stretchable stainless steel meshes.

One of the challenging aspect of this technology is that the fix-
ing of broken yarn electrode is quite difficult [104]. Hence, the
fibers with supercapacitors could have self-healing characteristics.
These self healing electrodes were developed by wrapping mag-
netic electrodes around a self-healing polymer shell. The broken
fibers are actually rejoined by the magnetic attraction so as to
restore electrical conductivity, while the configurational integrity
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is maintained by the polymer shell. The cotton yarns are coated
with PEDOT � poly(styrenesulfonate) nanolayers which are based
on an array of Au nanoparticles. These nanolayers made the cotton
yarns conductive and could transfer solar energy along the whole
dress [108]. The new trend in the designing of smart textiles is
the development of multifunctional nanocomposite fibers. These
structures can find applications in fiber optics and batteries in
the textile. These fiber nanocomposites can be further processed
while drawing, using different biofunctional polymers [109,110],
optical plastics [111,112], conductive polymers [113], metal alloys
[114], and electrochemical materials [115].

Flexible fiber batteries can result in promising functional tex-
tiles. Various flexible fiber batteries have been made using sim-
ple inorganic materials [115] or Li-ion [116]. A simple such fiber
battery was made using a microstructured low-density polyethy-
lene (LDPE) jacket containing a channel network all along the
fiber. A typical Al/air galvanic cell was designed inside a fiber
when a double strand of Aluminum (Al) and Cu wires acted as
anode and cathode, respectively. The spacings between the two
were filled with an electrolyte such as sodium hypochlorite
(NaOCl). The advantage with the fiber based Li-ion battery is
that it can be cut into stripes and can be used directly in the
textile. Two prototypes of textiles have been proposed using
these stripe batteries decorated fibers. In one such prototype, a
wool textile matrix was taken and fiber batteries were incorpo-
rated [115]. This fiber could lit up an LED and also a wireless
mouse could be operated [115]. Another prototype involved flex-
ible stripe Li-ion batteries [116]. The stripe batteries based flex-
ible fiber is considered as a nice method to mount wearable
power generation entities on textile. These materials could be
of great use to supply power to the LEDs and other nanogener-
ators during the fashion shows.

Organic Light Emitting Diodes (OLEDs) have been extensively
introduced in soft fiber to produce smart wearable fabrics [117].
Schottky diodes have also been introduced on fabrics. The Schot-
tky diode have been synthesized by employing a photoresist and
reactive plasma ion etching of the ZnO nanorods [118]. Textiles
decorated with Schottky diodes can find nice applications in
voltage clamping, switched-mode power supplies, and reverse
current and discharge protection. Polymer yarns twisted with
metal wires have been utilized for the development of electro-
magnetic shield fabrics. A bismuth � tin (Bi42Sn58) based poly-
carbonate cable have been designed using stack-and draw
method [114]. In this method, a molten Bi42Sn58 alloy was filled
into a polycarbonate tube and was then drawn into a cable.
Indium [119] or tin � zinc [120,121] based polymer or wire
nanocomposites have been developed using the same drawing
method. These polymer/metal wire composites have found appli-
cations in designing advanced materials and optical devices
along with electromagnetic shielding.
Photonics in textiles

The use of photonic technologies in the fashion industry
attracted a vast attention. The various optical materials viz; optical
fibers, optical films and nanoparticles have been employed to
design various attractive and smart textile fabrics. The objective
behind the use of photonic material in textile is to tune the appear-
ance of the dress by modifying the pattern of light and colour
intensity. For example, the optical films developed from periodical
dielectric multilayers can be robustly coated on the textile fibers
which could result in highly reflective and colourful designs on
the fabric when observed at varying angles. Holographic film coat-
ings can also be applied on fabrics to generate attractive 3D visual
effects [122]. Phosphorescent films have also been employed on



Fig. 2. Power production in textile: (a) Development of a piezoelectric hybrid nanogenerator from a nanopatterned TENG where PDMS nanopatterns are being templated on
ZnO nanorods (Inset: SEM micrographs of ZnO nanowires used) Reproduced with permission from Ref. [102] Copyright 2015 American Chemical Society (b) Fabrication of
yarn from the nanofibers functionalized with PPy, rGO and MnO2. Reproduced with permission from Ref. [103] Copyright 2015 American Chemical Society (c) Fabrication of
supercapacitors from self healable yarn. Reproduced with permission from Ref. [104] Copyright 2015 American Chemical Society.
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fabrics to make it glow even in the dark [123]. Photochromic and
thermochromic materials have been used in textile so as to sense
change in temperature or intensity of light [124]. Retro-reflective
inks on textile have been extensively used for security clothing.
Electroluminescent wires [125], fluorescent fibers [126], optical
fibers [127] and photonic band gap fibers [128] have also been
found to have advanced functions in smart textiles. Apart from
the aesthetics features in fashion industry, these nano-processed
fibers can perform various other functions such as temperature
sensing [129], humidity sensing [130], pressure [131], strain
[132], optical displays [133], data transfer and communication in
advanced textile [134].

Color-tunable optical fibers

Photonic band gap fibers are a type of Bragg fibers. These textile
fibers have a hollow or solid core which is surrounded by dielectric
nanolayers arranged periodically according to the varying refrac-
tive indices (Fig. 3a) [111]. The preparation of hollow-core Bragg
fiber preforms have been done using two methods [135]. One
method involves the deposition of two different polymer layers
consecutively by solvent evaporation inside a rotating polymer
cladding tube.

In second method, the two different polymer films are rolled
together inside a plastic tube. Bragg fiber preforms containing a
solid-core was developed by rolling together various polymer lay-
ers around a rod [130]. PVDF (polyvinylidene fluoride)/polycarbon-
ate or PMMA/PS have been exploited to design Bragg reflectors.
Bragg fibers have the property of propagating light by the band
gap effect [136]. Band gaps of Bragg fibers are defined as the spec-
tral regions of high diffraction caused due to the periodic multi-
layer interference effects constitute the band gap of the Bragg
fibers (Fig. 3b inset). The spectral position of the band gap is influ-
enced by the refractive index of the core and geometry of the mul-
tilayer. Thus, a spectral filtering application can be realized
through a band gap guidance mechanism [137]. This property
can find applications in textiles for optical sensing [111,138], and
photonics [128]. The Bragg fiber can selectively propagate a
62
particular range of wavelengths while all the other colours are
scattered out of the fiber. Thus, it enables to tune the colour of
the fiber [139].

A solid-core Bragg fiber hand woven on a Dobby loom was used
as a photonic textile [140]. (Fig. 3c). This fabric showed various
repetitive colored bands in different colouration. Colouration could
be also achieved in cotton fabrics by applying arrays of plasmonic
metal nanoparticles such as Ru, Au and Ag [141]. The close packing
of the nanoparticles decorated on a garment can produce various
colours in the fabrics depending upon plasmon resonance.
Sensors on textile

Various kinds of sensors can be integrated on the textile for a
variety of applications; such as, heat sensors, touch sensors, pres-
sure sensors, optical sensors, chemical sensors, olfactory sensors
etc. [142]. Carbon-based nano-materials such as carbon nanofibers,
graphene and carbon nanotubes (CNT) have been broadly exam-
ined for use as light weight, flexible, and high strain sensors, which
may be used in the fields of smart garments, health monitoring,
and human motion detection [143–145]. Carbon-based nanoparti-
cles have been produced using different techniques and are homo-
geneously dispersed within polymers for application as strain
sensors. Strain sensors were formed through direct film-casting
and electrospinning techniques [146]. Carbon-based nanofibers,
and their woven materials have been analyzed for use in efficient
performance strain sensors. Strain sensors have also been devel-
oped using human hairs coated with graphene [147]. Following
spray coating, carbonization and stabilization; silk and cotton fab-
rics were also used for strain sensors [148,149]. Currently, plasmon
based sensors have found wide applications for smart textiles.
Plasmonic sensors have been found to exhibit high sensitivities
for biochemical sensing. Various plasmonic optical fiber sensors
can be developed using the drawing methods [150]. A plasmonic
fiber sensor works on a plasmon resonance principle. A surface
plasmon mode situated on a metal/dielectric interface is excited
by an optical fiber core-guided mode due to resonance; when the



Fig. 3. Optic-Fiber and Plasmonic Fibers for textiles (a) Cross section of multilayer structure solid-core Bragg fiber (b) Light scattering phenomena in solid-core Bragg fibers.
The different band gap Bragg fibers are shown in the inset. (c) A black silk textile made of Bragg fibers. The various colors of the fibers can be tuned by blending the emitted
color and the diffracted color from ambient illumination. Reproduced with permission from Ref. [3]; Copyright 2016 American Chemical Society.
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phase-matching condition arises between the two modes at a cer-
tain frequency. The changes in the refractive index of a material on
the metal layer alters the phase-matching condition, thus spectral
dip at resonance is displaced which is recorded as a signal. Apart
from the use of conventional single- or multimode optic fibers
for the design of a plasmonic sensor, various modifications are fol-
lowed viz; etching, cladding or polishing and subsequent further
deposition of several tens of metal nanolayers [151]. These series
of methods pose various challenges for the development of plas-
monic fiber sensors, however, employing stack-and-draw tech-
nique can ensure fabrication of a good plasmonic fiber sensor
(Fig. 4). Touch sensor fabrics have also been fabricated employing
flexible capacitors in the fiber [113]. The capacitor fibers were
weaved into a 1D sensor array using a Dobby loom and was then
incorporated into a wool matrix. Fifteen capacitor fibers were
employed to design the touch sensor fabric. These capacitor fiber
when touched with a finger, there occurs change in the voltage dis-
tribution and local current which is recorded to sense the touch.
These fiber capacitors can also be integrated with other conductive
fibers or battery fibers so as to design a functional electric circuit
on the garment. This feature can find applications in pro-
grammable textiles, safety clothes, and fashion. Fabrics sensitive
to pressure have also been developed [152]. For pressure sensors,
the fibers were coated with organic conductive polymers such as
poly(3,4-ethylenedioxythiophene) and poly(styrenesulfonate)
along with a dielectric perfluoropolymer film, using a dye-
coating method. These processed fibers were woven as wefts and
warps, and the pristine nylon fibers were used to fill the rest of
matrix. The nodes where the fibers intersected formed the capaci-
tors. When the fabric was imposed 4.9 N-cm�2 pressure, its capac-
itance changed from 0.22 pF to 0.63 pF possessing a sensitivity
range of 0.98–9.80 N-cm�2 [152]. Similarly, the temperature and
humidity sensors are also incorporated in the fabrics [153].
Advanced techniques like photolithography and inkjet printing
has been employed to make the sensors woven into fabrics.

The capacitive humidity and resistive temperature sensors were
based on flexible polymer foil substrate and then incorporated into
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fabrics [154]. To develop such sensors, metal films were also
deposited on polyimide sheet substrates. The photolithography
made sensors are generally covered by a photoresist film on the
substrate. For humidity sensors, cellulose acetate butyrate is used
as a sensing medium and is spray-coated on the capacitor through
a stencil mask. In inkjet printing, the cellulose acetate butyrate in
solubilized in hexyl acetate and is printed on the substrate to get
a 5 lm thick film over it. The sensing device is covered by a gas-
permeable hydrophobic membrane. Subsequently, such sensors
are weaved into the fabrics using a machine in the weft direction
with a twill (1/8) pattern. The temperature and humidity sensors
have been introduced in the textile along the weft direction so as
to replace the weft yarn.

Conductive yarns are now used in place of warp threads so as
ensure contacts between the sensors inside a textile fabric. The
temperature sensors can be used to sense in the range from 10
to 80 �C with a 5 �C sensitivity. Humidity sensors have 10% sensi-
tivity and are operational in the range from 25 to 85% [154]. The
textiles with temperature and humidity sensors can also have LEDs
to give optical sensing response [155]. There are various other sen-
sors in textile which sense change in capacitance, inductance and
resistance. These textiles are installed with very small chips func-
tioning as analog-to-digital converters, multimeters or amplifiers.
Metal � organic frameworks (MOFs) when integrated with quan-
tum nanorods and incorporated in a cotton fabric can act as effi-
cient colorimetric sensors for sensing of toxic gases [156]. A Cu
benzene tricarboxylic acid MOF-199 was used in a fabric designed
by Matilda Ceesay which could control and capture the release of
an insecticide called permethrin. This fabric could find applications
in mosquito repellency in malaria dominant areas [157].
Harvesting human energy for electronic applications through
textiles

The human body motions, generation of body heat and fluidic
pressures are the very good sources of renewable energy
[158,159]. The sunshine may also contribute to the the overall



Fig. 4. Schematic development of multifunctional nanofibers for sensing applications; Adapted with permission from Ref. [3]. Copyright 2016 American Chemical Society.
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energy reservoir of the human body. The biomechanical motions
and body heat contribute approx. 4.8 W [160] and 67 W [161–
163], respectively; whereas the fluidic pressure may contribute
upto100 W [164,165]. The solar energy density of approx. 100
mWcm�2 is also a rich source of energy that a human body can
receive [166,167]. A human body fully installed with all the smart
electronics may require energy ranging from 200 lW to 1 W [168].
It is believed that the whole energy requirement can be met by
harnessing the human body associated energies. In recent years,
various wearable devices have been fabricated to harvest all these
energies [169,170]. The most promising ones include piezoelectric
nanogenerators (PENGs) [171–173], triboelectric nanogenerators
(TENGs) [174,175], thermoelectric generators (TEGs) [176,177],
solar cells (SCs) [178–180], biofuel cells (BFCs) [181,182], and
hybrid generators (HGs) [183,184]. All these working mechanisms
have some limitations such as bulkiness, larger weight, rigidness
etc. which make discomfort to the wearer [185]. Also, the polymer
thin films used in these harvesting devices have poor breathability
and flexibility [186,187]. So, the development of this technology
without compromising the comfort of the wearer is still a chal-
lenge. Based on the various energy sources in the human body,
the different energy harvesting mechanisms can be outlined as
below.

Biomechanical energy harvesting in textiles

Various biomechanical movements in human body viz; limb
movements, breathing, blood flow and organ movements con-
tribute the energy reservoir of human body [188]. The integration
of smart textile technology for harvesting of these energies can
provide a convenient and less costly energy backup for on-body
electronics. The various principles behind mechanical energy har-
vesting involves the electrostatic effect [189], electromagnetic
effect [190], piezoelectric effect [191,192] and tribo-
electrification [193–195]. The integration of biomechanical energy
harvesters with textiles have some critical concerns associated
with it. Firstly, the devices must be very sensitive to the various
mechanical effects so that good response is achieved. Second, the
comfort and breathability of the textile must be maintained. Fur-
ther, the rigid structure of the magnets and coils that bring in
the electromagnetic transduction brings limitation on the fabrica-
tion of wearable textile. [196] Contrarily, the piezoelectric effect
and triboelectric effect based nanogenerators can be integrated
with ease to the fabric due to their low weight and flexible charac-
teristics [197,198].
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Textile based TENGs

The physical contact between the surfaces of two dissimilar
materials produce electrostatic charges [199,200]. A perturbation
imposed by some external mechanical force can generate an elec-
tric potential between the two charged surfaces which may pro-
duce a polarization current. This polarization induced current is
responsible for the operation of triboelectric nanogenerators
[201]. Hu and Zheng [202] reported textile-based tribo-electric
nano-generators (TENGs), a self-powered sensor and mechanical
harvester for wearable process. They analyzed the effect of textile
processing methods i.e; weaving, knitting and sewing on the struc-
ture pattern and TENG’s efficiency in wash and tailor-ability. They
found various material selections suitable for TENGs and surface
alteration of conductive textiles lead to generate efficient tribo-
electricity. From last one decade, TENGs have been used as sustain-
able power sources in textile to run electric devices [203,204] or
sensors [205,206]. The integration of TENGs with textile for biome-
chanical energy harvesting involves three fabrication methods.
These methods are layer stacking, yarn intersection, and 3D print-
ing. The layer stacking has further different modes of execution
such as Single electrode mode, Contact separation mode and
Free-standing mode (Fig. 5) [207].

Textile based PENGs

Piezoelectric effect is a working mechanism that involves the
application of pressure on a surface. This effect can be integrated
with textiles for harvesting of human body associated energies.
In this working mechanism, the application of pressure alters the
charge distribution which eventually produces an internal electri-
cal field [213]. Thus, the mechanical motions of the human body
can translate into the generation of electricity [214]. The various
materials used as the piezoelectric materials since the piezoelectric
effect was introduced in 1880, are polyvinylidene fluoride based
materials and metal oxides like ZnO, lead zirconate titanate (Pb
[ZrXTi1�X]O3), and BaTiO3. Wang and co-workers (2006) used ZnO
nanowires for the first time to fabricate a PENG for energy gener-
ation from various small ambient mechanical body movements
[215]. Zhang and co-workers (2015) [216] developed PENG from
hybrid piezoelectric fiber using aligned BaTiO3 nanowires and
PVC polymer along with Cu wire and cotton fibers. While integrat-
ing this on the elbow pad, they could achieve the output voltage
and current of 1.9 V and 24 nA, respectively which is enough to
power an LCD. Lu and co-workers (2017) fabricated kilometer-



Fig. 5. Textile TENGs for harvesting biomechanical energy (a) Schematic illustration of a coaxial yarn-shaped TENG based on yarn intersection; Adapted with permission from
Ref. [208] Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim(b) Schematic illustration of a pretwisted yarn-shaped TENG based on yarn intersection; Adapted
with permission from Ref. [209] Copyright 2014 American Chemical Society (c) Schematic illustration of a 3D orthogonal woven textile TENG based on 3D interlacing or 3D
printing; Adapted with permission from Ref. [210] Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (d) Schematic illustration of a hybrid 3D printing system
and ultraflexible 3D TENG. Adapted with permission from Ref. [211] Copyright 2019 Elsevier Ltd. (e) Schematic illustration of the 3D printing process and a coaxial fiber-
shaped TENG. Reproduced with permission from ref. [212]; Copyright 2018 Elsevier Ltd.
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long piezoelectric micro/nanofibers. They exhibited nice electrical
and mechanical stability in a cyclic bend–release test. An output
voltage of 6 V was obtained on moderate bending. The authors
claim that the better efficiency is due to the proximity of conduct-
ing electrodes sandwiching the piezoelectric composite layers.
Also, the spiral structure enhances the active surface area which
increases the output voltage and results in 10–100 times better
power efficiency over the earlier reported piezoelectric cables
[217]. Siddiqui and co-workers (2018) reported stretchable piezo-
electric nanogenerators (SPENGs) based on BaTiO3 nanoparticles
embedded in polyurethane and poly(vinylidene fluoride-
trifluoroethylene) nanofibers. They achieved 40% stretchability,
and high stability upto 9000 stretching cycles. This nanofiber
SPENG exhibited open circuit voltage (Voc) of 9.3 V and short cir-
cuit current (Isc) of 189 nA [218]. Guo and co-workers (2018)
reported an all-fiber hybrid PENG developed by electrospinning
silk fibroin and PVDF nanofibers on conductive fabrics. These
PENGs exhibit outstanding power density of 310 mWcm�2 and
are flexible and air permeable to suit the wearability [219]. Qi
and co-workers (2020) [220] analyzed the modest and cost-
effective approach to synthesize extremely delicate woven wear-
able textile pressure sensors. The most significant properties of
the nano-material lead to increased contact area in stimuli with
low external pressure. The as prepared textile pressure sensor
based PENG exhibited high sensitivity, wide sensing range, and
short response time. Thus PENGs when integrated with textile
have a great potential for harvesting of ambient mechanical energy
[221,222] for the operation of on-body electronic sensors [223].
Owing to the simple structural design and flexibility, PENGs are
being associated with textiles at a great pace to realize a wearable
energy solution to human body for on-body electronics. These
devices are generally fabricated through layer stacking and yarn
intersection as demonstrated in Fig. 6 [207].
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Human body heat energy harvesting by smart clothes

Body heat is a constant source of energy originating from the
various metabolic processes, irrespective of the physical activities
of a person [225]. The average energy released by a human body
is 100–525 W [226]. Harvesting this energy by using smart textiles
can be a promising method to feed on-body electronics. Two very
important working mechanisms used to harvest body heat energy
are the pyroelectric effect [227,228] and thermoelectric effect
[229–231]. The pyroelectric effect is based on the temperature dif-
ferences with respect to time whereas the thermoelectric effect is
based on temperature differences with respect to space. However,
the pyroelectric effect is less efficient as the average human body
temperature exhibits a minimal variation with respect to time
[232]. The thermoelectric effect arising due to the spatial temper-
ature difference can contantly generate energy of �10 mW cm�2

[233]. Integrating a thermoelectric generator (TEG) on the fabric,
the body heat can transfer charge from body to the generator
(Fig. 7) [207]. TEGs have found a great potential for wearable elec-
tricity generation owing to the development of highly efficient
thermoelectric materials. Textile integrated TEGs with a high effi-
ciency [234], flexibility [235,236], stability [237], and light weight
[238] have been developed so far. The integration of TEGs on the
textile generally depends on the textile substrate and the yarns
as building blocks. The TEGs too have the limitations as the
body-TEG interface is yet to be made highly efficient.

Biochemical energy harvesting in human clothes

The biochemical energy is also important source of energy in
our body which involves many body fluids, including blood, tears,
saliva and sweat [242,243]. These biochemical forms are consid-
ered as renewable and eco-friendly sources of energy [244]. This



Fig. 6. Textile PENGs based on yarn intersection for biomechanical energy harvesting. (a)) Stretchable nano-fiber PENG with a stacked nanofiber mat and graphite electrodes;
Reproduced with permission from ref. [218] Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (b) Photograph of a 2D textile PENG by intersecting three kinds
of yarns Adapted with permission from Ref. [216] Copyright 2015 Elsevier Ltd. (c) Photograph of a textile PENG mixed weaving with cotton to form an energy elbow pad;
Adapted with permission from Ref. [217] Copyright 2017 American Chemical Society (d) Schematic illustration of an all-fiber textile TPENG; Adapted with permission from
Ref. [219] Copyright 2018 Elsevier Ltd. (e) Schematic illustration of a cotton sock using the piezoelectric and triboelectric hybrid mechanism; Embedded PZT force sensors
labeled as ‘‘PA”, ‘‘PB”, ‘‘PC”, and ‘‘PD”. Reproduced with permission from ref. [224]; Copyright 2019 American Chemical Society.

Fig. 7. Body heat energy harvesting by Yarn-constructed TEGs (a) Schematic illustration of textile TEGs based on zigzag stitch, garter stitch, and plain weave; Adapted with
permission from Ref. [239] Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (b) Schematic illustration of the 3D textile TEG without substrate; Adapted with
permission from Ref. [240] Copyright 2020 Nature Publications (c) Schematic illustration of a 3D textile TEG representing a wearable thermopile consisting of several
thermocouples connected electrically in series and thermally in parallels; Adapted with permission from Ref. [241] Copyright 2020 Elsevier Ltd. (d) Photograph of the 3D
textile TEG without substrate (1 cm Scale bar). Adapted with permission from Ref. [240] Copyright 2020 Nature Publications.
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Fig. 8. Metallic cotton fiber electrode-based biofuel cell. (a) Preparation of the
metallic cotton fiber based cathode and the glucose oxidase-metallic cotton fiber-
based anode using small-molecule ligand-induced layer-by-layer assembly. (b)
Redox process for an metallic cotton fiber-biofuel cell composed of a cathode and an
anode. (c) Demonstration of metallic cotton fiber based biofuel cell performing
different reactions at the cathode and anode; Adapted with permission from Ref.
[251] Copyright 2018 Nature Publishing.
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biochemical energy is stored in the form of glucose, fructose, and
lactate and it can contribute up to 100 W in a healthy human body
[165]. These biochemicals can be exploited as rich biofuels in a bio-
fuel cell (BFC) [207]. In a BFC, the biofuels get oxidized by the bio-
catalysts at the anode, release electrons which transfer to the
cathode through an external circuit. [245] The electrons at the
cathode reduce oxygen to produce electricity. The two most cele-
brated fuel cells in this regard are the enzyme biofuel cell (EBFC)
[246] and the microbial biofuel cell (MBFC) [247]. The EBFC is con-
sidered better in the sense as it has higher biocompatibility [248],
conversion efficiency [249], and can be easily miniaturized [250].
For the fabrication of a EBFC device on a fabric, smart textiles are
being used as the enzyme supports where as a yarn is designed
to fabricate fiber electrodes. Kwon and co-workers (2018) [251]
developed a BFC from porous metallic cotton fiber by making layer
by layer assembly of the active catalysts using small-molecule link-
ers. It was believed that these systems significantly enhance the
direct electron transfer rate between the conductive supports
and enzymes (Fig. 8). They used the Au nanoparticles owing to
its many benefits including high conductivity and biocompatibil-
ity. The metallic cotton fibers acts as the conductive substrate for
the deposition of the anodic enzymes. They also act as electrocat-
alytic cathode for the ORR reaction. The researchers tuned the
amount of Au nanoparticles in the cotton fiber so as to achieve a
3D porous structure which could offer enhanced conductivity
and ORR activity without using cathodic enzymes.
Solar energy harvesting by textiles

The solar energy which makes about 100 mWcm�2 is consid-
ered to power on-body electronics [252]. The annual capacity of
solar energy globally is 1575-49837 exajoules (EJ), which is almost
three times higher than the total global consumption of 600 EJ
[253]. Various kinds of inorganic semiconductor metal derivatives
and their hybrid nanocomposites have been exploited to harness
solar energy for various functions such as self-cleaning and energy
generation [254–258]. Harifi and co-workers [259] developed
lightweight, flexible and highly durable polyester fabric using
TiO2/Fe3O4/Ag nano-photocatalysts for photo-transformation. They
found that wettability is required for the photocatalytic reaction in
the fibrous materials. They concluded that nano-photocatalysts
mounted on the textile fabrics result in the photocatalytic conver-
sion of acetic acid to solar fuel. The solar energy can be better har-
nessed by the photovoltaic effect using highly efficient solar cells.
In these solar cells the current is produced by the photoexcitation
of the active layers to produce the electrons and holes. These solar
cells have been divided into three main generations [260,261]. Ini-
tially a wafer-based solar cell which involved a crystalline silicon
was used. Later on, thin film based solar cells were produced using
cadmium telluride, amorphous silicon, and copper indium gallium
selenide etc. Hatamvand and co-workers (2020) [262] reviewed
planar and fiber shaped solar cells. The various limitations and
challenges to be encountered for the latest technology develop-
ment were discussed. They concluded that synchronization of
wearable properties and development of planar-shaped solar cells
(PSSCs) on the textile fiber is the main challenge. However, organic
material based solar cells such as dye-sensitized solar cells
(DSSCs), perovskite solar cells (PSCs), etc. are now being widely
explored and applied for smart textile technology. The organic
solar cells [263], PSCs [264,265] and DSSCs [266] have found a
potential application for powering on-body electronics owing to
light weight, flexibility, easy fabrication, abundance and low cost.
For fabrication of textile solar cells two techniques are being gen-
erally employed i.e, layer stacking and yarn intersection as demon-
strated in Fig. 9 [207].
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Hybrid energy harvesting by textiles

As the energy requirements for the on-body smart textiles is
increasing every year, the energy from a single source falls short
of the requirements. Also, it is often improbable to use all the
energy forms from the human body. For example, on a cloudy
day or during night, the solar energy backed mechanisms can’t
work. Hence, researchers have developed hybrid generators on tex-
tile which could harness energy from more than one sources so
that the increasing demands can be met [207,287]. Say for exam-
ple, a person walks on a hot sunny day, he involves the biomechan-
ical energy, the solar energy, the body heat, and also the
biochemical energy from perspiration. Hence, for efficient harness-
ing of these energy forms simultaneously requires a hybrid gener-
ator so that a optimized power supply could be provided to smart
textiles. However, these hybrid generators are not capable to har-
vest three or more energy forms simultaneously with a satisfying
efficiency due to the complicated structural limitations. Their inte-
gration with the textiles is being seen as a promising research pro-
spect in future so as to develop a sustainable power source for on-
body electronics.

Environmental and health concerns associated with smart
textiles

The extensive use of nanoparticles and nanomaterials for the
production of smart textile raises concerns and may not be com-
pletely beneficial. Various toxic chemicals are used in their produc-
tion and nanoparticles can leach from the final products and find
their way into the water sources after washing of the textiles. To
illustrate the problem, a significant amount of Ag nanoparticles
have been observed to wash into the waters from a silver treated
blanket. Measurement showed that the blanket loaded at 109.8 ±
4.1 mg Ag kg�1 could lose almost 4.8 ± 0.3 mg Ag kg�1 into a user’s
sweat over the course of 1 h use [288]. Commercial socks contain-
ing nanoparticles with concentration 1360 lg Ag g�1 leached upto
650 lg of Ag into 500 ml of distilled water within 24 h [289]. The
extent of leaching was found to depend on the concentration of the
Ag nanoparticles in the fabric and also on the pH of water or sweat.



Fig. 9. Textile Solar Cells made by layer stacking (a) Schematic illustration of a stitchable textile Organic solar cell; Adapted with permission from Ref. [267] Copyright 2014
Elsevier Ltd. (b) Schematic illustration of a textile organic solar cell built on a polyester fiber-based substrate; Adapted with permission from Ref. [268] Copyright 2017
Elsevier Ltd. (c) A washable textile organic solar cell; Taken from Ref. [180] Copyright 2017 Nature Publishing. (d) Schematic illustration of a solid-state textile DSSC by yarn
intersection; Adapted with permission from Ref. [269] Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Another analysis showed that a fabric containing TiO2 nanoparti-
cles at levels ranging from 2.9 to 8.5 g Ti kg�1 could leach TiO2 at
amounts dependent on different pH [290]. Acidic sweat leached
63 ± 13 lg g�1 L�1 , whereas, 38 ± 13 lg g�1 L�1 was found in
the alkaline pH [291]. Ag � chloro complexes were detected where
the sweat contained high concentrations of chloride ion. Ag
nanoparticles are known to be hazardous to aquatic biota including
fish and plankton [292]. The antimicrobial nature of Ag nanoparti-
cles may also disrupt the microbial habitat in sewage treatment
plants [293]. Solid nanoparticles also pose concerns in the work-
place as they may get inhaled and get into the bloodstream [294].

It is clear thatmuchmore research is required to fully understand
these concerns. Garments manufactured under different conditions
may have different stabilities and durability and so lose material at
different rates. Considering the severity of these assessments, peo-
ple need to bemuchmore aware of the influence of toxic nanomate-
rials on the environment. Manufactures need to ensure that their
nanomaterial based textiles are highly durable. At the same time,
the general public needs to be educated regarding the proper wash-
ing methods and encouraged to use low temperature, low agitation
washingwith anappropriateorganic detergent and to avoid tumble-
drying. These measures may mitigate the environmental impact.
Further, recycling the processed textilewill decrease the production
and release of toxic nanomaterials fromdisposal. Aswell as the con-
sumers, since nanomaterial based textiles are becoming a blooming
economy, concerns regarding health risks of the workers whoman-
ufacture themneed to be addressed. Hence, proper government reg-
ulations regarding this industry and market need to be put in place
so that these excitingdevelopments canbe realizedwithin the limits
of environmental safety.
Future directions

From the above discussion, it is clear that the incorporation of
high performance, miniaturized microprocessors in textiles can
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do wonders in terms of collecting, processing and using informa-
tion throughout smart garments. These smart textiles promise
breakthrough applications in the health, security, and fashion
industries. Garments integrated with specialized sensors can mon-
itor the wearer’s physiology and body posture which can draw
attention to and correct problems or abnormalities before they
become serious. Some areas where advances could be made in this
direction include the installation of pressure and posture sensors in
shoes to indicate incorrect posture or body-weight. Vibration
nanomotors in the garment could enhance the wearer’s blood cir-
culation and can also stimulate weight loss. Wearable capacitors
can provide power to all the external or internal devices in a
human body. One important application, particularly in hot cli-
mates but also in patients suffering from fever, which can be
achieved through smart textile is body cooling. For this purpose,
very efficient dense fabric batteries or solar cells require to be
designed which could promote efficient cooling of the body.
Infra-red radiation reflectors can also be useful in this application.

The smart textiles have a great scope in fashion industry and
introduction of newer technologies is always welcomed. As dis-
cussed earlier, smart textiles have been found used for fashion in
terms of luminescence, colours, holography, by the use of plasmon-
ics, photonic crystals, LED displays etc. These garments could be
further integrated with sensors to measure temperature, touch,
humidity, light intensity or movement. Dynamic graphics can also
be realized if wearable fiber optics can be developed to create dis-
plays. A fabric developed by Cambridge Consultants called Xel flex
fabric which contains optical fiber sensors to detect the move-
ments of the human body [3]. This fabric can find application in
sports coaching and physiotherapy. Hence, fully functionalized
garments could be realized in the near future which could contin-
uously monitor the wearer’s health, movements and other activi-
ties like sports and threats. In this regard, Organic Light Emitting
Diodes (OLEDs) have been exploited for formation of thin films.
Quantum-dot light-emitting diodes (QLEDs) have also been consid-
ered as they have an extra active layer with respect to the OLEDs
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[295]. These QLEDs are expected to consume lesser energy and
could produce larger luminescence. The better optical properties
could be integrated with other optical components such as diffrac-
tion gratings and lenses to produce mesmerizing effects [296].
Photonic crystals have different dielectric constant and refractive
indices along the three orthogonal directions from where band
gap fibers can be fabricated. This feature can be explored to design
thin band optical effects. Holography has also a great scope for
development in the textile industry [281]. Holograms can be pro-
jected into helmets or onto glasses for virtual reality applications.
Also holographic sensors have been developed on the fabrics to
monitor metabolic activity [297]. Metamaterials are extraordinary
structures developed by combining nanomaterials in periodic
structures at length scales shorter than the desired wavelength
[298]. They have negative refractive indeces which may allow
the design of ‘cloaking devices’ for making objects invisible as elec-
tromagnetic radiation cannot pass through the material. Such
devices have been developed at microwave [299] and THz frequen-
cies [300], but invisibility garments in the visible region are yet to
be realized. Textiles can be integrated with some specific receptors
or biomarkers and fluorescent dyes which can perform rapid and
timely physiological diagnostics [301]. In the future, all these
applications based on display and sensing characteristics will be
operated through smartphones [302]. Flexibility, comfort and
breathability are major concerns associated with the integration
of smart nanomaterials in textile as without them, garments will
not be acceptable to the customer. Researchers are therefore focus-
ing on strategies to maintain these desirable charactersitics while
processing the textile. Traditionally, cotton is often considered
the best choice due to its smoothness, absorbency and breathabil-
ity. However, its wide use in fashion technology is limited due to
its low strength, easy wrinkling, soiling and flammability [303].
Synthetic counterparts are available without these limitations
but they are not as comfortable as cotton. Hence, researchers aim
to combine the advantageous features of cotton with those of syn-
thetic fibers [304] to produce nano-engineered functional textiles
compromising on the comfort of the clothes [108]. Guan and co-
workers are addressing this by fabricating 3D conformal porous
microstructured textiles. They demonstrated the influence of solu-
tion concentration, temperature, relative humidity, nanomaterials,
and fabric substrates on the porous structure, flexibility and dura-
bility of the product and claim that their strategy for nanomaterial
integration on textile can realise the development of wearble fab-
rics with high flexibility, comfort and functionality [305].
Conclusion

The work described in this article shows that the production of
smart textile materials has seen tremendous advances in recent
years but that there is the potential for even more useful products
to be developed. The advances in fabrication methods for nanoma-
terial based textiles, the potential market demand and subsequent
scope for research has attracted many newworkers to the area. The
last two decades or so has seen the integration into textiles of var-
ious nanomaterial based structures such as metallic or metal oxide
based nanoparticles, carbon nanotubes, nanoelectronics and opti-
cal components including Bragg diffraction gratings. These materi-
als were prepared using various fabrication methods such as spray
coating, impregnation, lithography, spray coating, fiber drawing or
weaving. To produce effective electronic or optical functionalities,
the surfaces of textile fabrics have been modified with nanomate-
rials in order to produce flexible and wearable garments with high
aesthetic appearance so as to be attractive to the consumer. Appli-
cations that have been realized by nanotextiles include water
repellence, antibacterial properties, UV protection, odor control,
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wrinkle resistance, durability, and antistatic properties. More
advanced applications which are yet to be realized on a large scale
involve energy storage, sensing, drug release, optics, electronics
and photonics. Along with the bloom of the smart textile industry,
environmental concerns are also magnifying. So, life-cycle assess-
ments and the potential toxicity of leached nanomaterials from
textiles needs to be critically evaluated. It has been reported that
production of textiles and apparel contributes approx. 10% of the
total carbon emissions in the environment. Textile dyeing con-
tributes 17–20% to water pollution. The accumulation of nanoma-
terials in the water bodies due to leaching from textile seems
inevitable so that action is needed before their use becomes wide-
spread, in contrast to the way that microplastics were allowed to
be released uncontrolled into the environment. Hence, the envi-
ronmental controls need to be put in place. Awareness in this
regard must be inculcated in the general public so that only safe,
recyclable and climate neutral nanotextiles are produced.
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