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CASE REPORT
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caused by the Asp631Glu mutation in the OCRL 
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Abstract 

Background:  Dent disease is an X-linked disorder characterized by low molecular weight proteinuria (LMWP), hyper-
calciuria, nephrolithiasis and chronic kidney disease (CKD). It is caused by mutations in the chloride voltage-gated 
channel 5 (CLCN5) gene (Dent disease-1), or in the OCRL gene (Dent disease-2). It is associated with chronic metabolic 
acidosis; however metabolic alkalosis has rarely been reported.

Case presentation:  We present a family with Dent-2 disease and a Bartter-like phenotype. The main clinical prob-
lems observed in the proband included a) primary phosphaturia leading to osteomalacia and stunted growth; b) ele-
vated serum calcitriol levels, leading to hypercalcemia, hypercalciuria, nephrolithiasis and nephrocalcinosis; c) severe 
salt wasting causing hypotension, hyperaldosteronism, hypokalemia and metabolic alkalosis; d) partial nephrogenic 
diabetes insipidus attributed to hypercalcemia, hypokalemia and nephrocalcinosis; e) albuminuria, LMWP.

Phosphorous repletion resulted in abrupt cessation of hypercalciuria and significant improvement of hypophos-
phatemia, physical stamina and bone histology. Years later, he presented progressive CKD with nephrotic range 
proteinuria attributed to focal segmental glomerulosclerosis (FSGS). Targeted genetic analysis for several phosphaturic 
diseases was unsuccessful. Whole Exome Sequencing (WES) revealed a c.1893C > A variant (Asp631Glu) in the OCRL 
gene which was co-segregated with the disease in male family members.

Conclusions:  We present the clinical characteristics of the Asp631Glu mutation in the OCRL gene, presenting as 
Dent-2 disease with Bartter-like features. Phosphorous repletion resulted in significant improvement of all clinical 
features except for progressive CKD. Angiotensin blockade improved proteinuria and stabilized kidney function for 
several years.
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Background
Dent disease is an X-linked disorder of proximal renal 
tubules characterized by low molecular weight pro-
teinuria (LMWP) and hypercalciuria with or without 

nephrocalcinosis. Other signs, that appear with variable 
frequency and may be helpful for the clinical diagnosis 
include nephrolithiasis, hematuria, hypophosphatemia, 
or chronic kidney disease (CKD) [1, 2]. Thirty to 80% of 
affected males progress to end stage renal disease (ESRD) 
between ages 30 and 50 years [1, 3]. Rickets, osteomala-
cia and short stature are occasionally observed. A patho-
genic variant in CLCN5 accounts for 60% of those with 
Dent disease (known as Dent disease-1, DD1) whereas 
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a pathogenic variant in the OCRL gene accounts for 
another 15% (known as Dent disease-2, DD2) [4]. In the 
rest 25%, pathogenic variants cannot be confirmed so far 
[1].

We present a patient with DD2 presenting with unu-
sual features of severe metabolic alkalosis and salt wast-
ing in the urine, mimicking Bartter syndrome. We found 
an OCRL mutation that co-segregated with the disease in 
male family members. No Bartter associated mutations 
were found. Interestingly, phosphate repletion resulted 
in an abrupt and impressive resolution of hypercalciuria 
and clinical improvement in the long term.

Case presentation
The index patient was 28-year-old Caucasian man, with a 
history of stunted growth, bone fractures, hypokalemia, 
hypercalcemia, nephrocalcinosis and nephrolithiasis. He 
had first sought medical attention at age 25 when he pre-
sented with renal colic and was diagnosed with kidney 
stones and nephrocalcinosis.

He complained of muscle and bone aches, polyuria 
and polydipsia. Physical examination revealed postural 
hypotension, dehydration and several keloids after minor 
injuries. Medullary sponge disease was excluded by an 
intravenous pyelogram and a computed tomography. 
Blood tests showed mild hypernatremia, hypokalemia, 
metabolic alkalosis, markedly elevated plasma renin and 
aldosterone, mild hypophosphatemia, hypercalcemia 
and normal renal function (Table 1). Spot urine samples 
were consistently alkaline with mild (1+) proteinuria and 
low specific gravity. Urine biochemistry revealed sodium 
wasting, accounting for dehydration and postural hypo-
tension, potassium wasting, increased fractional excre-
tion (FE) of uric acid (17%), increased FE of phosphorous 
(14–24%) and hypercalciuria. The ratio of tubular maxi-
mum reabsorption of phosphate over glomerular filtra-
tion rate (TmP/GFR) was consistently below normal 
range. Serum creatine phosphokinase and lactic dehy-
drogenase were normal. Urine protein was increased 
(0.5 g/day) and comprised mostly albumin. Urine 
b2-microglobulin was slightly elevated. PTH levels were 
at the lower normal limit, 25-OH-Vitamin-D was low, 
1–25-(OH)2-Vitamin-D was elevated and urine cyclic 
adenosine monophosphate (cAMP) was low. A bone 
biopsy showed reduced volume of cortical and trabecular 
bone and increased osteoid, compatible with osteomala-
cia and osteopenia.

A water deprivation test revealed partial nephrogenic 
diabetes insipidus. Urine acidification was intact and gly-
cosuria was absent. Eye examination was unremarkable.

Summarizing the main clinical features observed in 
the proband, included: 1) Salt wasting causing hypoten-
sion, hyperladosteronism, hypokalemia and metabolic 

alkalosis. Metabolic alkalosis was accompanied by 
elevated urine calcium and chloride levels similar to 
those found in Bartter’s syndrome; 2) phosphaturia and 
hypophosphatemia leading to elevated calcitriol and 
osteomalacia; 3) hypercalcemia due to increased cal-
citriol synthesis leading to hypercalciuria, lithiasis and 
nephrocalcinosis; 4) partial nephrogenic diabetes insip-
idus attributed to nephrocalcinosis, hypercalcemia and 
hypokalemia; 5) albuminuria and LMWP; 6) hypourice-
mia, hyperuricosuria and hyperoxaluria.

Based on the above considerations the proband was 
treated with potassium and phosphorous (1 g/day) sup-
plements orally, that were well tolerated. Three years 
later a second bone biopsy showed marked improve-
ment in bone pathology. The body weight increased 
from 53kgr to 63kgr, physical stamina had improved, 
musculoskeletal pains, kidney colics and hypercalciuria 

Table 1  Results of serum and urine laboratory investigations in 
various measurements in the index patient

Laboratory values Observed 
values 
(range)

Normal values

Hematocrit (%) 46–52 42–49

Serum Sodium (mEq/L) 145–149 140–145

Serum Potassium (mEq/L) 3.2–3.6 3.5–4.6

Serum cCalcium (mg/dL) 10.4–11.3 8.2–10.5

Serum Phosphorous (mg/dL) 2.1–2.6 2.5–4.2

Serum Parathormone (pg/mL) 23 10–65

Arterial pH 7.43–7.55 7.35–7.45

Arterial HCO3 (mEq/L) 27–40 24–25

Serum Creatinine (mg/dl) 0.7 0.6–1.2

Urine Sodium (mEq/day) 224

Urine Potassium (mEq/day) 109

Urine Chloride (mEq/day) 200

Urine Calcium (mg/day) 347 < 250

Urine Calcium/body weight (mg/day/
kg)

7 < 4

Urine Phosphorous (mg/day) 476

Urine Uric acid (mg/day) 1472 < 750

Urine protein (mg/day) 700–1500 < 250

Urine Oxalate (mg/day) 92 7–44

Urine b2-microglobulin (mg/l) 0.48–0.98 < 0.2

Urine FE phosphorous (%) 14–24 < 15

Urine FE HCO3 (%) 1.7%

TmP/GFR (mg/dL) 1.8–2.5 2.5–4.5

25(ΟΗ) Vit-D (ng/ml) 8 10–60

1,25(ΟΗ)2 Vit-D (pg/ml) 64 18–62

Urine cAMP (nmol/dl) 0.9 1.6–6.2

Serum renin (mIU/l) 275 5–47

Serum aldosterone (pmol/L) 669 20–130
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had resolved, and electrolyte abnormalities had waned 
off. A new ultrasound showed stabilization of nephro-
calcinosis and absence of kidney stones. More impor-
tantly, his everyday life improved after treatment.

In the differential diagnosis we considered phospha-
turic syndromes such as hereditary hypophosphatemic 
rickets with hypercalciuria. Due to the presence of pro-
teinuria, Dent disease was also a consideration, although 
b2-microglobulin was marginally elevated in the ini-
tial work up. However, it was substantially increased 
3 years later (5 times the upper normal limit). Targeted 
mutation analysis did not reveal any mutations in the 
chloride voltage-gated channel 5(CLCN5), the sodium-
hydrogen exchanger regulatory factor (NHERF1) and 
the solute carrier family 34 member-1 (SLC34A1) and 
member-3, (SLC34A3). A syndrome of elevated serum 
phosphatonins was excluded based on the elevated cal-
citriol levels.

Four years after admission he developed nephrotic 
range proteinuria (4 g/day) and the estimated glomeru-
lar filtration rate (eGFR) progressively declined to 65 ml/
min/1.73m2. At this point, phosphate and potassium 
supplements were withdrawn. A renal biopsy revealed a 
FSGS pattern of injury, mild interstitial fibrosis and inter-
stitial calcium deposits with rupture of tubular basement 
membranes (TBMs). Electron microscopy showed focal 
fusion of podocyte foot processes and marked thickening 
of TBMs (Fig.  1). Institution of an angiotensin receptor 
blocker, improved proteinuria and stabilized renal func-
tion for some years. However currently, i.e., fourteen 
years after initial presentation, proteinuria and eGFR 
have reached 3 g/day and 30 ml/min/1.73m2 respectively.

To resolve the conundrum and clarify the underlying 
pathophysiology, we obtained written informed con-
sent from all family members and proceeded to perform 
whole exome sequencing (WES), along with clinical 
and laboratory examination. This analysis identified the 

c.1893C > A variant in the exon 18 of the OCRL gene, 
(Asp631Glu, rs754567476) as a potential cause for the 
disease phenotype. Next, we verified the mutation by 
Sanger sequencing and genotyped all family members 
(12 out of 14) except the two newborn proband’s twin 
sons. The Asp631Glu mutation, was segregated with 
the disease in this family (Fig.  2); the two hemizygous 
males, presented phosphaturia and LMWP, whereas the 
two female carriers presented only mild phosphaturia. A 
computational assessment using the VarSome [5] soft-
ware, showed that the Asp631Glu variation is classified 
as likely pathogenic (Class 4 based on the ACMG clas-
sification), when considering the co-segregation with the 
disease in the family.

In order to explain the Bartter-like phenotype we also 
searched for relevant mutations. This search revealed 
only two calcium sensing receptor (CaSR) variations a) 
a homozygous common polymorphism (c.2986G > T, 
Ala986Ser, rs1801725, ACMG class-1) that has not 
been associated with Bartter-5 and b) a heterozygous 
rare (1/135.882) variation (c.2878C > T, Pro970Ser, 
rs1352202616, ACMG class-3). Three out of 4 family 
members with the Pro970Ser variant presented a deregu-
lation of calcium metabolism in the form of hypercalce-
mia, and/or hypercalciuria (Fig. 2). However, this finding 
is obscured by the fact that they also carried the Asp-
631Glu OCRL mutation, which is also associated with 
hypercalciuria and hypercalcemia too.

Discussion and conclusions
In 1964, Dent and Friedman were the first to describe 
two English males presenting with rickets, hypercalciuria 
and tubular proteinuria of unknown origin [6]. The term 
Dent disease (MIM #300009) was first introduced in 1993 
to describe a form of X-linked incomplete renal Fan-
coni syndrome presenting with LMWP, hypercalciuria, 
nephrocalcinosis and nephrolithiasis and, less frequently, 

Fig. 1  Electron microscopy of kidney biopsy. A) Focal fusion of podocyte foot processes and focal thickening of glomerular basement membranes; 
B) interstitial fibrosis and thickening of tubular basement membranes. Bars represents 5μm length
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with aminoaciduria, phosphaturia, kaliuresis, glycosu-
ria, uricosuria, and impaired urinary acidification [7]. In 
1994, Fisher et al. cloned the CLCN5 gene, and proposed 
it as a culprit for Dent disease [8]. Ten years later Hoopes 
et  al. identified the OCRL gene, as responsible for the 
Dent disease phenotype in five males without CLCN5 
mutations and introduced the term DD2 (MIM#300555) 
to distinguish it from DD1 [2]. Mutations in the OCRL 
gene have been associated with both DD2 and Lowe 
(oculocerebrorenal) syndrome with the former being a 
milder form of the latter [9–12]. In 2009 one of the two 
original patients described by Dent and Friedman was 
found to carry a mutation in the OCRL gene [4] while the 
other had a CLCN5 mutation, supporting thus the phe-
notypic similarities between DD1 and DD2 patients. An 
excellent review comparing the various presentations of 
DD has recently been published by Gianesello et al. [13].

Due to random X-chromosome inactivation, some 
female carriers may manifest hypercalciuria and, rarely, 
renal calculi and moderate LMW proteinuria or even 
CKD. In our female carries we noticed a reduced thresh-
old for renal phosphate transport.

The males in the initial report of DD2 exhibited none 
of the classic extrarenal symptoms of Lowe syndrome 
[2], which is characterized by a) congenital cataracts, 
glaucoma, microphthalmia and keloids [14], b) hypo-
tonia, delayed motor milestones, intellectual disability, 
and c) renal tubular involvement associated with bone 
disease and growth retardation [15]. Fanconi syndrome 

and tubular acidosis, both cardinal signs of Lowe syn-
drome, are rare in DD2 [9]. Hypercalciuria, nephrocalci-
nosis and nephrolithiasis are common in DD2 but rare in 
Lowe syndrome [3, 16]. The renal biopsy findings in DD2 
include nephrocalcinosis, interstitial fibrosis and FSGS 
[17, 18].

A genotype–phenotype correlation has been suggested, 
because almost all severe mutations associated with 
Lowe syndrome are located among exons 8 and 24, while 
missense mutations in exons 4–15 are involved in DD2 
[19].

The OCRL gene encodes the lipid phosphatase 
(OCRL1), a phosphatidylinositol 4,5-bisphosphate 
(PIP2) phosphatase, localized in the Golgi network, 
early endosomes, lysosomes and tight junctions [20]. It 
is involved in actin polymerization and lysosomal and 
endosomal membrane trafficking. In proximal tubular 
cells, defective recycling of the megalin receptor after 
endocytosis accounts for the characteristic loss of LMW 
proteins in Lowe syndrome and DD2 patients [21, 22].

In a mouse model of DD2 it was shown that inhibi-
tion of phosphoinositole kinase with the use of alpelisib 
can restore cytoskeleton and endocytosis abnormalities 
in tubular cells improving the renal tubular dysfunction 
[23].

No guidelines have been established for the treatment 
of Dent disease. There is a substantial risk for progressive 
kidney disease. The main treatment goals are to decrease 
hypercalciuria, prevent nephrocalcinosis and kidney 

Fig. 2  Family tree and segregation analysis for the Asp631Glu mutation of OCRL1. Family members were examined for the Asp631Glu mutation; 
two males and two females were affected. Males presented the whole spectrum of Dent-2 disease. Female carriers presented only phosphaturia. 
LMWP: low molecular weight proteinuria
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stones, and delay the progression of CKD. It has been 
proposed that the use of thiazide may reduce hypercalci-
uria [24–26]. However, diuretics can deteriorate hypoka-
lemia and volume depletion. Angiotensin-converting 
enzyme (ACE) inhibitors and angiotensin receptor block-
ers (ARB) have been used to prevent further loss of kid-
ney function particularly in those with FSGS. In our case 
angiotensin blockade effectively reduced proteinuria and 
has probably delayed the progression of eGFR decline.

Citrate is commonly used in Lowe syndrome to treat 
the metabolic acidosis resulting from renal tubular aci-
dosis. A high citrate diet has been shown to slow pro-
gression of CKD in CLCN5 knockout mice [27] and has 
been used in the treatment of Dent disease; however, no 
human trials have proven its effectiveness and acidosis is 
not always present.

Growth failure can be successfully treated with human 
growth hormone without adversely affecting kidney 
function [28]. Bone disease may respond to vitamin D 
supplementation and phosphorus repletion in those with 
elevated serum alkaline phosphatase levels [29]. Vitamin 
D supplementation was avoided in our patient, because 
calcitriol levels were higher than normal and were associ-
ated with the presence of hypercalcemia, hypercalciuria 
and nephrocalcinosis. Contrary to vitamin D, phosphate 
repletion proved very successful in our case, because 
it not only corrected bone disease but also improved 
muscle strength, musculoskeletal aches, body weight 
and abolished hypercalciuria. There is a clinical trial 
(NCT02016235) going on, examining whether phospho-
rus repletion can reduce hypercalciuria in patients with 
DD1 or DD2. The results of this trial may confirm our 
allegations about phosphorus treatment and are eagerly 
awaited.

When Dent disease progress to ESRD, renal replace-
ment therapy or kidney transplantation becomes nec-
essary. Because DD pathogenesis is inherent to kidney 
defects, the disease will not recur after transplantation.

The clinical characteristics of our patient are con-
cordant with the diagnosis of DD2. The exclusion of 
mutations in other relevant genes and the meticulous 
investigation of the clinical phenotype render the Asp-
631Glu amino acid substitution as the only patho-
genetic possibility. It is recognized that the presence 
of CLCN5 or OCRL mutations almost always leads to 
the diagnosis of Dent disease [13]. However, there is 
marked phenotypic heterogeneity that impedes correct 
diagnosis and treatment [13]. Indeed, in our proband, 
we noticed severe salt and potassium wasting associ-
ated with severe metabolic alkalosis, something unu-
sual in patients with DD [13]. In a recent review of a 
large DD cohort (109 DD1 and 9 DD2 patients) it 
was noticed that a significant proportion of patients 

presented hypokalemia and metabolic acidosis [1]. In 
contrast, only six subjects (5.5%) displayed a Bartter-
like syndrome with hypokalemia and metabolic alkalo-
sis. However, in two series describing exclusively DD2 
patients [2, 30] no one had metabolic acidosis, but 
there is no mention of metabolic alkalosis also. There 
are reports where both DD1 and Bartter phenotypes 
were seen in the same patient [31–33], but a whole 
genome screening was not undertaken.

It remains unclear if the Bartter-like phenotype in 
our proband can be solely attributed to Dent’s disease 
or there is a contribution by the Pro970Ser CaSR poly-
morphism [34–36]. In this respect, we have to notice 
that 1) all other Bartter related genes were excluded by 
the whole exome analysis, 2) hypocalcemia has never 
been recorded in carriers of Pro970Ser in our kindred, 
3) phosphate repletion led to complete correction of 
hypercalciuria. These findings collectively preclude a 
pathogenetic role for the CaSR polymorphism or con-
tribution of other Bartter related genes. They further 
support the hyper-absorptive nature of hypercalce-
mia and hypercalciuria which, in our case, was associ-
ated with increased calcitriol synthesis in response to 
primary phosphaturia and hypophosphatemia. The 
hyper-absorptive nature of hypercalcemia, is also sup-
ported by experimental data showing that OCRL 
deficiency results in an unrestricted expression of intes-
tinal TRPV6, offering an alternative or complementary 
explanation for increased calcium absorption [37].

Beyond hypercalciuria, in the series of Charnas et al. 
the vast majority (21 out of 23) of patients with OCRL 
mutations presented dehydration with salt loss and 
decreased concentrating capacity [38]. Therefore, these 
Bartter-like features may not actually be so rare as pre-
viously thought and consist part of the DD phenotypic 
variability.

In conclusion we present a Family with DD2, due to 
a rare Asp631Glu OCRL mutation, with a Bartter-like 
phenotypic variation that could not be attributed to any 
Bartter associated mutations. Angiotensin blockade 
improved proteinuria and stabilized kidney function for 
several years. Finally, we showed that phosphate reple-
tion can effectively alleviate several debilitating features 
of the disease and should be given early in childhood to 
prevent hypercalciuria and bone disease.
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