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While it is universally acknowledged that both bottom
up and top down factors contribute to allocation of gaze,
we currently have limited understanding of how top-
down factors determine gaze choices in the context of
ongoing natural behavior. One purely top-down model
by Sprague, Ballard, and Robinson (2007) suggests that
natural behaviors can be understood in terms of simple
component behaviors, or modules, that are executed
according to their reward value, with gaze targets chosen
in order to reduce uncertainty about the particular world
state needed to execute those behaviors. We explore the
plausibility of the central claims of this approach in the
context of a task where subjects walk through a virtual
environment performing interceptions, avoidance, and
path following. Many aspects of both walking direction
choices and gaze allocation are consistent with this
approach. Subjects use gaze to reduce uncertainty for
task-relevant information that is used to inform action
choices. Notably the addition of motion to peripheral
objects did not affect fixations when the objects were
irrelevant to the task, suggesting that stimulus saliency
was not a major factor in gaze allocation. The modular
approach of independent component behaviors is
consistent with the main aspects of performance, but
there were a number of deviations suggesting that
modules interact. Thus the model forms a useful, but
incomplete, starting point for understanding top-down
factors in active behavior.

Introduction

A fundamental problem in human vision is to
understand the mechanisms that control attentional
shifts from one location to another as visually guided

behavior evolves in time. Many attentional shifts can
be observed in overt shifts of gaze (Deubel & Schneider,
1996; Kowler, Anderson, Dosher, & Blaser, 1995), and
it is this overt aspect of attentional shifts that we
address here. A large body of work has focused on the
way that both attention and gaze can be captured by
novel stimuli, in particular on the nature of the stimuli
that capture attention and gaze, and whether or not
such capture is obligatory (e.g., Gibson, Folk, Teeuwes,
& Kingstone, 2008; Jovancevic, Sullivan, & Hayhoe,
2006; Lin, Franconeri, & Enns, 2008). However, only
part of the problem can be explained by such
exogenously driven mechanisms. Human vision is in a
large part goal driven. For example, in the context of
even simple behaviors, such as walking, humans must
accomplish a variety of specific goals, such as
controlling direction, avoiding obstacles, and taking
note of their surroundings. These competing demands
for vision must be managed by selecting the necessary
information from the environment at the appropriate
time. However, the mechanisms that control goal-
driven gaze shifts in the context of ongoing behavior
are not well understood. What kind of a control
structure is robust in the face of the varying nature of
the visual world, allowing us to achieve these critical
goals?

Although the neural circuitry underlying gaze shifts
once a target is chosen has been intensively studied, we
do not have much understanding of the control
mechanisms that specify what location should be
chosen as a target in the first place (Gottlieb, 2012).
While it has long been recognized that behavioral goals
of the observer play a central role in target selection
(e.g., Buswell, 1935; Kowler, 1990), obtaining a detailed
understanding of exactly how gaze targets are chosen
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on the basis of cognitive state has proved very difficult.
Attempts to formalize this problem have typically
taken the approach of explaining the effect of top-down
factors by weighting a feature-based saliency map. For
example, several models weight the stimulus saliency
computations by factors that reflect likely gaze
locations, such as sidewalks or horizontal surfaces, or
introduce a specific task such as searching for a
particular object (Kanan, Tong, Zhang, & Cottrell,
2009; Oliva & Torralba, 2006; Torralba, Oliva,
Castelhano, & Henderson, 2006). Other models base
top-down guidance on learned associations between
features observed in locations that humans fixated
when performing the tasks (Borji, Sihite, & Itti, 2011;
Itti & Baldi, 2006; L. Zhang, Tong, Marks, Shan, &
Cottrell, 2008). These models reflect the consensus that
saccadic target selection is determined by activity in a
neural priority map of some kind in areas such as the
lateral intraparietal cortex and frontal eye fields (Bichot
& Schall, 1999; Bisley & Goldberg, 2010; Findlay &
Walker, 1999). However, the critical limitation of this
kind of modeling is that it applies to situations where
the subject inspects an image on a computer monitor,
and this situation does not make the same demands on
vision that are made in the context of active behavior,
where visual information is used to inform ongoing
actions. A broad range of different natural tasks have
been investigated in the last two decades, and it is very
clear that gaze is tightly linked, in time and location, to

the momentary task requirements, and often task
demands can explain all but a few percent of the
fixations (see Tatler, Hayhoe, Ballard, & Land, 2011,
for a review). In attempting to understand these top-
down effects, a critical limitation is that there is no
formal representation of the task being performed.
Whereas there have been successful attempts to model
specific behaviors such as reading or visual search
(Najemnik & Geisler, 2008; Reichle, Rayner, &
Pollatsek, 2003), we need to develop a general
understanding of how the priority map actively
transitions from one target to the next as behavior
evolves in time. The problem that we address here is
how to capture the underlying principles that control
these gaze transitions.

The challenge of modeling tasks is a difficult one,
given the diversity and complexity of visually guided
behavior. In this paper we consider a model introduced
by Sprague, Ballard and Robinson (2007) that provides
a general theoretical context for understanding the way
that cognitive goals can influence gaze. We will examine
the basic assumptions of this approach, and attempt to
evaluate the empirical support for models of this kind.
The structure of the model is illustrated in Figure 1. To
simplify the problem, the model makes the assumption
that complex behavior is composed of independent
subtasks, or modules, such as avoiding obstacles,
approaching objects, heading to a goal, and so on, and
that specific information is gathered from the visual

Figure 1. Flow diagram of the task-module architecture. Each task module keeps an estimate of its task-relevant state. Actions are

chosen on the basis of the sum of reward that would be gained by all the modules. Better state estimates lead to better action

choices. In the absence of direct observation, state uncertainty grows with time. The system uses gaze to update the state for the

module that has the highest expected cost due to uncertainty. Kalman filters propagate state information in the absence of gaze

updates (adapted from Sullivan, 2012).
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image in order to perform the actions required for
those tasks. Thus, information about obstacle location
relative to the observer is required for an avoidance
action, for example. Each subtask has an associated
reward value that reflects the importance of the
behavior for the agent, and allows the agent to learn
how to arbitrate between the competing tasks to
maximize the expected rewards learned using Rein-
forcement Learning (Sutton & Barto, 1998). At a given
moment the subject acquires a particular piece of
information for a module, using gaze (e.g., locates the
nearest obstacle), takes an action (chooses avoidance
path), and then decides what module should get gaze
next. When a particular module is updated with
information from gaze, as shown for Module 1 in the
Figure, the new sensory information reduces uncer-
tainty about the state of the environment relevant to
that module (e.g., location of an obstacle). The next
action is chosen on the basis of the learnt reward value
associated with that action when in a given state by
summing the rewards for all modules (Box 4). If a
module’s state is not updated, it is assumed that
uncertainty about that state grows. For example, if an
agent has just looked at an obstacle and updated its
location, uncertainty about state relevant to another
task such as location with respect to the goal is
estimated from previous fixations, and uncertainty
about that state grows with time. As a consequence of
the action (e.g., moving in a particular direction), the
state of the world is changed (Box 1), and the agent
must decide which module’s state should be updated
next by gaze (Box 2). One hypothesis we will examine
here is that the module given control of gaze is chosen
on the basis of both the reward associated with the task
(that is the subjective value of accomplishing the task)
and the current perceptual uncertainty about the
information needed to accomplish the task. In this
formalization, task-driven vision is serial process,
where one visual task accesses new information at each
time step, and all other tasks rely on noisy memory
estimates.

The model just described, which we will refer to as
the Modular RL model, makes several central as-
sumptions that seem like good candidates for explain-
ing human performance. First is the assumption that
complex behavior can be broken down into semi-
independent subtasks, or modules. This makes the
problem computationally tractable by reducing the size
of the state space (Rothkopf & Ballard, 2010; Sprague
et al., 2007). It also seems like a plausible approach to
natural behavior, which seems well described as a set of
sequential, task-specific operations (Ballard & Hayhoe,
2009; Hayhoe & Ballard, 2014; Land & Tatler, 2009).
For example, when making a sandwich, successive
fixations are tightly locked to the task in a way that
makes almost every fixation interpretable in terms of

the current goal—e.g., fixate the knife handle while
reaching to pick it up, fixate the peanut butter in the jar
while scooping it out, fixate the tip of the knife while
spreading, and so on. This tight linkage is discussed in
Hayhoe, Shrivastava, Mruczek, and Pelz (2003), Land
and Hayhoe (2001), and Land, Mennie, and Rusted
(1999). The assumption that attention is deployed
sequentially to different modules or subtasks is also
consistent with the known limitations of attention,
including the existence of a central attentional bottle-
neck that limits simultaneous performance of multiple
tasks (e.g., Pashler, 1998), and experiments showing
highly selective acquisition of information during a
fixation (Droll, Hayhoe, Triesch, & Sullivan, 2005;
Droll & Hayhoe, 2007; Rothkopf, Ballard, & Hayhoe,
2007; Triesch, Ballard, Hayhoe, & Sullivan, 2003).
While this assumption is likely to be an oversimplifi-
cation, it is a useful first step, as it reduces the gaze
control problem to one of choosing which subtask
should be attended at any moment. We test support for
this assumption by manipulating the task structure
subjects are given, making individual tasks or modules
relevant or irrelevant. In the simplest case, individual
modules should be active or inactive independently,
with no interaction between modules.

Another central assumption of the Modular RL
model is that tasks are prioritized on the basis of
subjective value, or reward, and that this reward affects
the eye-movements in addition to the choice of
behavior. This assumption has strong support, given
that neurons at many levels of the saccadic eye
movement circuitry are sensitive to reward (see, for
example, Gottlieb, 2012, for a review). In particular
LIP neurons that are likely involved in saccade target
selection have been implicated in coding the relative
subjective value of potential targets (Trommershauser,
Glimcher, & Gergenfurtner, 2011). There is also good
evidence that the neural reward machinery acts in ways
predicted by Reinforcement Learning models (Lee,
Seo, & Jung, 2012; Schultz, 2000). However, reward
effects in neurons have been observed with very simple
choice response paradigms where the animal gets
rewarded for looking at a particular target, whereas in
natural vision, individual eye movements are not
directly rewarded, but instead are for getting informa-
tion that allows behavioral goals to be achieved,
presumably with associated rewards. Thus, it is
important to make the definitive link between the
primary rewards used in experimental paradigms and
the secondary rewards that operate in natural behavior.
In human behavior, it has been shown that saccadic
targeting is sensitive to explicit reward (money or
points) in simple experiments involving a choice
between a small number of targets (Navalpakkam,
Koch, Rangel, & Perona, 2010; Schutz, Trommer-
shauser, & Gegenfurtner, 2012; Stritzke, Trommer-
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shauser, & Gegenfurtner, 2009). Targeting is also
sensitive to implicit reward. For example, Jovancevic
and Hayhoe (2009) demonstrated that while walking in
a natural environment, subjects looked more frequently
at potentially hazardous pedestrians who sometimes
veered briefly toward them, than at pedestrians who
simply stopped and so were visually salient but not
hazardous. Since the events were of comparable visual
salience, and the eye movements were anticipatory,
before the pedestrian actually veered or stopped, this
might be interpreted as reflecting the behavioral
relevance or intrinsic reward value of the information.
We will test this assumption by making various tasks
more or less rewarding and look for the effects of this
manipulation on gaze behavior.

Reward alone is not sufficient to understand why
something becomes a gaze target. In the Modular RL
model, uncertainty about task-relevant state of the
scene is also important. In humans, there are various
sources of uncertainty. For example, the lower resolu-
tion of the peripheral retina introduces uncertainty in
the evaluation of sensory evidence, and indeed is the
reason for fixating a target in many cases. If a subject
has fixated a target and subsequently shifts attention,
the information will be held in working memory, which
decays over time. Further uncertainty will be intro-
duced as the observer moves relative to the environ-
ment, since, in the absence of overt attention, locations
will need to be updated by an estimate of the change in
viewer location in the environment, and these estimates
are subject to motor noise. The need to include
uncertainty in the model to explain gaze choices stems
from the fact that the optimal action choice is unclear if
the state is uncertain. The Sprague model posits that
the module or task that gets updated by gaze is the one
that reduces reward-weighted uncertainty the most. In
the original model, the world was static and uncertainty
grew purely due to intrinsic factors like memory decay
and motor noise; here we expand the experiment to
include a dynamic and uncertain world.

There is mixed evidence for the role of uncertainty
reduction in the choice of gaze target. Najemnik and
Geisler (2005, 2008) showed that in the context of
visual search for a simple pattern in noise, fixations
appear to be chosen in order to reduce uncertainty.
Similarly, fixations were governed by entropy reduction
in a shape discrimination task (Renninger, Verghese, &
Coughlan, 2007). Subsequent work by Verghese and
colleagues, however, found that observers do not select
targets to minimize uncertainty in a search for multiple
targets, especially when under time pressure (Ghah-
ghaei & Verghese, 2015; Verghese, 2012). We manip-
ulate uncertainty by having some of our objects move
in some conditions. If the model is correct, this should
have an effect on subjects’ gaze and walking behavior,
showing an increased need for updated information

with increased looks to relevant objects and evidence
that uncertainty grows since the object was last fixated.

The goal of this paper is to explore the validity of the
approach outlined in the Sprague et al. (2007) model, in
the context of a walking task. We developed a virtual
environment where subjects walk along a path while
avoiding obstacles and collecting targets. A similar
environment was developed by Rothkopf et al. (2007)
and demonstrated the importance of task relevance in
gaze allocation. They compared their results with
saliency predictions and random allocation and found
that gaze allocation reflects primarily task relevance.
Like that study, we manipulate task instructions as a
proxy for manipulating reward, but we add different
uncertainty conditions by adding motion to the objects.
Another similar experiment, in a virtual driving
environment, was performed by Sullivan, Johnson,
Rothkopf, Ballard, and Hayhoe (2012). In that study
participants were instructed to follow a lead car at a
specific distance and to drive at a specific speed.
Implicit reward was varied by instructing participants
to emphasize one task over the other, and uncertainty
was varied by adding uniform noise to the car’s
velocity. Gaze measures showed that drivers more
closely monitor the speedometer when there is added
uncertainty, but only if it was also associated with high
task priority or implicit reward. Uncertainty reduction
did not appear to affect task performance, however, as
would be expected if uncertainty reduction allows
better action choices. In the present experiment we re-
examined this question. We also extend the examina-
tion of reward and uncertainty to a different domain
from the Sullivan et al. (2012) experiment, by using a
walking environment.

Our goal was to examine the basic assumptions of
the model described above, to see if they are consistent
with observed behavior; namely, is human gaze
behavior affected by the uncertainty and reward
structure as the model indicates? Our environment
extended that of Rothkopf et al. (2007) by adding
uncertainty to the obstacles, and by making the path
more complex. The environment was designed to have
observers meet similar visual challenges to those they
might meet in the real world. To do this we had subjects
follow a curved path across the room, avoid obstacles,
and intercept targets. Since heading towards a goal,
controlling the path walked, and avoiding and inter-
cepting objects are all common demands of acting in
the natural world, the goal was to make the exper-
imental context as general as possible with respect to
the class of behaviors involved in walking. We
manipulate the relevance of the collection and avoid-
ance tasks, by instructions, and observe the effects of
this on gaze target selection. In particular we ask
whether fixations to targets and obstacles increase in
response to the task instruction (implicit reward), and
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whether this increase in turn improves obstacle
avoidance and target interceptions. We also ask
whether increasing the positional uncertainty of the
objects increases the frequency of fixations on task-
relevant objects as suggested by the Modular RL
model. We also test an alternative hypothesis that
subjects simply look at the closest object. By combining
different tasks, we examine whether fixations and
action decisions are affected independently by the
different task instructions as expected on the basis of
the independent module assumption, or whether
instructions on one task (say, avoid obstacles) influ-
ences fixations on irrelevant objects (e.g., increased
target fixations). Although we find the expected effects
of reward and uncertainty, we find deviations from
complete independence of the modules. In addition we
examine another assumption of the model: that subjects
perform one task at a time while letting uncertainty
grow in the other task.

Methods

Environment

To examine these questions we developed a virtual
walking environment, illustrated in Figure 2. Subjects
walked along or near the grey path shown in the
Figure, while avoiding the red cubes and collecting the
blue spheres that floated around eye height. This is
similar to the paradigm used by Rothkopf et al. (2007),
except that their path was wide and straight and the

objects were anchored on the ground. Having the
objects float allowed us to introduce uncertainty by
varying their position and provided greater distance
between path and object information. The dimensions
of the virtual environment were matched to the real
room and subjects walked diagonally across the room,
following the roughly S-shaped path. At each end of
the path, a virtual elevator transported the subject to a
new room with a different array of objects, and the
subject then walked back in the opposite direction
across the room. This allowed us to parse the
experiment into a sequence of separate trials. There
were 12 spheres and 12 cubes distributed randomly and
uniformly around the room at heights between 4 ft. and
6 ft. For both targets and obstacles, a collision occurred
if subjects passed within 6 in. of an object.

Apparatus

The virtual environment was created using Vizard
software and was viewed using a NVIS SX-111 head
mounted display. Each eye provides 768 horizontal and
648 vertical FOV at 1280 3 1024 resolution with a 508
region of horizontal overlap. The HiBall system by
3rdTech provided rotation and translation tracking at
approximately 600 Hz for both head and body; one
HiBall sensor was mounted to the back of the HMD
while a second was attached to a pack subjects wore at
their waist. The latency of the Hi-Ball signal is a few ms
with high positional and angular accuracy. The whole
system latency between a head movement and the
screen being updated was 50–75 ms. The head mounted

Figure 2. (left) The NVIS head mounted display, with Hi-Ball tracking system on the head and around the waist. (right) The virtual

environment seen by the subject, showing the light gray path, the blue sphere targets, and the red/brown cube obstacles. The light

green circle shows the location of the virtual elevator.
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display was equipped with an Arrington Research
View-Point eyetracker tracking the left eye at 60 Hz.
Calibration was performed using a 9 point calibration
grid at the start of the experiment. Calibration accuracy
was checked again after the practice session and at the
end of each block of trials, and the system was
recalibrated when necessary. A video record of the
scene camera and left eye camera was recorded at 60 Hz
and then combined with metadata about head position,
body position, and experimental conditions such as the
location of objects in the room to generate a
QuickTime video with attached metadata for subse-
quent analysis.

Procedure

As a ‘‘Reward’’ manipulation, we varied the task
priority by varying the instructions. In different
conditions, subjects were either instructed to just follow
the path (Follow), or in addition to collect the blue
target spheres (Collect), to avoid the red obstacle cubes
(Avoid), or to both collect the targets and avoid the
obstacles (Both). Thus, path following was included in
all four conditions. Each floating object (target or
obstacle) was therefore either task relevant or task
irrelevant. Contact was made with an object by
physically walking into it. When a target was contacted
in the relevant condition, a fanfare sound was heard.
When an obstacle was contacted in the relevant
condition, a buzzer was heard. We assume that the
fanfare sound is more pleasant than the buzzer. When
either object was contacted in the irrelevant condition,
a soft bubble pop was heard. The color of the targets
and obstacles was counterbalanced in another version
of the experiment in this environment (Hitzel, Tong,

Schutz, & Hayhoe, 2015) and was found not to affect
the distribution of fixations. A similar control was
performed in Rothkopf et al. (2007), so we did not
repeat the control in the present experiment. In order to
manipulate ‘‘Uncertainty,’’ random motion was added
to the objects in different conditions. In the High
Uncertainty condition, objects moved along a straight
path at 10/s to a new location chosen from a three-
dimensional Gaussian distribution centered at the
object’s original location and within the original range
of heights. This Gaussian had a horizontal standard
deviation of 20 and a vertical standard deviation of 10.
When the object reached its destination, a new target
location was chosen, and the object was continuously
in motion, as shown in Figure 3 (left). In the Low
Uncertainty condition the objects were stationary.
Thus in all, there were four task conditions (Follow,
FollowþAvoid, FollowþCollect, and FollowþBoth)
and four uncertainty conditions (high and low for each
object type), making 16 conditions in total. Examples
of a subject performing the FollowþBoth task in both
the Low Uncertainty and High Uncertainty conditions
are shown in Video 1 and Video 2. The crosshair in the
Videos shows eye position.

Subjects were given two trials of practice: one with
moving targets and both objects relevant and one with
moving obstacles and neither object relevant. They then
performed 32 trials in blocks of eight. Each block had
one of the four uncertainty conditions and had two
consecutive trials for each task condition. The order of
the tasks was Follow, Avoid, Collect, and Both. This
order was chosen so as not to influence the single task
conditions by doing the double task. Thus, it is possible
there are some order effects. In another experiment in
the environment (Hitzel et al., 2015) the order of the
conditions was counterbalanced and no obvious order

Figure 3. (left) An illustration of how objects moved in the high uncertainty condition. Objects were given a starting location in the

room. New destinations were selected at random from a Gaussian distribution centered at that starting location with a horizontal

standard deviation of 20 and a vertical standard deviation of 10. Objects then moved towards that destination at 10/s. Upon reaching

the destination, a new destination was sampled from the distribution, still centered at the initial location. Objects were thus

constantly in random motion. In the low uncertainty condition, objects were stationary. (right) Top down view of a segment of the

path showing the subjects trajectory (thin red line) and the fixations made (red for obstacle, blue for target, green for path, brown for

background objects).
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effects were observed. The order of the uncertainty
conditions was counterbalanced across subjects. At the
start of each trial, subjects were verbally given
instructions for the next room.

Participants

Subjects had normal or corrected-to-normal vision
(contact lenses only). Subjects were UT undergraduates
participating in the experiment for course credit and
were naı̈ve to the specific hypotheses being tested. Of 20
subjects run in the experiment, 12 completed the
experiment and provided stable eye tracking data. The
experiment was approved by the University of Texas
Institutional Review Board, and all participants gave
written informed consent.

Data analysis

Subjects’ eye position data were analyzed using an
automated system developed in-house. The eye signal
was preprocessed using a median filter and then a
moving average, both over three frames, to smooth the
signal. Fixations were identified using a velocity
criterion of less than 608/s for at least 100 ms. (This is a
relatively high threshold as the subject is walking, and
the vestibular ocular reflex adds a slow component to
eye-in-head velocity; compared with the velocity of a
saccade, however, the compensation for the motion of
head and body remains below this threshold, and this
value has been found to reliably discriminate between
saccades and steady gaze in previous experiments where
Subjects walked in virtual environments (Jovancevic et
al., 2006; Kit, Katz, Sullivan, Snyder, & Ballard, 2014;
Li, Aivar, Kit, Tong, & Hayhoe, 2016; Rothkopf et al.,
2007). If eye position remained within a 1.58 radius,
transient velocity peaks of less than 80 ms were ignored
and the data treated as belonging to a single fixation.
By using the stored metadata and reconstructing the
environment, we were able to recover the identity of
fixated objects by intersecting the vector representing
gaze direction with the 3D spatial volume of the object.
To identify the location of the fixation in the scene, a 60
3 60 pixel window subtending approximately 628 of
visual angle, was centered around the location of the
point of gaze on each frame, and each pixel in the
window returned a label for the type of object it
contained. Scene regions were labeled as one of the
following: Path, Obstacle, Target, Elevator, or Back-
ground. As we tracked only the left eye, we are unable
to label gaze to points outside the field of view of the
left eye—such frames were labeled as Background.
Only a small number of fixations fall in the corre-
sponding monocular region of the left eye, so by

inference most fixations are within the binocular field of
view. The fixation target on each frame was labeled as
the one with the greatest proportion of pixels, except
when the background was the greatest proportion. In
this case, the next most frequent object was chosen.
(This avoids failure to identify object fixations when
gaze was near an object’s edge with much of the
fixation window off the object.) The region labeled as
the fixation target for most frames during a fixation
was labeled the target for whole fixation. Consecutive
fixations to the same nonbackground target were
combined if the time between them was less than 80 ms
to further reduce noise. The Path region was defined as
a 20 strip around the actual path, which was a thin line
in the scene. The automatically identified labeled
fixations were validated against a frame-by-frame
manual analysis of the video records of a subset of the
data. The manual coding allowed fixation analysis
parameters to be optimized to best match the manual
labeling, and the manual and automated analyses were
in good agreement. A similar technique for fixation
analysis was used in Kit et al. (2014) and Li et al.
(2016). In our analysis, fixations were measured in the
period following movement initiation at the beginning
of the path and prior to reaching the next elevator,
when subjects were farther than half a meter from the
start and end elevators.

Results

The goal of the experiment was to examine the
influences on both eye and body movements as subjects
walked through the environment. The focus was on the
factors that control momentary choices of what is the
most important action from moment to moment.
Figure 3 (right) shows a segment of gaze and walking
behavior that illustrates these momentary gaze and
action choices. In this segment, the subject makes a
fixation to an obstacle (red), followed by avoidance of
the obstacle. During this avoidance path, the subject
makes a path fixation (green), then a fixation to a target
(blue), that the subject detours to collect. How are these
target decisions made?

Gaze allocation: Task effects.

First we examine the effect of the task instruction on
the distribution of fixations. Figure 4 plots the number
of fixations on targets, obstacles, and path for the four
task conditions. Subjects completed the trials fastest in
the follow condition (19 s, with 31 fixations on
average), increasing to about 24 s with 42 fixations for
the Avoid or Collect tasks, and 28 s with 48 fixations
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for the full Avoid and Collect task. Note that in this
and in subsequent plots we have chosen to plot fixation
number rather than proportion, but none of the
conclusions drawn are affected by this choice. We chose
fixation counts as it seemed a more direct reflection of
the effect of instructions and object motion on
behavior. Subjects often fixated a target and main-
tained fixation until collection or shortly before; to
avoid this behavior giving too much influence on our
measure, we consider the fixation count rather than
duration and combine multiple temporally adjacent
fixations to the same object. Data are averaged over all
uncertainty conditions for each subject. Error bars
reflect between subjects variability. Background fixa-
tions (not landing on any object of interest) account for
approximately 40% of fixations in all conditions and
are not plotted. As expected, and as found previously in
a similar environment (Rothkopf et al., 2007) the
distribution of fixations is sensitive to the task goals.
Target fixations are highest in the Collect and Avoidþ
Collect conditions, and obstacle fixations are highest in
the Avoid and AvoidþCollect conditions. Fixations to
targets when task-relevant are a little more frequent
than to obstacles when relevant. This may result from
the different behavior during collection versus avoid-
ance. During collection subjects orient towards the
target and maintain gaze on the target whereas when
avoiding obstacles, subjects direct themselves away
from obstacles. For this reason, we focus primarily on
how task affects fixations for a given object rather than
differences between fixation numbers on targets versus
obstacles. Path fixations are relatively constant, at
about seven fixations, except for the collect condition,
perhaps as this involves greater deviations from the
path with the targets largely dictating the trajectory
through the space. While the task modulation is
substantial, both targets and obstacles each get a

number of fixations, even in the Follow condition,
where they are not explicitly relevant. If we interpret
fixations as reflecting some intrinsic value for the
information, the instructions are only one factor in
determining what subjects consider relevant while
walking. Presumably knowing the structure of the scene
and the location of objects in the environment is
something that has been rewarded during ordinary
visual experience, as it is almost always important.
Alternatively, these fixations might reflect more stim-
ulus-driven saliency mechanisms, although we present
evidence against this possibility below (see Figure 5).
Finally, if an object intersected the line of sight either
through subjects’ movements or its own, it would likely
be counted as a fixation, so some random noise may
also be a contributing factor.

Note that target fixations go up when subjects are
instructed to avoid obstacles, even though targets are
not explicitly relevant. That is, the number of target
fixations goes from less than 5 in the Follow condition
to about 7.5 in the (Follow and) Avoid condition.
Similarly, obstacle fixations go from less than 5 in the
Follow condition to 8 in the (Follow and) Collect
condition. Both these differences were highly significant
on a matched pairs t test: p¼ 0.003, t(11)¼�3.74 and p
¼ 0.0002, t(11) ¼�5.59 respectively. This suggests that
the presence of targets affects obstacle fixations and
similarly that the presence of obstacles affects target
fixations. In the simplest form for the Modular RL
model, described by Sprague et al. (2007), the amount
of reward associated with a module affects its fixations,
and increasing the reward of one module should either
not change the fixation behavior of irrelevant objects
from their baseline or decrease the number of fixations
due to competition for a limited resource. This increase
of gaze to irrelevant objects therefore suggests that

Figure 4. Task effects on number of fixations on targets, obstacles, and path. F indicates the Follow instruction; A, the Avoid and

Follow instruction; C, the Collect targets and Follow instruction; and AþC is all three. Error bars indicate between-subjects standard

errors.
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modules are not completely independent. We take this
issue up in the Discussion.

Uncertainty manipulation: Effects on gaze

As discussed in the Introduction, the role of
uncertainty on gaze allocation is unclear. While it
seems clear that in general gaze is deployed to get
necessary information, just how this functions in a
dynamic behavioral context is not understood. Here we
manipulated the amount of extrinsic noise by adding
motion to the targets and obstacles. Does this lead to
more frequent obstacle and target fixations? This is
shown in Figure 5. Data were averaged for each subject
for the High and Low Uncertainty conditions, and for
both task Relevant and Irrelevant conditions, and the
Figure shows between-subjects variability estimates. A
four-way ANOVA of the subject identity, object
identity, relevance, and uncertainty showed a main
effect of an object’s relevance, F(1, 45) ¼ 145.02, p ,
0.001; uncertainty, F(1, 45)¼ 9.73, p ¼ 0.0032; subject
identity, F(11, 45)¼ 6.47, p , 0.001; and object type,
F(1, 45) ¼ 7.34. p , 0.001. There were also significant
interactions between relevance and uncertainty, F(1,
45)¼ 7.56, p¼ 0.0086; subject identity and relevance,
F(11, 45)¼ 5.67, p , 0.001; and object type and
relevance, F(1, 45)¼ 11.54, p¼ 0.0014. The main effects
of relevance and uncertainty are as predicted by the
model. We further examine the relevance and uncer-
tainty interaction. When obstacles were relevant to the
task, subjects increased the number of fixations to
obstacles when obstacle uncertainty was high, and
obstacles were relevant to the task: from 8 to 11, t(11)¼
�2.692, p¼ 0.021. The uncertainty manipulation has no
significant effect when obstacles were not relevant:

approximately six fixations, p¼ 0.813, t(11)¼ 0.242. In
the case of target fixations, the effect of adding
positional uncertainty increased fixation by about 2
(from 11 to 13) when targets were relevant. This
increase was significant, p ¼ 0.043, t(11) ¼�2.286.
Again, there was no effect of the uncertainty manip-
ulation when the targets were not relevant, p ¼ 0.210,
t(11)¼�1.330. It is of interest that for both targets and
obstacles, the addition of positional uncertainty to
irrelevant objects did not increase fixations to those
objects. Thus, the added motion in peripheral vision
did not attract gaze, as might be expected from most
models of saliency where motion is a highly salient cue
(Borji & Itti, 2015). Interestingly, there was a sugges-
tion that the motion of the irrelevant object increased
looks to relevant objects, although this did not achieve
significance (ANOVA on the Collect and Avoid trials
looking at the effects of the uncertainty of the irrelevant
object, p ¼ 0.159, F(1, 45) ¼ 2.05.

Alternative strategies

One central premise of the Modular RL model is so
far supported by the gaze data, namely, that fixations
are at least partially determined by both task priority
(reward) and uncertainty. However, it is possible the
data might be consistent with alternative hypotheses.
For example, in the simplest case, subjects might simply
look at the closest object to them as they walk along the
path, and depending on how subjects position them-
selves this might potentially yield the same results
shown above. These two hypotheses overlap some
because proximity has a direct effect on how uncer-
tainty and reward interact; if a target is on the other
side of the room, its exact position is largely irrelevant

Figure 5. The effects of uncertainty and relevance on fixations. The left side of the figure shows number of fixations to targets for low

and high target uncertainty. The right side shows number of fixations to obstacles for low and high obstacle uncertainty. The solid line

shows the condition where targets (left) or obstacles (right) are relevant, and the dashed lines show the corresponding irrelevant

condition.
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as one can head in the right general direction, whereas
collecting a nearby target requires having an accurate
representation of its position. To examine this com-
peting hypothesis, we counted the frequency with which
subjects looked at the closest object within the field of
view, at the second closest, and so on. The resulting
frequency distribution is shown in Figure 6. The figure
shows that about 30% of the fixations are to the closest
object, and substantial proportions of the fixations go
to the second and third closest objects. Thus there is a
clear tendency to look at nearby objects, but not simply
at the closest one. Thus, the simple heuristic of looking
at the closest objects does not match the data,
supporting the hypothesis that task and uncertainty
play a role.

The inset of the figure has similar histograms, but
now separated out into object-specific rank. About half
the time subjects look at the closest obstacle on screen
and half the time at the closest target, presumably as
dictated by the current attentional focus. This indicates
that the simplifying assumption used by Sprague et al.
(2007) that modules receive updates on the closest
relevant object is approximate but not perfect, and that
subjects may be planning further ahead. Thus the
model should be extended to allow the tracking of

multiple objects, so that the uncertainty associated with
the more distant objects could be factored in to gaze
choices.

Another consideration is that fixation locations tend
to be localized around the center of the field of view.
This is most well known when viewing stimuli on a
screen, where there are frequently strategic advantages
to not focusing gaze at the edge of a display;
photographers tend to place interesting content to-
wards the center of an image and locations beyond the
edge of the screen reveal nothing about the scene
portrayed (Tatler, 2007). Eye movements in the real
world do not have the edge of the screen driving gaze to
the center, but nevertheless tend to show a central bias
with the majority of fixations falling within the central
208–308 of view relative to the head, but showing a large
effect of task (Foulsham, Tong, & Kingstone, 2011; ‘t
Hart & Einhäuser, 2012). Given that subjects approach
targets for collection, this bias could mean that simply
walking towards targets would increase the number of
fixations to targets, driving the task effect we observe.
However, as shown in Figure 3 (right), the subjects’
fixations tend to precede the turning action towards a
target or away from an obstacle. Furthermore, the
opposite would be true for obstacles; avoiding obstacles

Figure 6. Proportion of fixations as a function of object distance from the subject, expressed as a rank. Thus 1 is the closest object on

screen, 2 the next closest, and so on. Error bars are between-subjects standard errors. The inset shows the distributions separated by

object type.
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would lead to a reduction in the time an obstacle is
straight ahead of a subject and a reduction of fixations
due to the central bias; however, active avoidance
increases the number of looks to obstacles. To examine
this issue further, we plotted the distribution of
fixations across the visual field to targets, obstacles, and
to the background (defined as fixations not to the path,
obstacles, or targets). Figure 7 shows the distribution of
these fixations across the horizontal axis. While
fixations exhibit a central bias, they are broadly
distributed across the visual field with subjects making
many large eccentric fixations. Background fixations
are more narrowly distributed horizontally in the visual
field compared with obstacle and target fixations. We
also observe an effect of task for targets, where the
distribution of targets when being collected is wider
than when they are not task relevant; however, there
does not seem to be a significant effect of relevance on

the fixation distribution for obstacles. All of these
distributions were significantly different according to a
Kolmogorov-Smirnov test (p , 0.01). The effects
observed go beyond what is able to be accounted for
with the central bias and reveal an active search for
objects of interest.

Action decisions

In our conceptualization of natural behavior, gaze is
used to update internal estimates of world state in order
to make decisions that satisfy momentary task goals.
Thus, gaze choices should be related to action
decisions. Figure 8 (left) illustrates a subject’s path
when walking through the environment in the different
task conditions, and Figure 8 (right) shows collection
and avoidance performance when doing the four tasks,

Figure 7. The distributions of fixations along the horizontal dimension for targets, obstacles, and background. (left) Target fixations in

both relevant (blue) and irrelevant (red) conditions compared with background (yellow). (right) Obstacle fixations in both relevant

(blue) and irrelevant (red) compared with background (yellow).

Figure 8. The effects of explicit task on performance. (left) Example paths taken by a subject under the different instructions. (right)

The number of targets collected and obstacles avoided are plotted for the for different task instructions. F¼ Follow, A¼ Avoid, C¼
Collect, and AþC ¼ Both. Error bars are standard errors between subjects.
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averaged over uncertainty conditions. Subjects collect-
ed more targets when given the Collect instruction.
Likewise, subjects avoided more obstacles when in-
structed to Avoid. Note that about four targets were
collected, and nine of the 12 obstacles were avoided
(that is, three collisions) even when simply instructed to
follow the path. As targets and obstacles were
distributed at random, the greater number of targets
collected (four) than obstacle collisions (three) suggests
that the label itself induces slightly different task-
specific behavior, p¼ 0.0090, t(11)¼ 3.16. Additionally,
target collection increased slightly in the Avoid task, p
¼ 0.0003, t(11) ¼�5.13, and avoidance increased
slightly in the Collect task, p¼ 0.0002, t(11) ¼�5.6.
Thus, there is some value to collection and avoidance
even when not explicitly instructed, and instructions to
avoid influence the value of collection. An alternative
interpretation is that the task execution is not strictly
independent as postulated in the Modular RL model.
Such a failure of independence could result from some
kind of global scene analysis, for example, rather than
independent valuation of targets and obstacles.

Relation between gaze and actions

Given that subjects’ behavior is modulated as
expected, we now address the issue of the relation
between gaze and actions. Figure 9 plots average
targets collected and obstacles avoided as a function of
the proportion of fixations. The effect of fixations is
clear in the case of target collection. The more often
targets were fixated, the more often they were collected,
regardless of task relevance (correlation coefficient of
0.63, p , .0001). The trend is less pronounced for the
obstacles, since few obstacles are collided with.
However, the more obstacles were fixated, the fewer

collisions with obstacles there were, and the correlation
is significant (correlation coefficient of 0.22, p , 0.001).
The correlation for targets is perhaps unsurprising,
since subjects approach targets when collecting them
making a fixation to them likely, but the opposite is
true for obstacles so taken together the two correlations
provide evidence for the coupling of gaze and behavior.

We also noted that other aspects of gaze behavior
were specific to the particular task goal, as shown in
Figure 10. Thus, the mean distance at which subjects
started a fixation to the path was very stable, at about 3
m horizontal distance, whereas fixations to targets and
obstacles were initiated when objects were at about 1.7
m and 1.8 m horizontal distance respectively. We
performed a two-way ANOVA on the mean fixation
distances for each subject for targets and obstacles in
the high and low uncertainty conditions. The difference
between the relevant and irrelevant conditions was
significant, with fixations to obstacles being made when
obstacles are closer in the relevant condition, p ,
0.0004, F(1, 44)¼ 14.78, and for fixations to targets
when targets are relevant, p ¼ 0.0061, F(1, 44)¼ 8.29.
This suggests that the distance at which objects were
fixated reflects the behavioral needs of the subtask.
There was also an effect of uncertainty on the distance
at which targets and obstacles were viewed: two-way
ANOVA with object and uncertainty, p¼ 0.005, F(1,
44)¼ 8.7, as shown in Figure 10 (right). In the high
uncertainty condition, the average fixation distance is
about 0.3 m closer for obstacles, p¼ 0.004, t(11)¼ 3.64,
while the difference for targets was about 0.1 m and did
not achieve significance, p ¼ 0.403, t(11) ¼ 0.87. The
distance an object was last fixated is a good indicator of
how long it will be until the subject passes the obstacle,
and is correlated strongly with the time taken until the
subject comes closest to the obstacle (r¼ 0.74 for low
uncertainty, r¼ 0.63 for high uncertainty).

Figure 9. (left) Target collections as a function of number of fixations to targets. (right) Obstacles avoided as a function of number of

fixations to obstacles. Data were averaged over all conditions for a given number of fixations, and error bars reflect the standard error

of the estimate of the mean for that number of fixations.
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Discussion

We observed gaze and walking performance in an
environment that presented similar challenges to those
present in the everyday behavior of walking in a
cluttered environment with moving objects. Our goal
was to work towards an understanding of gaze control
in complex behavior that integrates gaze into task
performance. We examined the assumptions of the
Sprague et al. (2007) Modular RL model, and extended
the experimental domain from previous similar studies.
Overall the data are consistent with the assumptions of
the model, although there are a number of complexities
not explained by this simple framework. We examine
these assumptions in turn.

Task relevance and reward

Subjects must have some mechanism whereby
behavioral goals determine where they attend, and thus
where they look. We suggest here that in many natural
contexts there are a number of goals that must compete
for gaze, and that both gaze and walking direction
choices reflect a single value for that goal relative to the
competing goals. We attempted to manipulate this
value using instructions, and find that gaze allocation
and walking direction choices both reflect the effect of
instructions, and by inference, implicit reward, as
expected. A simple strategy of looking at the closest
object of either kind was not able to account for the
results. Thus, subjects execute searches to find the next
target for gaze based on a choice of which task to
attend to. We also showed a connection between eye
movements and task performance. For both targets
and obstacles, making more looks to a task relevant
object was correlated with improved performance of

that task, meaning that more looks to targets correlated
with more target collections and more looks to
obstacles correlated with more obstacles being avoided.

It might be argued that instructions are a weak way
to manipulate some underlying reward parameter.
Indeed, it would be preferable if subjects could reveal
stable intrinsic preferences for particular goals such as
obstacle avoidance. It has been demonstrated that
walking decisions in a similar experimental environ-
ment can in fact be used to infer an underlying value for
a particular subtask, and these values appear to be
quite similar across different subjects (Rothkopf,
Hayhoe, & Ballard, submitted; Tong & Hayhoe, 2014).
Interestingly, Rothkopf et al. (submitted) have shown
that the values of the Collect and Avoid tasks estimated
separately can account for the values of Collect and
Avoid when performed together in the Both condition.
This suggests that the instruction manipulation is
effective in changing some fairly stable internal
parameter reflecting subjective value. As discussed in
the Introduction, there is a growing body of literature
indicating the effect of both extrinsic and intrinsic
reward on gaze behavior. What we add here is evidence
that the relative value of different goals can be used to
arbitrate between momentary choices to control both
gaze target and walking direction. In the present
conceptualization, gaze target is chosen to reduce
uncertainty in order to make better decisions about
walking direction, and in the Reinforcement Learning
framework, walking direction is chosen to maximize
future expected discounted reward that has been
learned through experience. As pointed out by Eck-
stein, Schoonveld, Zhang, Mack, & Akbas (2015), and
others (Gottlieb et al., 2012; Gottlieb, Hayhoe,
Hikosaka, & Rangel, 2014) eye movements themselves
are not directly rewarded in the context of behavior,
unlike many of the neurophysiological experiments as

Figure 10. (left) Average horizontal distance of fixations on path, obstacles, and targets as a function of instruction. (right) Effect of

Uncertainty on fixation horizontal distance for targets and obstacles. Error bars are standard errors between subjects. Distances were

measured at the start of each fixation.
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well as some of the psychophysical experiments (e.g.,
Navalpakkam et al., 2010, Schutz et al., 2012; Stritzke
et al., 2009). Eckstein et al. (2015) argue that, at least in
some cases, it is the decision informed by the eye
movement that gets the reward, not the eye movement
per se. In the present context the decisions are easily
observable in the choice of walking direction, so we are
able to see a more direct link between the gaze choices
and the walking decisions made.

Uncertainty

By adding an external source of uncertainty in the
current paradigm, we were able to increase the number
of fixations on objects in the environment. This is true
only when the object is task relevant. The effect of
uncertainty is expected on the basis of the Modular RL
model, although the effect was most apparent in the
case of obstacle fixations. It is not entirely clear why the
effect is stronger for obstacles, although it may indicate
that the two tasks are different in ways not captured by
the simple conceptualization in the model; for instance,
since targets are approached, they are more likely to be
fixated while they’re being collected regardless of their
uncertainty. The relatively modest effect of added
uncertainty suggests that internal sources of uncer-
tainty may dominate in the present circumstances, and
these are not reflected in the figure. The added
uncertainty had no significant effect on fixations to the
moving object when the task was irrelevant. A similar
finding was observed by Sullivan et al. (2012) in their
driving paradigm, where uncertainty was added to the
speedometer; however, there the added uncertainty was
not visibly distinctive. By introducing uncertainty using
motion, one might expect that irrelevant objects would
be more salient in the high uncertainty condition, but
we did not find this to be the case; it was only when
objects were relevant to the task at hand that
movement increased the number of fixations. In
contrast, many bottom-up models predict high salience
for unpredictably moving objects (Itti & Baldi, 2006;
Peters & Itti, 2006) and models that tune attention to
feature channels to provide top-down guidance would
tend to keep motion and color cues separate (e.g.
Navalpakkam & Itti, 2005), posing a challenge for how
a moving relevant object would capture more attention
but an irrelevant object would not.

Uncertainty reduction as a controlling factor in gaze
target selection has also been investigated by Ghah-
ghaei and Verghese (2015) and Verghese (2012). In
these investigations, subjects performed a search task in
noise for multiple targets, and it was observed that
subjects choose the most likely location as often as the
most uncertain location. It is not entirely clear how to
compare these results with ours. One difference is that

we pose the question in a somewhat different manner,
in that we are looking for more frequent object
fixations when the locations of those objects is more
variable, and subjects need the location information in
order to perform an action, whereas in Verghese and
colleagues’ experiments the question is whether subjects
look at a location that reduces uncertainty about
whether a target is there or not. Another factor is that
implicit reward may influence the behavior in complex
ways and make interpretation more difficult. It may be
that fixating targets may be more rewarding than
resolving the uncertainty since those targets are being
acted upon in the next step, selecting them and
receiving a reward. Finally, Ghahghaei and Verghese
(2015) noted that the effects of uncertainty become
stronger as subjects have longer to make their
decisions, and in our context subjects were not under
time pressure. Thus, the specific experimental context
and the nature of the behavioral goals may need to be
taken into account when evaluating the importance of
uncertainty in gaze target choice.

In our experiment, uncertainty effects are revealed
not only in gaze choices, as in Verghese and colleagues’
experiments, but also in the walking decisions subjects
make. We found that as the number of fixations
increased in the various conditions of the experiment,
performance in target interceptions and obstacle
avoidance improved. This link is important in validat-
ing a model like Modular RL, since it posits that the
information acquired by gaze is used to inform action
decisions. In Sullivan et al.’s (2012) driving experiment,
measures of performance did not reflect the different
distribution of fixations when uncertainty was added.
We also observed that increasing uncertainty shortened
the distance at which subjects fixated the objects. It is
possible that this is caused by the greater fixation
frequency after subjects first fixated an object, the
necessary information being available later in time, or
that subjects are adopting a strategy to reduce
uncertainty about task relevant state information. All
of these explanations are in agreement with the model,
but it would be worthwhile to better understand the
cause.

One important aspect of the current theoretical
context is the idea that the state for only one module is
updated at a time, and the value of other task-relevant
variables is propagated in short-term memory, with
noise accumulating as a function of time. Previous
findings by Droll et al. (2007) in a block manipulation
task, indicated that subjects do not necessarily update
representations of the objects they are manipulating if
they are attending to other aspects of the task, and
instead use information stored in memory rather than
current (foveal) sensory data. In the present study, task
performance was correlated with fixations to task-
relevant objects. The fact that the fixation distance on
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objects decreases in the high uncertainty condition is
consistent with the notion that uncertainty for unat-
tended modules grows with time. Note, too, the
illustration in Figure 3 (right), where the avoidance
path occurs while the subject is fixating the next target
for collection, suggesting that once a plan is underway
and the information it needs determined, that attention
can move on. Thus, the present experiment is consistent
with previous work discussed above, showing that
subjects allow for both intrinsic and extrinsic uncer-
tainty when executing actions, but in addition it
suggests that subjects typically take account of the fact
that less recently acquired sensory data will have
greater noise as the representation decays with time in
visual memory and plan actions accordingly. Previous
studies have also suggested that subjects take into
account intrinsic uncertainty in visually guided action
(Faisal & Wolpert, 2008; Körding & Wolpert, 2004;
Maloney & Zhang, 2010; H. Zhang, Daw, & Maloney,
2015).

Modules

One of the simplifying assumptions of the Sprague et
al. (2007) model is that complex behavior can be
decomposed into independent subtasks or modules that
access relevant parts of the state space independently,
and that each fixation provides an update to a single
module. These modules are also assumed to be able to
access the information they need efficiently; when the
visual system determines that the target module should
receive a state update by making a fixation, a target will
be fixated. This simplifies the modeling significantly
and is motivated by the sequential, task-directed
behavior one observes when performing real world
tasks (Ballard & Hayhoe, 2009; Hayhoe & Ballard,
2005; Land & Tatler, 2009). Several of our findings
provide challenges to this account.

First, we assume that objects are either relevant or
irrelevant on a trial-by-trial basis following the
instructions given, but there’s some evidence that
subjects did not strictly follow this (see Figure 8). Even
when subjects were told to simply follow the path, they
tended to make more contacts with targets than
obstacles, suggesting some preference beyond the
current instructions. More interestingly, when subjects
were told to collect targets, they increased their
avoidance of obstacles; being told to avoid obstacles
likewise improves target collection. This means that the
analysis based on objects being considered task
irrelevant is not strictly correct; it appears that the
floating objects here maintain some relevance for the
subject even when irrelevant to the experimenter-
specified task, and that their subjective relevance may
vary. Inverse Reinforcement Learning can be used to

recover the implicit reward structures subjects actually
are using (Rothkopf et al., 2010), and some preliminary
results show just those kinds of recovered weights
(Tong & Hayhoe, 2014). In any event, relevance here
could perhaps be better understood behaviorally as
high versus low relevance conditions, not relevant
versus irrelevant.

There also is some interaction between modules
when one looks at eye movements. First, the instruction
to avoid obstacles led to an increase in target fixations,
and vice versa. There are several potential reasons for
this interaction. This matches the basic pattern
discussed above in the behavioral data, so it may be due
to ‘‘irrelevant’’ objects still having some implicit
reward, but the effect is much more pronounced, and
one does not see the effect of increased uncertainty
driving more looks towards irrelevant object, as one
would expect if viewing such objects was rewarding.
The presence of irrelevant objects could also make the
visual search task more complex, as a consequence of
crowding, since all floating objects were at approxi-
mately the same height. This crowding could have also
made the proper labeling of fixations more confusable
and noisy, although the automatic labeling was verified
with hand coding. Alternatively, subjects might simply
search for objects of any kind, and then move on if the
irrelevant object is encountered, meaning the influence
of task occurred after a fixation rather than when
selecting them; however, the fact that more fixations
were made to objects that were task relevant makes this
conclusion unlikely. Lastly, while looks to the path
appear constant across most tasks, during the Collect
task, fewer path fixations are made. This might result if
the targets are providing the main waypoints of the
path, with subjects merely being concerned with
keeping their trajectory vaguely close to the path. A
similar interaction was observed by Rothkopf et al.
(2007), who found that fixations on obstacles served the
dual purpose of locating obstacles and the subject’s
position on the sidewalk, reducing the number of
fixations to the sidewalk. Taken as a whole, the results
support the modular approach in that adjusting the
relevance and uncertainty of each task had significant
effects on both eye and walking behavior. However, the
naı̈ve approach of assuming complete independence
falls short of being able to capture all aspects of
behavior.

Background fixations and other factors

It is important to note that a substantial proportion
of fixations were to the background in this task. When
making a sandwich or performing a similar task where
the scene is stationary, almost all the fixations can be
explained by the task needs (Hayhoe et al., 2003; Land
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et al., 1999), but in the situation explored here, the
world changes dynamically as the subject walks
through it, the targets and obstacles are positioned
randomly, and there is no simple step-by-step ‘‘recipe’’
for task completion. The experimental context is
interesting for this reason as it seems to typify the
challenges that the visual system normally handles
effectively, and demands both top-down and bottom-
up mechanisms. In this paper we have addressed only
the top-down mechanisms, and those fixations that can
be explained on the basis of the experimentally defined
tasks. This leaves the remaining fixations on other parts
of the room unexplained. It is likely that there is some
intrinsic value to looking at objects in the room,
regardless of instruction. Since this might be considered
the job of vision in general, such fixations would be
expected, and might be the basis of a general strategy of
sampling the environment for potentially useful infor-
mation. Alternatively, such fixations could be necessary
for visual search; not all fixations land directly on
objects of interest but could guide future fixations
towards important information, perhaps reflecting
strategies involving peripheral vision by looking at a
location in between several objects instead of looking
directly at one. Background fixations could also reflect
strategies of getting global information within the room
for navigation. It may be that the other fixations reflect
additional ‘‘tasks’’ or modules that are relevant for
navigation, and that we have not explicitly identified in
our paradigm, such as evaluating global scene proper-
ties, obstacle density, etc. In any given situation we
don’t know what the specific modules might be, and
that remains a challenge for future work. Alternatively,
some of these other fixations might have a bottom-up
origin, and understanding how bottom-up factors
might play out in a context like this is a difficult
problem (Tatler et al., 2011).

Conclusion

Understanding human sensorimotor behavior pre-
sents a unique challenge, largely because we do not
know how behavior is organized. The Modular RL
model of Sprague et al. (2007) attempts to make the
problem more tractable by assuming that complex
behavior can be composed by small sets of specialized
component behaviors, or modules. This simplifies the
problem to one of understanding which component
behavior will be active at any particular time. Their
model proposes that modules are chosen based on state
uncertainty that could cause a reduction in expected
reward, and that this updating process can be revealed
by gaze target selection. In this paper, we attempt to
test these core assumptions. First, we show that

manipulating both uncertainty and reward have a large
effect on both walking behavior and eye movements.
An increase in a module’s relevance or uncertainty led
to the predicted increase of eye moments to task
relevant objects, supporting prior work on the topic.
Irrelevant moving objects showed no significant in-
crease of fixations despite being highly salient and
relevant on other trials in the experiment. Uncertainty
affected both the distance at which objects were fixated
and the clearance subjects gave objects when planning
their trajectories.

The results shed some light on the potential
modularity of the combined set of tasks. Increasing the
relevance or uncertainty of a module affected the
behavior of that module as expected, but there were
also some interactions between modules beyond what
one would observe if they were completely indepen-
dent. For instance, increasing the reward associated
with targets also increased both looks to obstacles and
obstacle avoidance. Teasing apart the causes and
nature of this interaction necessitates further research.
This approach of breaking down the complex problem
of human behavior into independent modules thus
provides valuable insights, but serves as a starting point
for understanding, and perhaps as a strategy for
exploring the added complexities of particular behav-
iors.
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