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Abstract: White blood cells (WBCs) are essential components of the immune system in the human
body. Various invasive and noninvasive methods to monitor the condition of the WBCs have been
developed. Among them, a noninvasive method exploits an optical characteristic of WBCs in a
nailfold capillary image, as they appear as visual gaps. This method is inexpensive and could
possibly be implemented on a portable device. However, recent studies on this method use a manual
or semimanual image segmentation, which depends on recognizable features and the intervention of
experts, hindering its scalability and applicability. We address and solve this problem with proposing
an automated method for detecting and counting WBCs that appear as visual gaps on nailfold
capillary images. The proposed method consists of an automatic capillary segmentation method
using deep learning, video stabilization, and WBC event detection algorithms. Performances of
the three segmentation algorithms (manual, conventional, and deep learning) with/without video
stabilization were benchmarks. Experimental results demonstrate that the proposed method improves
the performance of the WBC event counting and outperforms conventional approaches.

Keywords: deep learning; image registration; semantic segmentation; video stabilization; white blood
cell counting

1. Introduction

White blood cells (WBCs), also called leukocytes, are important components of the immune
system in the human body, since their deficiency could cause various health conditions, such as
sepsis [1], infectious diseases [2,3], and cancer [4]. The WBC monitoring usually requires the extraction
of a blood sample by an experienced medical staff using specialized equipment. Patients who need
continuous monitoring of the WBCs daily, for conditions such as neutropenia, have drawbacks
due the equipment’s inefficiency and inconvenience. To improve the WBC monitoring method,
various noninvasive techniques based on optical methods have been proposed. One method assesses
the vessel in the oral mucosa [5], and another one is based on optical characteristics in nailfold
capillaries, where WBCs are recognized as visual gaps or particles [6]. This study focuses on the
nailfold capillary images because it could implement the WBC monitoring system while improving
both patient comfort and measurement accessibility.

When the diameter of a WBC reaches that of the capillary through which it flows, the blood flow
along that capillary is interrupted by the WBC, causing a gap in a capillary image. A sequence of
images with gaps allows for seeing the WBCs flowing through the capillary, as illustrated in Figure 1,
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where each gap is considered as a WBC event. Using the visual gap characteristic, Bourquard et al. [7]
proposed a semi-automated pipeline for gap numeration to achieve the noninvasive WBC analysis
using a portable and low-cost capillaroscope and an image processing method, namely, spatiotemporal
representation and the Radon transform. However, they conducted the capillary segmentation
process in a semi-manual way. As manual processing is substantially slower than a computerized
processing, it represents a bottleneck for automated analysis. To prevent this, an automated image
segmentation approach based on a deep learning algorithm could be a solution, since the convolutional
neural networks have fostered efficiency in computer vision tasks, including object recognition [8,9],
detection [10,11], and segmentation [12–15]. For instance, the U-Net has been widely utilized for
image segmentation [16,17] given its high performance and efficient use of GPU memory [18].
Likewise, we also adopt the U-Net [13] for our semantic segmentation problem aiming to automate
capillary identification.

Additionally, inaccurate capillary detection and miss-detection of the WBC event might occur as
a small finger motion is magnified when seen through a microscope. To mitigate this type of artifact,
we apply motion compensation while also adopting an efficient version of image registration for
translations [19] that reduces the capillary motion and accumulates data in case of a large unwanted
movement in the recorded capillary videos [20]. The main contribution of this study is the automation
of WBC event counting using a deep learning approach supported by video stabilization for robustness
against motion artifacts. The proposed method consists of an automatic capillary segmentation method
using deep learning, video stabilization, and WBC event detection algorithms.

The remainder of this paper is organized as follows: In Section 2, related works about semantic
segmentation and video stabilization are presented; details of the proposed method are explained in
Section 3; Section 4 provides the results of the experiment settings and results; Section 5 provides the
discussion; lastly, Section 6 gives the summary and conclusions of this work.

Figure 1. Example of a WBC event (black ellipse) over a sequence of nailfold capillary images.

2. Related Work

2.1. Semantic Segmentation

Image segmentation aims to extract useful regions from an image as a set of contours or
sub-images for subsequent analysis and interpretation. To extract regions of interest, thresholding
approaches [21,22] can be used to determine pixel intensities that discard the background. In addition,
clustering approaches, such as the K-means [23], group similar pixel intensities over a region. However,
these approaches are sensitive to the image characteristics and scenes, such as shaded images and the
presence of multicolored objects, thus undermining their performance.

Since the introduction of convolutional neural networks [24], the consistency of visual
recognition has substantially improved in many visual tasks, including classification [8,9,25,26],
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detection [10,11,27], and segmentation [12,28–31]. Such deep learning approaches leverage high-level
features of input images, providing robustness against noise compared to conventional methods.
Deep learning using convolutional neural networks has been exploited in various applications of
medical image processing including segmentation [13–15].

We adopt u-net architecture for capillary segmentation because it uses global location and context
information simultaneously, and works well with few training samples [13]. The u-net can be trained
using the few data images in end-to-end manner, where the whole image in the forward pass can
directly produce segmentation maps in order to retain the full context of the input images [13].

2.2. Video Stabilization

Camera motion while recording video causes the captured objects to move accordingly.
When unintended, such motion can cause noise such as image blurring, which undermines the quality
and consistency of the recorded image. To prevent this problem, stabilization improves the quality of
video by eliminating unintended movements, including translations and rotations. Various approaches
are available to remove motion artifacts from video. As the proposed method relies on video recorded
by a human operator, the video is likely to include unwanted movements. Moreover, noise is amplified
in the video because the capillaroscopy device magnifies the capillaries during recording. Therefore,
video stabilization becomes essential for processing and analyzing capillary videos.

We only assume device translations during video recording [32]. Therefore, video stabilization
in the proposed method should determine translation vectors. Given that these vectors contain the
directions and magnitudes of camera movements, it is possible to fix the capillary positions by shifting
the frames based on the vectors along the opposite direction. To determine the translation vector
between two consecutive images, we adopt a computationally efficient version of an image registration
method [19]. Specifically, given two images, Guizar-Sicairos et al. [19] determine the translation
vector that maximizes the cross-correlation between them. To this end, each image is expressed in
the frequency domain by applying the fast Fourier transform. Then, elementwise multiplication is
performed between the converted images, and then the result is reverted back into the spatial domain.
For image registration, capillary labels corresponding to frames are exploited rather than raw frames
to mitigate the impact of noise.

If large camera movements occur, image registration may fail in the worst case. The magnification
in capillary videos of small hand motions can produce such large camera movements, representing a
potentially severe problem in the proposed method. A previous study [20] has addressed this
problem by accumulating movements. Likewise, we adopt the same approach to reduce the extent of
large movements.

3. Proposed WBC Counting Method

The proposed WBC counting method is illustrated in Figure 2, where the capillary video and
predicted events are its input and output, respectively. During frame extraction, the input video
is preprocessed to extract regions of interest containing capillaries for the subsequent analysis.
Capillary segmentation extracts the capillaries and removes the background from the video. Then,
coordinate determination selects the coordinates from the labels of each capillary to extract the
corresponding pixel intensities. Video stabilization is applied using image registration based on the
translation vectors acquired from the capillary labels. A spatiotemporal representation transforms the
intensities acquired from the selected coordinates of each capillary in a frame into a 1D array, and the
set of arrays obtained from all the frames are represented as a 2D matrix, whose x- and y-axes represent
time and the corresponding intensity array, respectively. Finally, event detection predicts the events in
the spatiotemporal map using the Radon transform and local maxima detection. Below, we detail each
step of the proposed method.
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Figure 2. Overview of the proposed WBC counting process.

3.1. Frame Extraction

In this step, all the frames are extracted from an input video. The capillaries in raw images
are hardly distinguishable from the background (see Figure 3a), which results in poor capillary
segmentation and event counting due to their low-quality information. To enhance the contrast for
better visibility of capillaries in a video, we apply histogram equalization to the red, green, and blue
channels in the frames (see Figure 3b).

(a) (b) (c) (d)

(e) (f)

(g) (h)
Figure 3. Cont.
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(i)

(j)
Figure 3. Application of the proposed WBC event counting method. (a) raw frame; (b) processed
frame; (c) labels of capillaries; (d) coordinates of labels; (e) ST maps from capillaries; (f) processed
ST maps; (g) polar maps obtained by applying Radon transform; (h) detected local maxima from (g);
(i) local maxima selected as base events; (j) reconstructed lines according to events in (i).

3.2. Capillary Segmentation

To extract the representative information from the capillaries captured in a video, the capillary
labels should be determined to characterize their locations and appearances. To this end, we adopt
deep learning segmentation and compare its performance with a conventional segmentation method.

3.2.1. Deep Learning-Based Segmentation

For a deep learning-based segmentation of the capillaries captured in a video, we adopt the
semantic segmentation model introduced in [13]. Given a frame image (see Figure 3b), the model
outputs pixelwise capillary labels (see Figure 3c), which determine the locations and shapes of the
capillaries. Specifically, an RGB image is fed to the model encoder and compressed into a dense
representation as a multidimensional vector through consecutive convolutional and pooling layers.
Then, the model decoder up-samples the compressed representation through consecutive convolutional
and up-sampling layers.

Figure 4 describes the model architecture of the proposed deep learning segmentation. Each box
represents a feature map with dimension [c, w, h], where c is the channel size (a value on top of
the box) and w and h are the width and height (values on the side of the box) of the feature map,
respectively. Each colored arrow denotes the corresponding operation (see the figure legends) between
the connected feature maps. A gray arrow indicates concatenation, which is followed by a 2 × 2
up-convolution represented as a green arrow. An orange arrow represents a 2 × 2 max-pooling layer
to reduce the spatial size followed by a 3 × 3 convolutional layer represented as a blue arrow. At the
end of the model, the dark yellow arrow indicates a 1 × 1 convolution to map each multidimensional
channel onto a scalar, such that the feature map is converted into a single-channel map, which contains
the pixelwise labels of the capillaries in the input image.
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We use a dataset containing 1358 capillary images and the corresponding ground-truth labels for
training and validating the model. We divide this dataset into 950 and 408 images for the training
and validation sets, respectively. After training the model for 100 epochs with Adam optimization on
binary cross-entropy loss, learning rate of 0.001, and batch size of 3, 91.11% validation accuracy was
obtained regarding the mean intersection over union.

Figure 4. Proposed deep learning model for capillary segmentation.

3.2.2. Conventional Segmentation

As a benchmark test, a conventional segmentation algorithm is implemented based on the
capillary optical characteristics. Since a capillary appears as a red region such as Figure 3b, the color
information of the region could be utilized for the segmentation process. Therefore, pixels in a capillary
area contain less green and blue components than those from the background. For the segmentation,
capillaries are labelled by subtracting the sum of the green and blue components from the weighted
red component in an image to achieve a relatively large contrast with respect to the background.
In addition, the subtraction results are squared to highlight the intensities of the capillary and discard
those of the background, whose intensity is low in general. The conventional segmentation algorithm
for an images is implemented as follows:

Label = ReLU(λIR − (IG + IB))
2 (1)

ReLU(x) = max(0, x) (2)

where λ is the weight of the red component and IR, IG, and IB denote the intensities of the red, green,
and blue components of an image. Weight λ (1.5 in this study) compensates for the intensity of the red
component by the summation of the green and blue components.

3.3. Video Stabilization

To minimize unwanted motion artifacts in a capillary video stream, the translation vectors of
video frames corresponding to a reference frame are determined [20]. A motion artifact is measured
between two frames; current frame and reference frame. The video stabilization process estimates how
much a frame has moved from the reference frame, where the amount and direction of the movement
are represented as a translation vector. By adding the translation vectors to the frames, the capillary
positions could be corrected to keep the initial position as the reference, which is usually the first
frame [32]. Figure 5a–c illustrate an example of the video stabilization process. Considering the first
frame in Figure 5a as the reference, the frame in Figure 5b is aligned to the position of the reference
frame. The stabilized frame in Figure 5c shows the aligned capillaries to the reference locations.
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However, it is empirically observed that the video stabilization process shows poor performance
when the amount of the translation becomes large. As the amount of the translation has more chances
to become large as time goes given a fixed reference frame, there would be more chances for the video
stabilization process not to show the best performance if the first frame is consistently used as the
reference frame. In the sense, a simple yet effective way to keep the amount of the translation small
would be to periodically update the reference frame every p frames (p is set as 50), not to fix the
reference frame to the first frame. It could alleviate the performance degradation issue because the
periodic update shortens the time interval between frames to be stabilized and a reference frame and
therefore the amount of the translation could be kept small.

When a reference frame is updated, subsequent frames are stabilized with respect to the next
reference frame. However, the video stabilization process translates the positions of capillaries in
the subsequent frames to the position of those in not the first frame but the next reference frame.
To stabilize the subsequent frames with respect to the first frame, the video stabilization process also
keeps a history of the translations among all reference frames. When the translation between the first
and the last frames is equivalent to the sum of all translation vectors, a single variable, denoted by
“reference” in Algorithm 1, would be enough to represent the history.

It is empirically observed that a capillary video is better stabilized with the translation vectors
acquired from not raw frames but the labels obtained from the segmentation process detailed in
Section 3.2. For the reason, the video stabilization process stabilizes all capillary videos based on the
translation vectors from the labels.

In addition, the video stabilization algorithm is also applied to the labels. Even though the
capillary segmentation could generate such a great quality of capillary masks, it would be much better
to utilize multiple capillary masks as an ensemble for more robust masks. However, the multiple
capillary masks include capillaries in different positions across time. To keep all capillaries of the
masks in the same position, the same video stabilization process is applied to the masks.

Algorithm 1 describes the video stabilization process, where “get_translation_vec” returns a
translation vector between a reference and an image, and “apply_translation” translates the image
based on the translation vector.

Algorithm 1: Pseudo code for video stabilization.
images← postprocessed images
N← number of images
reference← images[0]
refVec← [0, 0]
p← 50
i← 1
while i < N do

trans_vec← get_translation_vec(reference, images[i])
images[i]← apply_translation(images[i], trans_vec + refVec)
if i mod p == 0 then

reference← images[i]
refVec← refVec + trans_vec

end
i← i + 1

end
Result: images, which are stabilized



Sensors 2020, 20, 7101 8 of 22

(a) (b) (c)
Figure 5. Example of the video stabilization process: (a) the first frame set as a reference, (b) a frame
before the stabilization, and (c) a frame stabilized based on the reference. The yellow rectangles
indicate the initial position of capillaries in the reference frame. Note the shift of the frame after the
stabilization process.

3.4. Capillary Coordinate Determination

A label obtained from capillary segmentation includes multiple pixels, but they are not ordered
or all of them are not needed for the analysis. Therefore, the important pixels and their orders should
be precisely determined. Unlike the method in [7], which applies an interpolation [33] with manual
selected information, the automatically selected pixels along the boundary of a capillary with a label
are utilized to orderly extract the internal, external, and intermediate coordinates corresponding to
the capillary.

To determine the coordinates, a virtual rectangle around the labelled capillary is adjusted to
establish a region of interest, as illustrated in Figure 6a. The rectangle fully covers the short horizontal
side between the two branches of a capillary, and all the coordinates in the internal boundary of each
capillary are selected, as illustrated in Figure 6b. Then, an equal number of external coordinates are
also chosen, and the external boundary is divided into as many coordinates as the internal coordinates
like Figure 6c. This procedure enables the internal coordinates to be paired with the external ones.

Using the internal and external coordinates, the intermediate coordinates are created with
the connecting lines across the paired internal and external coordinates, similar to the method
in [7], as illustrated in Figure 6d. Using all the determined coordinates, a 1D array is constructed,
whose length is the number of the internal coordinates and each element is the average intensity
of the corresponding internal, external, and intermediate coordinates. Figure 6 illustrates all the
processes of the capillary coordinate determination described in this section, and Figure 3c,d display
the results example.

(a) (b) (c) (d)
Figure 6. Example of capillary coordinate determination. (a) virtual rectangle determining
capillary region of interest; (b) internal coordinates (red dots); (c) external coordinates (blue dots);
(d) intermediate coordinates (green dots) between pairs of internal and external coordinates.
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3.5. Spatiotemporal Representation

Given a frame, the coordinates of each capillary (Section 3.4) are used to obtain a capillary vector
that represents the intensities of the capillary. By concatenating the vectors across all frames over time,
we obtain a matrix that represents the intensities of a capillary throughout the video, establishing what
we call an ST map. The x- and y-axes of an ST map indicate the time and capillary vector corresponding
to time, respectively. An element of a capillary vector has a high value if it corresponds to the area of
the event containing the WBC. As the element of an event moves along the capillary vector over time,
the event appears as a line in the ST map. The problem of counting visual gaps is thus a problem of
counting lines in an ST map. An example of events appearing in an ST map is shown in Figure 3e.

The raw ST map is sensitive to the quality of the capillary image. Therefore, the ST map should
be processed to highlight the event information and eliminate ambient noise. First, we apply a
median filter to the ST map to remove weak event information. Then, the unnecessary background
is eliminated to highlight the event lines in the ST map. To this end, each row of the ST map is
zero-meaned, and the resulting negative values are zeroed. To enhance the contrast between the
background after the removal and lines in the ST map, the derivative of the intensities of the lines is
calculated while applying the Sobel operator to the processed ST map. As a result, the lines in the ST
map become more distinguishable, as illustrated in Figure 3f.

3.6. WBC Event Detection

To detect events occurring as lines in an ST map, we adopt a local maxima detection method using
the Radon transform, which was introduced in [7]. The Radon transform maps an image given in
Cartesian coordinates into an image given in polar coordinates which is called a polar map. The Radon
transform is defined as

R(θ, z) =
∫ ∞

−∞
f (s sin θ + z cos θ,−s cos θ + z sin θ)ds (3)

where f (i, j) and R(θ, z) are a pixel of a zero-centered image at (i, j) in Cartesian coordinates and a
polar map at (θ, z) in polar coordinates, respectively. The map converts lines in an image (ST map)
into peaks, as illustrated in Figure 3g. The lines of a processed ST map are thus represented as peaks in
the polar map. The peaks in a polar map are illustrated in Figure 3h. By detecting the local maxima in
a polar map, the WBC events in a video sequence could be identified.

Given its thickness, a line in an ST map might lead to duplicate detections in the corresponding
polar map, as the line is not an ideal one with zero area. To prevent the duplicate detection, some events
are eliminated. First, the local maxima whose angle in the polar map contains most events are selected
as base events and each local maximum except the base events is removed if its reconstructed line
crosses any reconstructed lines of the base events in the ST map. Otherwise, the local maximum
is added to the set of base events. The resulting base events are illustrated in Figure 3i, and the
reconstructed lines from the base events are shown in Figure 3j.

4. Experiments and Results

4.1. Experiment Settings

To validate the proposed method, three capillary videos, denoted as videos 1–3, were recorded
from three healthy subjects by experts using a portable capillaroscopy device. Each RGB video was
recorded for 30 s at 30 frames per second and 640 × 480 resolution. Therefore, the input for the
proposed model is a 900 × 480 × 640 × 3 array. Among the capillaries in each video, the best two were
selected to ensure a clear shape in the video for segmentation. The WBC events were counted by four
experts to establish the ground truth. We obtained the Korean IRB approval (No. P01-201903-11-02) to
conduct the experiments involving human participants.
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As hyper-parameters for the segmentation methods in Section 3.3, the labels were binarized with
empirical thresholds of 150 and 80 for the deep learning and conventional segmentation, respectively.
Figure 3b,c respectively show a frame of a video and the averaged label of the outputs using deep
learning segmentation across all frames.

Hereinafter, the following abbreviations are used for the methods, that is, the method names with
and without ‘S’ indicate a video with and without stabilization. ‘Manual’, ‘Conventional’, and ‘DNN’
denote that the capillary labels in segmentation process are obtained manually, the conventional
segmentation, and the semantic segmentation based on a deep learning algorithm, respectively. For the
evaluation of the proposed methods, the six combinations of the stabilization and segmentation
methods are explored to evaluate the performance of WBC event counting. The configuration of each
combination method is showed in Table 1.

Table 1. Method configuration.

No. Method Segmentation Method Video Stabilization

1 Manual Manual No
2 Conventional Conventional No
3 DNN DNN No
4 S-Manual Manual Yes
5 S-Conventional Conventional Yes
6 S-DNN DNN Yes

4.2. Results

Box-plot in Figure 7 shows the variability of the WBC event counting among the experts and
the orange line inside each box indicates its median value, while the different colors of ‘x’ show
the number of WBC events predicted by each methods and ‘cap.’ means capillary. In cap. 2 and
cap. 5, only four methods were presented because the other two, the Traditional and S-Traditional
methods, failed to detect the capillary. It can be seen that our proposed method, denoted by the orange
cross-mark, consistently predicts the WBC event number around the median value as the box for each
capillary. It shows that the stabilization process and automatic segmentation using DNN improve the
performance of predicted events.

Figure 7. Prediction variability for the capillary videos using all the different segmentation methods.
The x-axis denotes the index of each capillary from videos 1 to 3, and the y-axis the number of
predicted events. Each ‘×’ mark indicates the number of predicted events using the corresponding
segmentation and video stabilization. The boxplot for each capillary is obtained from the events
counted by four experts.
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In addition to the number of predicted events, Figure 8 shows that the proposed method correctly
predicts the locations of events. In other words, a method may predict events in incorrect positions
from an ST map, as shown in the results obtained from other methods. If a method predicts some
events in incorrect positions, and, despite the number of predictions corresponding to the ground
truth, the method could not ensure success for other input images. The proposed method captures
all the lines in an ST map with correct position and number, further verifying its detection accuracy.
The reconstructed lines from the ST maps of all the evaluated videos are given in Figures A1–A6 in
Appendix B.

Figure 8. ST maps and reconstructed events (cyan lines) for ST maps detected by event counting for
the combinations of video stabilization and capillary segmentation for capillary 4.

5. Discussion

5.1. Main Contributions

In this paper, we propose an automated method for detecting and counting WBCs that appear
as visual gaps in nailfold capillary images. The proposed method consists of an automatic capillary
segmentation method using deep learning, video stabilization, and WBC event detection algorithms.
There has been no specific previous research on the WBC event detection using the nailfold capillary
images. The most similar work has been conducted by Trinidad et al. [34]. However, our work has
two major differences from theirs. While our work implements the automatic segmentation method
and exploits only capillary-relevant intensity information, they used bounding box and brightness
variations which could affect WBC count performance with noises in the background of capillary
videos [34]. On the other hand, as the proposed method exploits intensities only in capillaries, it has
less chance to be affected by noises in the background and therefore would be robust to the background
noise. Since there is no specific previous work, the performances of the three segmentation algorithms
(manual, conventional, and deep learning) with and without video stabilization were compared in this
study. Experimental results demonstrate that the proposed method improves the performance of the
WBC event counting and outperforms the conventional approach.
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5.2. Segmentation Method

The semantic segmentation method uses a deep learning approach that could contribute to the
automation of WBC event counting while replacing manual capillary segmentation. From left to the
right in Figure 9, video frames and their corresponding capillary labels estimated using the manual,
conventional, and deep learning segmentation are displayed.

(a)

(b)

(c)
Figure 9. Capillary segmentation for videos (a) 1, (b) 2, and (c) 3. From left to right: the raw frame,
manual segmentation, conventional segmentation, and (deep learning) semantic segmentation are
displayed. The selected capillaries are indicated by the yellow arrows.

The labels obtained by the experts and using the deep learning are similar. Likewise,
methods ‘S-DNN’ and ‘S-Manual’ in Figure 10 and the Figures A7–A12 in Appendix A show that
labeling using the deep learning approach is close to that obtained manually. Therefore, event counting
based on the deep learning has comparable performance to that based on the manual segmentation.

Furthermore, the deep learning approach is more reliable compared with the conventional
approach for the automatic capillary segmentation. Figure 9 shows that the conventional segmentation
is relatively sensitive to the image quality, whereas deep learning-based segmentation is more
robust. As a matter of fact, some capillaries are not reflected in the conventional labels, as shown in
Figures A1–A6 in Appendix B. Therefore, deep learning-based segmentation is robust to an image in
low quality and outperforms the conventional segmentation approach.

5.3. Video Stabilization

To measure how much the video stabilization process affects the WBC event counting process,
the results of the WBC event counting with and without the video stabilization were compared.
Figure 10 shows that the methods with video stabilization correctly predict the seven ground-truth
events, whereas those without video stabilization miss some of them and identify incorrect events.
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This is because the ST map from a video without stabilization captures the intensities of the background
rather than those of a capillary, which appear as white areas in the ST map, and they are subsequently
represented as peaks in the corresponding polar map. As the intensities of the background and events
are almost the same without stabilization and both represent peaks in the polar map, event detection
(Section 3.6) is degraded, resulting in the miscounts.

Figure 10. Predicted WBC event counts and ground truths for capillary 4. The x-axis denotes time
stamp in the video, and the y-axis represents the different combinations of the video stabilization
process and capillary segmentation methods. The gray vertical dashed lines indicate the events
identified by experts. Note that all the segmentation methods with the stabilization preprocessing
correctly recognize the counts of WBCs.

Moreover, the norms of all translation vectors from the video stabilization process were acquired
for each capillary video to measure the amount of the stabilization. If a capillary video contains more
unwanted motion artifacts, then the overall norm of the translation vectors would become large and
therefore the event counting results with and without the video stabilization process would differ a lot.
Conversely, if a capillary video contains less motion artifacts, then the results would not differ that
much. Figure 11 shows the distribution of the norms of translation vectors for each video, which could
infer that videos 1 and 2 are more intensely stabilized than video 3 due to their bigger means of the L2
norm distribution. The Figures A7–A12 in Appendix A demonstrate that the predictions for capillaries
1–4 in videos 1 and 2 with all different stabilization/segmentation methods considerably differ from
those for capillaries 5 and 6 in video 3.

Figure 11. The distribution of the norms of translation vectors for three capillary videos. Each x- and
y-axis indicates the L2 norm of a translation vector and the occurrence frequency of each norm.
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Figures 8 and 10 show the consistency between the proposed method and experts’ evaluation
regarding the WBC event detection. In Figure 10, the gray vertical dashed lines and colored crosses
indicate the events counted by an experts and those counted using the various methods, respectively.
The cyan lines in Figure 8 visualize the counted events. The method with stabilization consistently
predicts the events when compared with other methods. The event detection for all videos are
reported in Figures A7–A12 in Appendix A, whose figures demonstrate the effectiveness of the
video stabilization process on the prediction consistency of the event counting compared with the
ground truths.

6. Conclusions

In this paper, a fully automated WBC event counting method is proposed to determine the number
of visual gaps representing WBCs on capillary images using deep learning and video stabilization
approaches. The proposed method segments capillary labels using a deep learning model and
stabilizes the video frames with respect to the capillary labels to improve the performance of the
event counting. The labels determined by the deep-learning-based segmentation are more reliable than
those determined by the conventional segmentation, as the deep-learning-based segmentation gives
labels close to ones obtained manually and the conventional segmentation fails to label capillaries
in the case of low quality of images. Moreover, the video stabilization aligns capillaries to the same
position to remove unwanted motion artifacts that might cause miscounts of events and therefore could
guarantee accurate WBC event counting, resulting in comparable performance with the human experts.
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Appendix A. Consistency of WBC Event Counting for Various Methods

The figures in this appendix show the ST maps and corresponding reconstructed events. The cyan
lines are the reconstructed events after event counting using various methods. The abbreviations
denoting method combinations are detailed in Section 4.
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Figure A1. Events reconstructed from event counting using various methods for capillary 1.

Figure A2. Events reconstructed from event counting using various methods for capillary 2.
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Figure A3. Events reconstructed from event counting using various methods for capillary 3.

Figure A4. Events reconstructed from event counting using various methods for capillary 4 (same as Figure 8).
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Figure A5. Events reconstructed from event counting using various methods for capillary 5.

Figure A6. Events reconstructed from event counting using various methods for capillary 6.
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Appendix B. Spatiotemporal Maps of Capillaries for Various Methods

The figures in this appendix show the prediction consistency of WBC event counting using
various methods with respect to the ground truths provided by experts. The gray vertical dashed lines
and colored crosses indicate events counted by experts and were obtained from the various methods,
respectively. The abbreviations denoting method combinations are detailed in Section 4.

Figure A7. Prediction consistency of event counting compared with ground truths for capillary 1.

Figure A8. Prediction consistency of event counting compared with ground truths for capillary 2.
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Figure A9. Prediction consistency of event counting compared with ground truths for capillary 3.

Figure A10. Prediction consistency of event counting compared with ground truths for capillary 4
(same as Figure 10).

Figure A11. Prediction consistency of event counting compared with ground truths for capillary 5.
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Figure A12. Prediction consistency of event counting compared with ground truths for capillary 6.
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