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A B S T R A C T   

Contrast-induced acute kidney injury (CI-AKI) is a growingly common kidney problem caused by 
medical procedures involving contrast media (CM), especially in older patients with existing 
health issues. It is crucial to pinpoint potential biomarkers for the early detection of CI-AKI. 
Previously, we observed that iodixanol affects glucose, choline, and glutathione metabolism in 
endothelial cells under laboratory conditions. In this study, we used 1H NMR-based metabolomics 
to examine the metabolic changes in the blood plasma of elderly patients with cardiovascular 
disease (CVD) before and after receiving iodixanol. We identified altered metabolites in plasma 
24 and 48 h after iodixanol injection compared to levels before injection. Notably, metabolites 
such as glucose, unsaturated fatty acids (UFA), low-density lipoprotein (LDL)/very low-density 
lipoprotein (VLDL), pyruvate, choline, and glycine showed potential as biomarkers at 24 h 
post-injection compared to levels before injection. Similarly, glucose, pyruvate, lactate, choline, 
and glycine in plasma could serve as potential biomarkers at 48 h post-injection. Iodixanol 
notably affected pathways related to glycolysis, fatty acid breakdown, and amino acid meta-
bolism according to our metabolic pathway analysis. The altered levels of specific metabolites in 
plasma could be indicative of CM-induced kidney injury. Overall, this research aids in under-
standing the physiological mechanisms involved and in identifying early biomarkers and pre-
vention strategies for CI-AKI.   

1. Introduction 

Iodinated contrast media (CM) is widely utilized in diagnostic and therapeutic procedures for various ailments, including coronary 
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angiography (CAG) and percutaneous coronary intervention (PCI) in patients with cardiovascular disease (CVD) [1,2]. Notably, CM is 
administered intravenously during these processes, potentially leading to systemic and organ-specific adverse reactions. Consequently, 
contrast-induced acute kidney injury (CI-AKI) occurs in up to 30 % of patients undergoing intravascular CM administration, ranking as 
the third most common cause of hospital-acquired AKI [3,4]. While most cases of CI-AKI are reversible, some patients experience 
persistent renal decline or even progress to end-stage renal disease without recovery of kidney function [5,6]. The precise patho-
physiological mechanisms underlying CI-AKI remain incompletely understood, including renal vasoconstriction, renal medullary 
hypoxia, direct tubular toxicity, endothelial dysfunction, oxidative stress, apoptosis, and inflammation [6,7]. Currently, there are no 
effective treatments for CI-AKI, and accurate risk prediction is crucial for its prevention. However, predicting the risk of CI-AKI for 
individuals is challenging, despite assessing their medical histories (diabetes mellitus, hypertension, heart failure, chronic kidney 
disease, etc.) [4,8]. 

CI-AKI is identified by a sudden decline in glomerular filtration rate (GFR), followed by a rise in plasma creatinine levels or reduced 
urine output after intravascular injection of CM [9]. Consequently, elevated plasma creatinine is commonly used as a biomarker for 
diagnosing CI-AKI [10]. However, using plasma creatinine as a diagnostic marker has certain limitations. It increases gradually with 
declining GFR and only significantly changes in the later stages of CI-AKI [11]. This leads to delays and insensitivity in detecting renal 
injury, particularly when renal function is within normal ranges. Moreover, the increase in plasma creatinine only reflects glomerular 
damage rather than overall kidney injury and cannot serve as a real-time marker for changes in renal function [12]. Hence, there is an 
urgent need to discover novel biomarkers capable of indicating renal injury in the early stages of CI-AKI. In recent years, several 
emerging biomarkers have been identified as sensitive and early indicators of CI-AKI, including cystatin C (Cys-C), liver fatty 
acid-binding protein (L-FABP), neutrophil gelatinase-associated lipocalin (NGAL), N-acetyl-beta-D-glucosaminidase (NAG), and kidney 
injury molecule-1 (KIM-1) [13,14]. Additionally, the potential of circulating microRNA and small molecule metabolites has also 
garnered significant attention [15]. 

Metabolomics has emerged as a potent tool for identifying disease-related biomarkers and elucidating the connections between 
metabolites [16]. This analytical approach enables quantitative assessment of metabolite levels in biological samples [17,18], offering 
a novel means of predicting the risk of various diseases, including renal injury [19]. In studies involving CI-AKI rats, researchers 
identified 30 metabolites in the kidney, plasma, and urine associated with renal injury, spanning 9 metabolic pathways including 
energy metabolism, amino acid metabolism, and inflammatory responses [20]. Urine metabolomics research revealed that higher 
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levels of citrate and taurine prior to CM injection correlated with reduced incidence of renal damage, while concentrations of urine 
xylose, glycine, uric acid, and threonic acid significantly increased post-CM use [21]. NMR-based metabolomic analysis indicated that 
changes in urinary metabolites strongly correlated with renal damage in patients administered low osmolar iopromide, potentially 
serving as biomarkers for predicting CI-AKI risk [22]. In a cohort study, metabolomic analysis demonstrated a positive correlation 
between urine metabolite concentrations and the severity of renal injury induced by iodixanol, offering a multi-metabolite model for 
early CI-AKI prediction [23]. 

Previously, our research revealed that iodixanol activated glucose metabolism and the tricarboxylic acid (TCA) cycle while 
inhibiting choline and glutathione metabolism, leading to oxidative stress, apoptosis, and inflammation in endothelial cells [24,25]. 
However, monitoring plasma metabolomic changes in patients undergoing CM injection is crucial for early CI-AKI detection. In this 
study, we investigated plasma metabolic alterations in patients with CVD before CM injection, and at 24 and 48 h post-procedure using 
NMR-based metabolomic analyses. Our findings demonstrate significant changes in plasma metabolic profiles following CM injection, 
potentially offering a panel of biomarkers for early CI-AKI prediction based on these characteristic metabolites. 

2. Materials and methods 

2.1. Study subjects and ethics statement 

Thirty-eight patients with CVD were recruited from Fujian Provincial Hospital (Fuzhou, China) and underwent cardiac catheter-
ization and percutaneous coronary intervention (PCI) therapy between April 15 and October 31, 2020. The inclusion criteria were as 
follows: (1) Subjects diagnosed with chronic coronary syndrome (CCS) and stable angina pectoris (SAP) according to established 
diagnostic criteria [26], (2) aged between 60 and 80 years, (3) provided informed consent, and (4) underwent coronary angiography 
(CAG) and PCI procedures involving approximately 100–120 ml intravenous injection of iodixanol (Visipaque, 320 mg I/ml, GE 
Healthcare, Chicago, IL, USA). The exclusion criteria comprised four criteria, and patients failing to meet any of these criteria were 
excluded. The criteria were: (1) Acute coronary syndrome (ACS), acute heart failure, and acute cerebrovascular disease; (2) Chronic 
kidney disease (CKD) stage 3–5, and severe liver dysfunction; (3) Patients with psychosis or inability to understand the informed 
consent properly; and (4) Patients with acute infectious diseases and cancer. 

This study was conducted following the principles outlined in the Declaration of Helsinki. Ethical approval was obtained from the 
Ethics Committee of Fujian Provincial Hospital (No. K2020-03-077, approval date: March 30, 2020). All participants provided written 
informed consent for their involvement in this study, including diagnostic evaluations and interventional procedures. 

2.2. Plasma sample collection and NMR sample preparation 

Approximately 5 ml of venous blood was collected from each subject after an 8-h fast, into a heparin tube, before iodixanol in-
jection, and at 24 and 48 h post-procedure, and immediately placed at 4 ◦C. Within half an hour, plasma was separated by centri-
fugation at 3000 rpm at 4 ◦C for 15 min. The upper plasma layer was collected and stored at − 80 ◦C. For NMR analyses, frozen plasma 
samples were thawed at 4 ◦C, and then 350 μl of plasma was mixed with 100 μl of D2O (99.99 %, Sigma, USA) and 100 μl of phosphate 
buffer (0.1 M, pH 7.4), vortexed for 3 min, and centrifuged at 12,000 rpm at 4 ◦C for 15 min. Subsequently, 500 μl of supernatant was 
transferred into a 5-mm NMR tube for analysis [27]. 

2.3. 1H NMR spectrum measurements 

1H NMR analyses were conducted at 298 K using a Bruker AVANCE III HD 850 MHz spectrometer (Bruker BioSpin, Germany) 
equipped with a TCI cryoprobe at 25 ◦C. One-dimensional (1D) 1H NMR spectra were acquired employing the 
Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence [RD-90◦-(τ-180◦-τ)n-ACQ] with water suppression. RD represented the relaxation 
delay (4 s) and τ denoted the spin echo delay (300 μs). A total of 64 transients were accumulated into 64 K data points with a spectrum 
width (SW) of 20 ppm and an acquisition time (ACQ) of 2.73 s. 

2.4. NMR data processing 

NMR spectra were imported into MestReNova software (version 9.0, Mestrelab Research S.L, Spain) for data processing. Both 
phasing and baseline correction were performed manually. Chemical shift calibration was referenced to the methyl group of TSP at 0.0 
ppm. Spectral regions corresponding to water resonance (δ 4.7− 5.1) were excluded. Spectral regions spanning δ 0.5− 8.6 were 
segmented into bins with a width of 0.002 ppm. Subsequently, metabolite integrals were extracted from each 1D 1H NMR spectrum 
using MATLAB (Version Matlab2015b; MathWorks, USA), and normalized by the integral of TSP in each spectrum. The relative level of 
each metabolite was calculated based on the relative integrals of singlet or non-overlapping peaks of the metabolite. The number of 
protons contained in the corresponding hydrogen-containing group of the metabolite was represented as mean ± standard deviation 
(SD) for each group of plasma samples. 

2.5. Multivariate statistical analyses and identification of differential metabolites 

Multivariate statistical analysis was performed using SIMCA-P software (Version 14.1, Umetrics AB, Umeå, Sweden). The pareto 
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scaling method was applied to the normalized spectral integrals to amplify the magnitude of low-level metabolites without signifi-
cantly amplifying noise. An unsupervised principal component analysis (PCA) was conducted to visualize metabolic profile trends, 
identify outliers, and delineate metabolic clusters among the samples. Additionally, a supervised orthogonal projection on latent 
structure with discriminant analysis (OPLS-DA) was executed to enhance metabolic classifications and pinpoint variables significantly 
contributing to metabolic distinctions. Data filtering was employed to remove variables not commonly used in modeling, such as 
baselines and noise, using the interquartile range (IQR) method. Prior to multivariate statistical analysis, data preprocessing involved 
automatic scaling, centering on the mean and dividing by the standard deviation of each variable. This scaling approach maintained 
data integrity while reducing the weight of larger variables (high-level metabolites) and increasing the weight of smaller variables 
(low-level metabolites). The reliability of established OPLS-DA models was assessed using response permutation tests with 200 cycles. 

Load plots with color (red, yellow, and blue) were constructed to identify variables that changed significantly, very significantly, 
and insignificantly, respectively. Important metabolites were identified based on the absolute value of correlation coefficient (|r| ≥
absolute value) and variable importance in projection (VIP ≥1). The reliability of the OPLS-DA model was further verified through 
cross-validation plots derived from permutation tests (n = 200), where two model parameters, R2Y and Q2, were indicative of model 
reliability. R2Y represented the goodness of fit of the model, while Q2 reflected model accuracy. Values closer to 1 for these parameters 
indicated better stability and robustness of the OPLS-DA model. 

R2 and Q2 serve as indicators of the reliability of OPLS-DA models, with R2 representing the model’s explanatory power and Q2 

representing its predictive accuracy. Higher values closer to 1 indicate greater reliability of the OPLS-DA model. VIP scores for me-
tabolites were computed using SIMCA-P software. The OPLS-DA models were utilized to pinpoint significant metabolites primarily 
responsible for the observed metabolic differences among the three groups. Significant metabolites were identified based on two 
criteria: VIP scores ≥1 and correlation coefficients |r| ≥ the critical value corresponding to statistical significance (p < 0.05). 

2.6. Metabolic pathway analysis 

Metabolic pathway analysis was conducted to identify significantly perturbed metabolic pathways based on the relative concen-
trations of assigned metabolites. This analysis utilized the Pathway Analysis module provided by MetaboAnalyst 5.0 (https://www. 
metaboanalyst.ca). The following parameters were selected: Enrichment method (Hypergeometric test), Topology analysis (Rela-
tive-betweeness centrality), Pathway library (Homo sapiens, KEGG). Metabolic pathways with -lg(p) scores >3 and pathway impact 
values (PIVs) > 0.2 were considered significantly altered. 

2.7. Identification of potential biomarkers based on the disturbed metabolic pathways 

Metabolomic analysis is commonly employed to identify potential biomarkers for early disease diagnosis [28]. In this study, 2/3 of 
the plasma samples were randomly selected for receiver operating characteristic (ROC) curve analysis to assess the contribution of 
metabolites involved in the perturbed metabolic pathways. In the multivariate ROC curve analysis, logistic regression algorithm was 
employed for classification, and the area under curve (AUC) value was used to evaluate the predictive performance of selected bio-
markers. Initially, multivariate ROC curve analysis was performed on all characteristic metabolites identified between groups, 

Table 1 
Clinical characteristics of subjects.  

Clinical characteristics Patients (n = 38) 

Baseline findings 
Age (years) 

69.74 ± 9.75 

Gender (male/female) 28/10 
Smoking 15 
Hypertension 29 
Diabetes 15 
Laboratory findings 
Hemoglobin (g/L) 132.43 ± 18.39 
Albumin (g/L) 40.54 ± 4.51 
Total cholesterol (mmol/L) 3.75 ± 1.44 
HDL-C (mmol/L) 1.10 ± 0.49 
LDL-C (mmol/L) 2.39 ± 1.11 
Creatinine (μmol/L) 109.74 ± 40.36 
BUN (mmol/L) 7.63 ± 2.33 
ALT (μ/L) 23.69 ± 14.35 
AST (μ/L) 27.38 ± 15.90 
Medications 
Aspirin 32 
Clopidogrel 38 
Indobufen 6 
ACEI/ARB 25 
β-blocker 30 
Statins 

Diuretics 
38 
3  
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calculating AUC values for each metabolite and all metabolites combined. Subsequently, multivariate ROC curve analysis was repeated 
for characteristic metabolites with AUC values > 0.70. Finally, single metabolites or combinations of metabolites with AUC values >
0.70 were identified as potential biomarkers for early detection of renal injury. Confirmation of potential biomarkers’ validity was 
conducted using multivariate ROC analysis with the remaining 1/3 of the plasma samples. 

2.8. Student’s t-test 

We computed spectral integrals based on characteristic NMR peaks. Independent sample t-tests were conducted to validate the 
differential metabolites using SPSS software (Version 22.0, Chicago, IL, USA). The average metabolite integrals were presented as 
Mean ± SD. Variables with p-values <0.05 were considered statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001). In addition, 
we also performed Tukey’ s Honestly Significant Difference to control the false discovery rate for multiple comparisons (Supplement). 

3. Results 

3.1. Characterization of subjects 

A total of 38 inpatients, comprising 28 males and 10 females, were included in this study. All subjects met the criteria for CCS and 
SAP and received intravenous injections of iodixanol along with PCI treatment during hospitalization. As shown in Table 1, the average 
age was 69.74 ± 9.75 years, with all subjects being over 60 years old. All 38 patients were engaged in venous blood collection at 0 h 
(prior to iodixanol administration) and 24 h (post iodixanol injection), and 22 patients were collected venous blood at 48 h (post 
iodixanol injection). 

3.2. Metabolite recognition and changed metabolic profiles of plasma 

All metabolites were identified using Chenomx NMR Suite software and the HMDB database, resulting in a total of 27 identified 
metabolites (Fig. 1). The NMR resonance signals of these metabolites are presented in Table 2, including lactate, leucine, 3-hydroxy-
butyrate, ethanol, alanine, acetate, isoleucine, N-acetyl (NAc), low-density lipoprotein (LDL)/very low-density lipoprotein (VLDL), 
citrate, valine, glutamine, threonine, creatinine, pyruvate, lysine, malonate, choline, glycine, glucose, urea, unsaturated fatty acid 
(UFA), lipids, tyrosine, histidine, formate, and phenylalanine. 

To investigate the impact of iodixanol on plasma metabolic patterns, pairwise supervised partial least squares-discriminant analysis 
(PLS-DA) models were constructed. PLS-DA three-dimensional score plots revealed a distinct difference in metabolic profiles between 
24 and 48 h after iodixanol injection compared to baseline (0 h), with more overlapping samples between 24 and 48 h post-injection 
(Fig. 2A). Subsequently, supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) analysis was performed to 
identify important metabolites between these groups. The metabolic signature of plasma at 24 and 48 h post-iodixanol injection was 
well distinguished from baseline (0 h) in the first principal component (t [1]) (Fig. 2B). The reliability and robustness of the two 
OPLS-DA models were confirmed by R2Y and Q2 values, along with corresponding model cross-validation diagrams (Fig. 2C). Notably, 
there was significant overlap between the sample points at 24 and 48 h post-injection in t [1], indicating a lack of clear distinction 
between these two groups (Fig. 2C). Thus, iodixanol exerted a significant effect on the metabolic profile of plasma in elderly patients 
with CVD. 

Fig. 1. The typical 1D 1H NMR spectra of plasma from elderly patients with CVD before and after injecting iodixanol. From bottom to top: 0 h (prior 
to iodixanol administration), 24 h, and 48 h (post iodixanol injection). 
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3.3. Identification of significant metabolites 

Using VIP values and load weight correlation coefficients (Pcorr) from the OPLS-DA model, loading plots were established between 
groups. Metabolites on the loading plots were identified based on metabolite recognition from 1H NMR spectral data. Results revealed 
7 important metabolites: LDL/VLDL, NAc, glucose, UFA, creatinine, choline, and glycine between the 24-h (post-iodixanol injection) 
group and the 0-h (prior to iodixanol administration) group (Fig. 3A). In the 48-h group (post-iodixanol injection), 6 altered important 
metabolites relative to the 0-h group were identified, including LDL/VLDL, ethanol, glucose, lactate/threonine, choline, and glycine 
(Fig. 3B). Additionally, increased levels of LDL/VLDL and glucose, as well as decreased levels of choline and glycine in plasma, were 
observed at 48 h post-iodixanol injection compared to those at 24 h post-injection. 

3.4. Identification and quantitative analysis of differential metabolites 

To assess the changes in plasma metabolites induced by iodixanol injection, absolute integral values of metabolites were calculated 
based on characteristic NMR peaks. At 24 h post-injection vs. baseline (0 h), a total of 8 differential metabolites (p < 0.05) were 
identified, including LDL/VLDL, lipids, NAc, glucose, UFA, pyruvate, choline, and glycine (Table 3). Similarly, at 48 h post-injection vs. 
baseline, 6 differential metabolites (p < 0.05) were identified, including ethanol, glucose, lactate, pyruvate, choline, and glycine. 

Increased level of pyruvate was a differential metabolite instead of an important metabolite. By combining differential metabolites 
identified by the t-test with important metabolites identified by OPLS-DA analysis, changes in creatinine, lipid, pyruvate, and LDL/ 
VLDL levels were examined. At 24 h post-injection, creatinine levels significantly increased as an important metabolite in OPLS-DA 
analysis, although there were no changes in the t-test analysis compared to the baseline group. Additionally, decreased lipid levels 
and increased pyruvate concentrations were identified as differential metabolites, despite no statistical changes in OPLS-DA analysis. 
At 48 h post-injection vs. baseline, decreased LDL/VLDL levels were identified as important metabolites instead of differential me-
tabolites. Conversely, increased pyruvate levels were identified as differential metabolites rather than important metabolites. 

Table 2 
Chemical shifts of metabolites from 1D 1H NMR spectra in plasma.  

NO. Metabolites δ 1H (ppm) and multiplicy Moieties# 

1 Leucine 0.96(d),0.97(d),1.69(m),1.70(m),1.73(m), 3.73(m) α-CH3, α-CH3, γ-CH, 
β-CH2, α-CH 

2 Isoleucine 0.94(t),1.01(d),1.21(m),1.42(m),2.00(m), 3.67(d) δ-CH3, γ-CH3, half γ-CH2, half γ-CH2, β-CH, α-CH 
3 Valine 0.99(d), 1.05(d), 2.26(m), 

3.60(d) 
γ-CH3, γ-CH3, β-CH, α-CH 

4 LDL/VLDL 0.89(bar),1.28(bar)  
5 3-HBa 1.197(d),2.314(m),2,394(m), 

4.142(m) 
γ-CH3,β-CH2,γ-CH, 

6 Lipid 0.82–0.90(bar),1.24–1.31(bar)  
7 Ethanol 1.17 (t), 3.65 (q) δ-CH3, CH2 

8 Lactate 1.33(d), 4.11(q) β-CH3, α-CH 
9 Threonine 1.30(d), 3.58(d), 4.24(m) γ-CH2, β-CH 
10 Alanine 1.47(d), 3.78(q) β-CH3, α-CH 
11 Lysine 1.43(m),1.49(m),1.70(m), 

1.91(m),3.02(t),3.75(t) 
halfγ-CH2, halfγ-CH2, δ-CH2,β-CH2, ε-CH2, α-CH 

12 Acetate 1.91(s) CH3 

13 NAca 2.02–2.06(bar) CH3 

14 Citrate 2.51(d),2.68(d) β-CH2 

15 Glutamine 2.13(m), 2.45(m), 3.77(t) γ-CH2, β-CH2, α-CH 
16 Pyruvate 2.38(s) α-CH3 

17 Malonate 3.13(s) CH2 

18 Creatinine 3.03(s),4.05(s) N–CH3,CH2 

19 Choline 3.21(s), 3.51(dd),4.04(t) N-(CH3)3, α-CH2,CH2OH 
20 Glycine 3.57(s) α-CH2 

21 Glucose β(3.24(dd), 3.48(t), 3.90(dd)), 
α(3.54(dd), 3.71(t), 3.72(dd), 
3.83(m)) 

β(H2, H3, H5), α(H2, H3, 
H6) 

22 Urea 5.78(bar) NH2 

23 UFAa 5.23–5.38(bar)  
24 Tyrosine 3.05(dd),3.19(dd),6.92(d), 

7.19(d) 
halfβ-CH2,halfβ-CH2,β-CH, 
α-CH 

25 Histidine 7.06(s),7.85(s) 5CH,2CH 
26 Formate 8.46(s) CH 
27 Phea 3.12(dd),3.30(dd),3.99(dd), 

7.33(d),7.37(t),7.43(t) 
α-CH,halfβ-CH2,halfβ-CH2, 
α-CH,β-CH,γ-CH 

Note: #: s, single; d, double; t, triplet; q, quartet; m, multiple; dd, double of double. 
a 3-HB, 3-hydroxybutyric acid; NAc, N-acetyl; UFA, unsaturated fatty acid; Phe, phenylalanine. 
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3.5. Quantitative analysis of characteristic metabolites 

Based on important and differential metabolites, characteristic metabolites among groups were identified, with each metabolite’s 
contribution described by VIP values ranking. At 24 h post-iodixanol injection vs. baseline, 8 characteristic metabolites and their 
absolute integral value ranking were identified, including glucose, UFA, LDL/VLDL, NAc, lipids, pyruvate, choline, and glycine 
(Fig. 4A). Similarly, at 48 h post-iodixanol injection vs. baseline, 8 characteristic metabolites (glucose, ethanol, LDL/VLDL, UFA, 
choline, glycine, lactate, and pyruvate) were found to contribute to differences in metabolic patterns (Fig. 4B). Notably, 6 charac-
teristic metabolites were shared at both 24 and 48 h post-iodixanol injection. Glycine, choline, and glucose exhibited potent contri-
butions to distinguished metabolic profiles based on their larger VIP scores. To visually compare concentration changes of 
characteristic metabolites in plasma at 24 and 48 h, fold change values of metabolites were displayed on a histogram (Fig. 4C). Py-
ruvate, choline, glycine, and glucose were statistically changed at both time points. Levels of choline and glycine significantly 
increased (p < 0.001), while glucose significantly decreased (p < 0.001) at 24 h post-injection. 

3.6. Significantly changed metabolic pathway analysis 

The absolute integral values were submitted to the pathway analysis module on the MetaboAnalyst 5.0 website. Significantly 
altered metabolic pathways induced by iodixanol were identified based on criteria of p < 0.05 and PIV >0.2. In comparison to baseline 
(0 h, prior to iodixanol administration), three notable metabolic pathways were discerned at 24 h post-iodixanol injection (Fig. 5A): 
glycine, serine, and threonine metabolism (a), starch and sucrose metabolism (b), and pyruvate metabolism (c). Remarkably, these 
same pathways were consistently identified at 48 h post-iodixanol injection (Fig. 5B). Furthermore, a comprehensive diagram inte-
grating metabolites was generated based on the HMDB and KEGG databases, illustrating the metabolic pathway of these compounds 

Fig. 2. PLS-DA 3D scores plots and OPLS-DA scores plots for 1D 1H NMR spectra recorded from. (A) PLS-DA 3D scores plots at 0 h (prior to iodixanol 
administration), 24 h, and 48 h (post iodixanol injection); (B) OPLS-DA scores plots of pairwise groups; (C) Cross-validation plots from permutation 
tests of the OPLS-DA models (n = 200). From left to right: 24 h (post iodixanol injection) vs. 0 hr (prior to iodixanol administration), 48 h (post 
iodixanol injection) vs. 0 hr (prior to iodixanol administration), 48 h (post iodixanol injection) vs. 24 hr (post iodixanol injection). 
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Fig. 3. Correlation coefficient-coded loading plots from OPLS-DA model. The color pattern of the loading plot was used to identify the significant 
metabolites in the class separation. Red, yellow, and blue denote that the variables were very significant, significant, and insignificant, respectively. 
(A) Loading plot in 24 h (post iodixanol injection) vs. 0 hr (prior to iodixanol administration); (B) Loading plot in 48 h (post iodixanol injection) vs. 
0 hr (prior to iodixanol administration). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 

Table 3 
Differential metabolites (p < 0.05) were identified from Student’s t tests between 24 h (post iodixanol injection) vs. 0 hr (prior to iodixanol 
administration) and 48 h (post iodixanol injection) vs. 0 hr (prior to iodixanol administration).  

Metabolite Mean ± SD Student’s t-test 

0 h (n = 38) 24 h (n = 38) 48 h (n = 22) 24 h vs. 0 hr 48 h vs. 0 hr 

Glucose metabolism 
Glucose 1.49 ± 0.07 1.19 ± 0.05 1.19 ± 0.08 *** ** 
Pyruvate 0.12 ± 0.00 0.13 ± 0.00 0.13 ± 0.00 * * 
Lactate 0.71 ± 0.04 0.73 ± 0.02 0.95 ± 0.07 ns ** 
Fatty acid metabolism 
UFA* 1.45 ± 0.07 1.15 ± 0.05 1.26 ± 0.08 ** ns 
NAc* 1.53 ± 0.04 1.37 ± 0.04 1.48 ± 0.04 ** ns 
Lipid 0.86 ± 0.06 0.71 ± 0.04 0.80 ± 0.07 * ns 
LDL/VLDL 5.74 ± 0.19 4.96 ± 0.17 5.27 ± 0.19 ** ns 
Choline 8.74 ± 0.24 10.55 ± 0.30 10.41 ± 0.36 *** ** 
Amino acid metabolism 
Leucine 0.93 ± 0.02 0.87 ± 0.02 0.95 ± 0.02 ns ns 
Isoleucine 0.17 ± 0.01 0.17 ± 0.01 0.19 ± 0.01 ns ns 
Valine 0.35 ± 0.01 0.33 ± 0.01 0.36 ± 0.01 ns ns 
3-HB* 0.41 ± 0.01 0.41 ± 0.02 0.39 ± 0.01 ns ns 
Ethanol 0.52 ± 0.03 0.53 ± 0.05 0.42 ± 0.02 ns * 
Threonine 4.64 ± 0.21 4.16 ± 0.17 5.40 ± 0.34 ns ns 
Alanine 0.62 ± 0.02 0.65 ± 0.03 0.66 ± 0.03 ns ns 
Lysine 0.66 ± 0.02 0.65 ± 0.02 0.70 ± 0.02 ns ns 
Acetate 0.10 ± 0.00 0.11 ± 0.01 0.09 ± 0.00 ns ns 
Citrate 0.25 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 ns ns 
Glutamine 0.50 ± 0.02 0.53 ± 0.02 0.53 ± 0.02 ns ns 
Malonate 2.43 ± 0.06 2.42 ± 0.06 2.44 ± 0.08 ns ns 
Creatinine 0.30 ± 0.01 0.46 ± 0.08 0.33 ± 0.02 ns ns 
Glycine 10.06 ± 0.38 14.41 ± 0.61 13.40 ± 0.58 *** *** 
Urea 0.27 ± 0.02 0.25 ± 0.01 0.25 ± 0.01 ns ns 
Tyrosine 0.08 ± 0.00 0.08 ± 0.00 0.09 ± 0.00 ns ns 
Histidine 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 ns ns 
Formate 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 ns ns 
Phe* 0.21 ± 0.01 0.21 ± 0.01 0.23 ± 0.01 ns ns 

Note: ***, **, * denote p < 0.001, p < 0.01, p < 0.05, respectively; red/blue indicate increased/decreased levels of metabolites. 
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(Fig. 6). Notably, alterations in plasma metabolite levels before and after iodixanol injection predominantly pertained to glycolysis and 
glycine, serine, and threonine metabolic pathways. 

3.7. Potential biomarkers in plasma 

To assess the significance and predictive capability of characteristic metabolites for CM-induced kidney injury, we conducted 
multivariate ROC curve analysis. Notably, the AUC values of characteristic metabolites exceeded 0.50, with nearly half surpassing 
0.70 at both 24 and 48 h post-iodixanol injection compared to baseline (0 h group) (Fig. 7A and C), indicating their strong predictive 
potential. Specifically, at 24 h post-injection, the AUC values of characteristic metabolites (glucose, LDL/VLDL, pyruvate, choline, 

Fig. 4. VIP ranking of characteristic metabolites from pairwise group. (A) VIP ranking plots of characteristic metabolites at 24 h (post iodixanol 
injection) vs. 0 hr (prior to iodixanol administration); (B) VIP ranking plots of characteristic metabolites at 48 h (post iodixanol injection) vs. 0 hr 
(prior to iodixanol administration); (C) Fold change values of characteristic metabolites between 24 h (post iodixanol injection) vs. 0 hr (prior to 
iodixanol administration) and 48 h (post iodixanol injection) vs. 0 hr (prior to iodixanol administration). In addition, we also performed Tukey’ s 
Honestly Significant Difference to control the false discovery rate for multiple comparisons. 

Fig. 5. Significantly altered metabolic pathways at 24 h and 48 h (post iodixanol injection). (A) Pathway bubble chart at 24 h (post iodixanol 
injection) vs. 0 hr (prior to iodixanol administration); (B) Pathway bubble chart at 48 h (post iodixanol injection) vs. 0 hr (prior to iodixanol 
administration). a: glycine, serine, and threonine metabolism; b: starch and sucrose metabolism; c: pyruvate metabolism. 
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glycine, and UFA) surpassed 0.70 (Fig. 7B), and at 48 h post-injection, metabolites (glucose, pyruvate, lactate, choline, and glycine) 
exhibited AUC values exceeding 0.70 (Fig. 7D). Furthermore, multivariate ROC analysis of characteristic metabolites with AUC >0.70 
demonstrated superior predictive performance compared to single metabolites, with AUC values of 0.910 at 24 h and 0.905 at 48 h 
post-injection (Fig. 7B and D), underscoring the effectiveness of metabolite combinations for prediction. 

Additionally, we evaluated the reliability of significantly altered metabolic pathways identified through metabolic pathway 
analysis using multivariate ROC curve analysis of all involved metabolites. Notably, significantly changed metabolic pathways at 24 h 
post-iodixanol injection consistently exhibited higher AUC values. Specifically, AUC values were 0.891 for glycine, serine, and 
threonine metabolism, 0.732 for starch sucrose metabolism, and 0.713 for pyruvate metabolism (Fig. 8 A, B, and C). Similarly, at 48 h 
post-injection, altered metabolic pathways displayed AUC values of 0.896 for glycine, serine, and threonine metabolism, 0.719 for 
starch, sucrose metabolism, and 0.823 for pyruvate metabolism (Fig. 8D, E, and F). These findings underscored the reliability and 
importance of the three significantly altered metabolic pathways. Furthermore, a positive correlation was observed between AUC 
value and p-value for each metabolic pathway, further validating their predictive potential. 

4. Discussion 

With the burgeoning employment of CM in the diagnostic and treatment processes of numerous diseases, CI-AKI emerged as a 
prevalent iatrogenic kidney ailment [4,6]. This potentially severe complication extended hospital stays, heightened cardiovascular 
incidents, escalated the risk of end-stage kidney disease, and elevated mortality rates, particularly among elderly patients with un-
derlying conditions [29]. Typically, the surge in plasma creatinine levels following CM injection serves as the diagnostic hallmark of 
CI-AKI. Nonetheless, creatinine levels witness a significant elevation only towards the conclusion of renal injury, underscoring the 
necessity for early biomarkers to predict CI-AKI [11]. Herein, we conducted 1H NMR-based metabolomics on plasma samples from 
elderly patients with CVD before and after iodixanol administration. By pinpointing metabolic alterations induced by CM, timely 
preventive measures can be implemented to mitigate the onset of clinical complications. 

4.1. CM-activated glycolysis pathway 

Relative to the baseline at 0 h (prior to iodixanol administration), there were significant alterations in glucose metabolism within 
metabolic pathways at both 24 and 48 h following iodixanol injection. We consistently observed decreased levels of glucose and 
increased levels of pyruvate at 24 and 48 h compared to the 0-h counterparts. Furthermore, glucose and pyruvate, identified as 
characteristic metabolites, exhibited large AUC values (0.732 and 0.719 for the 24-h group vs. 0-hour group; 0.724 and 0.717 for the 
48-h group vs. 0-hour group), suggesting their potential as plasma biomarkers. Notably, in the comparison between the 48-h group and 
the 0-h group, plasma lactate levels showed a significant increase with a high AUC value (0.746), indicating the activation of glycolysis 
metabolism following iodixanol injection. The aberrant glucose metabolism was associated with a disorder in steroid biosynthesis 
induced by CI-AKI [30]. Although the precursor of anabolic steroids (cholesterol) was not directly detected, we observed a significant 

Fig. 6. Schematic diagram of metabolic pathways involved in metabolites.  
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decrease in plasma NAc, the precursor of synthetic cholesterol, at 24 h post-iodixanol injection, suggesting that iodixanol might in-
fluence the metabolism of inorganic salts and sugars by reducing the biosynthesis of cholesterol or steroids. 

The combined AUC value of the characteristic metabolites (AUC: 0.910 and 0.905 for the 24-h and 48-h groups, respectively) 
further underscored the dysregulation of glycolysis and amino acid metabolism following iodixanol injection. The activation of 
glycolysis and amino acid metabolism may impact the TCA cycle, which is intricately linked to energy metabolism. Given the high 
expression of AMP-activated protein kinase (AMPK) in kidney tissue, acute renal ischemia could swiftly activate the AMPK pathway, 
thereby influencing energy production and consumption pathways [31]. Previous studies have revealed that iohexol induced changes 
in over 30 metabolites (including pyruvate, choline, glycine, etc.) in the kidneys, plasma, and urine of CI-AKI rats, closely associated 
with disrupted energy and amino acid metabolism [20]. In CKD patients undergoing PCI, contrast media significantly induced 
mitochondrial dysfunction and oxidative stress in peripheral blood mononuclear cells (PBMCs) post-exposure, leading to decreased 
ATP levels and disturbed energy metabolism [32]. Our findings indicated a significant disturbance in the energy-related metabolic 
pathway following iodixanol injection, including glycine, serine, and threonine metabolism. Multivariate ROC curve analysis further 
validated the reliability of this pathway (AUC: 0.891 and 0.896). Additionally, we observed increased levels of glycine (a characteristic 
metabolite) in plasma, which could potentially serve as a biomarker, as indicated by the AUC values for the 24-h (0.870) and 48-h 
(0.832) groups. Furthermore, glycine serves as one of the precursors for glutathione synthesis. Glutathione plays a crucial role in 
scavenging excessive reactive oxygen species (ROS) and maintaining redox balance in vivo [33]. Therefore, we hypothesized that the 
elevated levels of glycine might be associated with oxidative stress induced by iodixanol. 

Fig. 7. Multivariate ROC curves assessing capabilities of the characteristic metabolites. (A) Multivariate ROC curves and AUC values of all char-
acteristic metabolites at 24 h (post iodixanol injection) vs. 0 hr (prior to iodixanol administration); (B) Multivariate ROC curves of characteristic 
metabolites (AUC >0.70) at 24 h (post iodixanol injection) vs. 0 hr (prior to iodixanol administration); (C) Multivariate ROC curves and AUC values 
of all characteristic metabolites at 48 h (post iodixanol injection) vs. 0 hr (prior to iodixanol administration); (D) Multivariate ROC curves of 
characteristic metabolites (AUC >0.70) at 48 h (post iodixanol injection) vs. 0 hr (prior to iodixanol administration). 
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4.2. CM-increased fatty acid metabolism 

It has been noted that the viscosity of CM could elevate blood viscosity, thereby impeding material exchange between various body 
tissues and organs, resulting in inadequate blood supply [34]. The enhancement of blood viscosity is associated with the content of 
UFA, which can ameliorate tissue microcirculation [35]. By modulating lipid levels in the blood, UFA can effectively enhance 
endothelial functions, mitigate vascular inflammation, and reduce blood pressure [36]. Our findings revealed a significant decrease in 
plasma UFA levels (a characteristic metabolite) at 24 and 48 h post-iodixanol injection. The diminished UFA levels may not be 
conducive to mitigating the increased blood viscosity caused by CM, potentially elevating the risk of adverse effects. 

Additionally, AKI often accompanies lipid accumulation and dysregulation of energy metabolism in tubular epithelial cells [37]. 
Phosphorylation of acetyl-CoA carboxylase (ACC) by AMPK can inhibit fatty acid synthesis and promote fatty acid oxidation [31,37]. 
In this study, the decreased plasma UFA levels at 24 and 48 h post-iodixanol injection may indicate increased lipid accumulation and 
dysregulation of energy metabolism in tubular epithelial cells, exacerbating CM-induced kidney injury. 

Furthermore, we observed a significant increase in plasma choline levels. Altered choline levels may affect fatty acid levels, thereby 
activating fatty acid catabolism [38]. The decreased levels of LDL/VLDL may be associated with vascular damage caused by iodixanol, 
where impaired blood vessels may compromise their ability to regulate LDL/VLDL metabolism, consequently reducing the transport 
capacity of endogenous cholesterol. Moreover, choline also participates in the metabolism of glycine, serine, and threonine, exhibiting 
high AUC values at the 24-h and 48-h groups (0.815 and 0.749). Therefore, choline might serve as a potential biomarker for early renal 
injury diagnosis. 

5. Conclusion 

CI-AKI represents an iatrogenic renal injury that has become increasingly prevalent among elderly patients due to the widespread 
use of CM. Hence, there is a pressing need to identify potential biomarkers for the early diagnosis of CI-AKI. Previously, our in-
vestigations revealed that iodixanol activated glucose metabolism while inhibiting choline and glutathione metabolism in endothelial 

Fig. 8. Multivariate ROC curves assessing capabilities of the significantly disturbed metabolic pathways. The AUC values shown in brackets were 
used to evaluate the prediction performances of the biomarker models. (A, B, and C). Multivariate ROC curves of significantly disturbed metabolic 
pathways at 24 h (post iodixanol injection) vs. 0 hr (prior to iodixanol administration). (D, E, and F) Multivariate ROC curves of significantly 
disturbed metabolic pathways at 48 h (post iodixanol injection) vs. 0 hr (prior to iodixanol administration). (A, C) Glycine, serine, and threonine 
metabolism; (B, E) Starch and sucrose metabolism; (C, F) Pyruvate metabolism. 
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cells in vitro. In this current study, we examined the altered levels of metabolites in plasma samples obtained from elderly patients with 
CVD, which could potentially serve as early diagnostic biomarkers for iodixanol-induced renal injury. These identified metabolites are 
associated with glycolysis, fatty acid metabolism, and amino acid metabolism. This research contributes to the discovery of novel 
biomarkers and therapeutic targets for CI-AKI, thereby enhancing our understanding and management of this condition. 
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