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Abstract 
Fungal dye-decolorizing peroxidases (DyPs) have found applications in the treatment of dye-contaminated industrial wastes 
or to improve biomass digestibility. Their roles in fungal biology are uncertain, although it has been repeatedly suggested 
that they could participate in lignin degradation and/or modification. Using a comprehensive set of 162 fully sequenced 
fungal species, we defined seven distinct fungal DyP clades on basis of a sequence similarity network. Sequences from one 
of these clades clearly diverged from all others, having on average the lower isoelectric points and hydropathy indices, the 
highest number of N-glycosylation sites, and N-terminal sequence peptides for secretion. Putative proteins from this clade 
are absent from brown-rot and ectomycorrhizal species that have lost the capability of degrading lignin enzymatically. 
They are almost exclusively present in white-rot and other saprotrophic Basidiomycota that digest lignin enzymatically, 
thus lending support for a specific role of DyPs from this clade in biochemical lignin modification. Additional nearly full-
length fungal DyP genes were isolated from the environment by sequence capture by hybridization; they all belonged to the 
clade of the presumably secreted DyPs and to another related clade. We suggest focusing our attention on the presumably 
intracellular DyPs from the other clades, which have not been characterized thus far and could represent enzyme proteins 
with novel catalytic properties.

Key points
• A fungal DyP phylogeny delineates seven main sequence clades.
• Putative extracellular DyPs form a single clade of Basidiomycota sequences.
• Extracellular DyPs are associated to white-rot fungi.
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Introduction

Lignin is a complex plant cell-wall polymer made of differ-
ent cross-linked phenylpropanoid monomers (Schmidt 2006) 
that represents about 30% of the plant-derived organic carbon 
available in the biosphere (Boerjan et al. 2003). Besides pro-
viding structural rigidity in living plants, another important 
function is to protect cell wall polysaccharides from degra-
dation by hydrolytic enzymes secreted by microorganisms 
(lignin barrier). Control of lignin degradation represents an 
important field of research either for the use of this polymer 
as a source of aromatic molecules or simply for its removal 
from plant biomass to access cell-wall polysaccharides for 
biorefinery and biofuel production (Duval and Lawoko 2014; 
Chio et al. 2019).

White-rot (WR) fungi, a specific functional group of 
saprotrophic Basidiomycota, are considered the main group 
of microorganisms able to perform enzymatic ligninolysis. 
Phylogenomic studies support the assumption that the WR 
phenotype is an ancestral character that arose once early in 
the evolution of the Basidiomycota (Floudas et al. 2012). 
Subsequently, the WR phenotype was lost several times 
independently during the course of evolution to give rise 
to different lineages of either brown-rot (BR) saprotrophic 
or mutualistic ectomycorrhizal (EM) Basidiomycota that 
associate to plant roots (Kohler et al. 2015; Martin et al. 
2016; Nagy et al. 2017; Miyauchi et al. 2020). Both BR 
and EM fungi have lost the capacity of performing enzy-
matic ligninolysis, although being capable of modifying the 
lignin structure to some extent using oxidizing mechanisms 
(Arantes et al. 2012; Rineau et al. 2012).

From a mechanistic point of view, biochemical and genetic 
studies have demonstrated that several secreted enzymes 
belonging to the so-called heme-containing, fungal-specific 
class II peroxidases (E.C. 1.11.1.-) participate directly or 
indirectly in lignin decomposition (Hammel and Cullen 2008; 
Salame et al. 2014; Ayuso-Fernández et al. 2018). Among 
these class II peroxidases, lignin (LiP, E.C. 1.11.1.14) and 
versatile (VP, E.C. 1.11.1.16) peroxidases interact directly 
with lignin to cleave non-phenolic ether bonds that link phe-
nylpropanoid monomers. A further class II enzyme, manga-
nese peroxidase (MnP, E.C. 1.11.1.13), but also VPs, oxidize 
 Mn2+ to  Mn3+, which is then chelated with organic acids 
and cleaves as low-molecular mass and diffusible redox-
mediator phenolic structures of lignin (Ruiz-Dueñas et al. 
2021). Besides biochemical studies, the essential role of class 
II peroxidases in lignin decomposition was also supported by 
phylogenomic studies. Diversification of this protein family 
correlates with diversification of WR fungi and the several 
transitions from a WR to BR or EM trophic modes almost 
always went along with a loss or a sharp contraction of class 
II peroxidase gene family in the fungal genomes (Kohler 

et al. 2015; Martin et al. 2016; Nagy et al. 2017; Miyauchi 
et al. 2020; Ruiz-Dueñas et al. 2021).

Despite the undoubted contribution of class II peroxi-
dases to lignin decomposition, their exclusive role in this 
process is debated. Indeed, substantial lignin degradation 
seemingly occurs in the absence of organisms producing 
these enzymes, as in the case of the termite gut (Li et al. 
2017). On the other hand, other microbial enzymes have 
been shown to be able to cleave phenolic and/or non-
phenolic bonds of artificial lignin substrates (e.g. β-O-4-
dimers = adlerol) and/or oxidize  Mn2+ to  Mn3+ and there-
fore behave similarly to either class II LiP/VPs or MnPs 
(Fernández-Fueyo et al. 2015). One such enzyme family 
is that of “dye-decolorizing peroxidase” (DyP) (pfam no. 
PF04261, E.C. 1.11.1.19) (Celis and Dubois 2015). These 
heme-containing peroxidases are unrelated to class II peroxi-
dases and were identified for their unique ability to oxidize 
high-redox potential anthraquinone dyes (Kim et al. 1995), 
a property which makes them good candidates for the reme-
diation of dye-polluted waste-water (Scheibner et al. 2008). 
DyPs present a ferredoxin-like fold (Singh and Eltis 2015), 
which is unique among peroxidases, and are present in all 
three domains of life (Bacteria, Archaea, and Eukarya) as 
opposed to class II peroxidases that are restricted to the 
Eumycota (true fungi) (Zámocký et al. 2012; Celis and 
Dubois 2015). Global phylogenies of the DyP (sub)family 
show that, with very few exceptions, fungal sequences are 
monophyletic and form a well-supported clade that does not 
include sequences from other taxonomic groups (Sugano 
2009; Zámocký et al. 2015).

Different levels of biochemical information exist for at least 
13 fungal DyPs (12 from Basidiomycota, one from Ascomy-
cota), including 3D structures (based on protein crystals) for 
two of them (Yoshida et al. 2011; Strittmatter et al. 2013), 
identification of amino acids participating to catalysis through 
site-directed mutagenesis and biophysical measurements 
(Linde et al. 2015b) as well as reconstruction and characteri-
zation of ancestral fungal sequences (Zitare et al. 2021).

DyPs can form surface protein radicals (surface-exposed 
tryptophan radicals) via a long-range electron transfer 
(LRET) and are hereby able to oxidize phenolic compounds 
and synthetic dyes. In Pleurotus ostreatus PosDyP4, a 
 Mn2+-oxidation activity located on a different surface site, 
surrounded by acidic amino acids, was identified (Fernán-
dez-Fueyo et al. 2015). This activity is analogous to that 
accomplished by MnPs and VPs (Fernández-Fueyo et al. 
2018), and Krahe et al. (2020) were able to use a closely 
related DyP of Pleurotus sapidus with  Mn2+-oxidation activ-
ity to cleave alkenes (aryl alkenes (E)-methyl isoeugenol, 
α-methylstyrene, and trans-anethole) in the presence of 
 Mn2+, which could be relevant in flavor production. A fur-
ther  Mn2+-oxidizing DyP activity has been recently reported 
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for the first characterized ascomycetous DyP from Xylaria 
grammica (Kimani et al. 2021).

The roles of DyPs in fungal biology have never been 
addressed by forward genetic approaches, and they have 
been proposed to contribute to the detoxification of naturally 
occurring soil-borne or plant metabolites (Valette et al. 2017), 
including natural anthraquinone derivatives (Sugawara et al. 
2019). They have also repeatedly been suspected to participate 
in lignin decomposition and in the oxidation of lignin-related 
compounds (Liers et al. 2010; Celis and Dubois 2015; Cragg 
et al. 2015; de Gonzalo et al. 2016; Catucci et al. 2020; de 
Eugenio et al. 2021), despite the fact that fungal class II per-
oxidases perform far better on “lignin substrates” than bacte-
rial or fungal DyPs (Linde et al. 2021). In support of their 
putative roles in lignin oxidation, fungal DyPs have been also 
often reported as secreted enzymes, i.e. extracellularly act-
ing biocatalysts. Several of them were purified from fungal 
culture filtrates, and they have been identified as well in the 
secretomes of fungi growing on lignin-rich substrates (Sal-
vachúa et al. 2016). From an evolutionary perspective, as for 
class II peroxidases and other gene families, the fungal DyP 
(sub)family diversification parallels the evolution of WR fungi 
and regresses in BR and EM lineages (Nagy et al. 2017).

In the absence of forward genetic data and in the pres-
ence of uncertain biochemical activities, the objective of 
the present study has been to further evaluate the potential 
biological functions of fungal DyPs, including their puta-
tive contribution to lignin decomposition using phylogenetic 
and correlative approaches. Two strategies were followed. 
One was to establish a comprehensive view on the evolution 
of the DyP (sub)family in the fungal kingdom, using avail-
able genomic data, and to confront these data to our current 
knowledge on DyPs’ catalytic mechanisms and evolution 
of trophic modes in fungi. A second strategy was to isolate 
new fungal DyP genes expressed in different environments 
(soils and decomposing wood) in an attempt to character-
ize potentially divergent DyP sequences distantly related to 
sequences present in public databases. The latter approach 
could potentially identify new DyPs with potentially useful 
catalytic properties for novel applications in biotechnology.

Materials and methods

Species and sequence datasets

Publicly available DyP sequences were extracted from Gen-
Bank and the JGI Mycocosm portal (https:// genome. jgi. doe. 
gov/ progr ams/ fungi/ index. jsf; Grigoriev et al. 2014) data-
bases as well as from our own unpublished whole-genome 
sequences. DyP protein sequences were identified in pub-
lic databases using BlastP searches (Altschul et al. 1990) 
using as queries the protein sequences of two biochemically 

characterized DyPs from Auricularia auricula-judae (acces-
sion No. JQ650250) and Bjerkandera adusta (CDN40127.1). 
A threshold E-value of  10−5 was retained for the inclusion 
of the sequences in the dataset. DyP sequences extrac-
tion from the unpublished genomes was performed using 
HMMER (http:// hmmer. org/). A HMMER profile was first 
created starting from a Clustal Omega alignment (Sievers 
and Higgins 2014) of 150 DyP sequences from the public 
databases. Phylogenetically-related bacterial DyP sequences, 
all belonging to the DyP clade C (Zámocký et al. 2015), 
were identified following blastp searches using as queries 
different sequences representative of the phylogenetic diver-
sity of the fungal DyPs.

Phylogenetic and network analyses

Only putative full-length protein sequences, starting with 
methionine and ending with a stop codon, corresponding to 
CDS longer than 1000 bp and without gaps in the regions 
where amino acids essential for catalysis have been identi-
fied (as described in Linde et al. 2015a), were used for a 
phylogenetic reconstruction of the fungal DyP (sub)family. 
In the case of the Aspergillus and Penicillium, genera for 
which the genomes of numerous species are available, only 
sequences from Aspergillus oryzae and Penicillium itali-
cum were included in the phylogenetic analysis. Sequences 
were aligned using MUSCLE (Edgar 2004). ModelFinder 
(Kalyaanamoorthy et al. 2017), as implemented on the IQ-
Tree web Server (http:// iqtree. cibiv. univie. ac. at/; (Trifino-
poulos et al. 2016)), was used to find the best substitution 
model (LG + R). IQ-TREE Web Server was also used to per-
form a maximum likelihood phylogenetic analysis (Nguyen 
et al. 2015). One thousand bootstrap replicates were per-
formed to assess tree topology.

A fungal species phylogeny that encompassed all 
examined fully-sequenced basidiomycetous species was 
obtained by modifying a publicly available phylogenetic 
tree (#Tr106951, Zhao et al. 2017), built using an align-
ment of six genes, downloaded from TreeBase (www. treeb 
ase. org/). Species whose genomes have not been sequenced 
were removed from the original six-genes alignment while 
the corresponding six genes from newly sequenced species 
were added to it to construct a new species tree following the 
approach presented in Zhao et al. (2017). Species taxonomy 
was assigned using the MycoBank database (www. mycob 
ank. org). Both gene and species trees were edited using the 
online software iTOL (https:// itol. embl. de; (Letunic and 
Bork 2016)). We inferred gene loss and duplication along 
the species phylogenetic tree using a comparative genom-
ics method with NOTUNG 2.9 as described in the original 
article of Chen et al. (2000).

To visualize similarities between fungal DyP pro-
tein sequences, a sequence similarity network (SSN) was 

https://genome.jgi.doe.gov/programs/fungi/index.jsf
https://genome.jgi.doe.gov/programs/fungi/index.jsf
http://hmmer.org/
http://iqtree.cibiv.univie.ac.at/
http://www.treebase.org/
http://www.treebase.org/
http://www.mycobank.org
http://www.mycobank.org
https://itol.embl.de
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computed using the EFI-Enzyme Similarity Tool (https:// efi. 
igb. illin ois. edu/ efi- est/; (Gerlt et al. 2015)) starting from the 
complete set of DyP protein sequences. The lowest pairwise 
alignment score limit for the output file was set to 66. The 
full-network output file was visualized with Cytoscape 3.5.1 
(Shannon et al. 2003). The network was represented with 
an “organic” layout, and only edges with a pairwise align-
ment score above 110 were visualized. To further evaluate 
the potential contribution of agaricomycetous DyP genes to 
organic matter (e.g. wood) and more specifically, to lignin 
degradation, we compared the prevalence of the different 
DyP clades in polyphyletic species groups of Agaricomy-
cota, which differed with respect to their trophic modes 
(“trophic guilds”). Using the FUNguild (Nguyen et  al. 
2016) and experts’ opinions, we defined four trophic modes. 
“White-rot” (WR), sensu stricto encompasses saprotrophic 
or facultative pathogenic, lignicolous species (living on 
wood and coarse woody debris), which degrade lignin enzy-
matically to produce a “white-rot” phenotype in compact 
wood (where finally whitish cellulose fibers prevail). All 
of these species possess mostly numerous class-II peroxi-
dase genes (Mn, versatile, and/or lignin peroxidases) in their 
genomes (Floudas et al. 2012). “Brown-rot” (BR) species, 
although also lignicolous, produce a brown-rot phenotype 
that results from a selective degradation of cell-wall polysac-
charides (cellulose and xylan/hemicelluloses) along with a 
nonenzymatic modification of the lignin polymer. “Ectomy-
corrhizal” (EM) species are mutualistic symbionts of mainly 
trees (larger woody plants) that have (almost) lost the abil-
ity to degrade plant cell walls (Shah et al. 2016). Finally, a 
fourth group named “other saprotrophs” (OS) encompasses 
all other species that are either litter-decomposing sapro-
trophs (e.g. Agaricus bisporus), coprophilic species (e.g. 
Coprinopsis cinerea), or endophytic ones (e.g. Sebacina 
vermifera). Since these OS species do not grow on compact 
wood, their modes of degrading the different plant polymers 
do not exactly fit into the white-rot or brown-rot definitions, 
although several authors classify several of these species as 
primarily white-rotters (Eastwood et al. 2011; Nagy et al. 
2016).

Prediction of sequence features

Prediction of N-terminal signal peptides for eukaryotic 
secreted proteins was performed with SignalP (https:// servi 
ces. healt htech. dtu. dk/ servi ce. php? Signa lP-5.0; (Nielsen, 
2017)) with default settings except for the D-cutoff value, 
which was set at 0.34 for both the noTM (transmembrane 
domain) and the TM networks. SignalP raw results were 
reported on the protein phylogenetic tree. The number of 
putative N-glycosylation sites was predicted using NetNG-
lyc (https:// servi ces. healt htech. dtu. dk/ servi ce. php? NetNG 
lyc-1.0) (Gupta et al. 2002). Other protein features, such 

as protein length, absolute numbers of specific amino 
acids, predicted protein isoelectric point (pI), and global 
protein hydropathy using the “grand average of hydropa-
thy” (GRAVY), were predicted using tools of the sequence 
manipulation suite (https:// www. bioin forma tics. org/ sms2/; 
(Stothard 2000)).

Principal component analysis (PCA) was performed to 
cluster DyP protein sequences according to their protein 
features in the R environment using the R 3.6.3 (R Core 
Team 2019). Principal components were extracted with 
the prcomp function of the R base package and visual-
ized with the ggbiplot package v0.55. Kmeans analysis 
was performed with the kmeans function of the R base 
package. Variable’s (i.e. protein features) contribution 
to principal components (PC) was determined using the 
fviz_contrib function from factoextra v1.0.6 R package. 
Statistical differences were tested using the nonparametric 
Kruskal–Wallis test and Dunn’s post hoc tests with dunn.
test package v1.3.4 (Dinno 2015). DyP abundance com-
parisons among different fungal guilds were performed 
with the Yates-corrected Chi-square test.

Probes design for gene capture by hybridization

From 1267 publicly available fungal DyP DNA-coding 
sequences, we designed 69 (70 bp long) degenerated probes 
(Supplemental Table  S1) with the KASpOD software 
(https://g2im. u-clermont1.fr/kaspod/index.php, (Parisot 
et al. 2012)). In silico probe coverage evaluation, on the 
1267 fungal DyP sequences detects 94.2% of the ascomy-
cetous sequences and 81.5% of the basidiomycetous ones 
(with four allowed mismatches). Oligonucleotides corre-
sponding to probe sequences were synthesized with two 
flanking adaptor sequences for their PCR amplification and 
conversion to biotinylated RNA probes using the T7 RNA 
polymerase, as described in Bragalini et al. (2014).

Environmental samples, RNA extraction, and cDNA 
synthesis

Grassland and forest soil, as well as deadwood samples from 
six different contrasted geographic sites in Italy and France, 
were included in this study (Supplemental Table S2). Four 
of them had already been described in Adamo et al. (2020) 
and one in Bragalini et al. (2014).

RNA from soil samples was extracted from 2 g of mate-
rial using the RNA Power Soil extraction kit from MOBIO 
Laboratories (Carlsbad, CA, USA) according to the man-
ufacturer’s instructions. Deadwood RNA was extracted 
from 100 mg of decaying wood following the protocol 
described in Adamo et al. (2017). Eukaryotic cDNAs were 

https://efi.igb.illinois.edu/efi-est/
https://efi.igb.illinois.edu/efi-est/
https://services.healthtech.dtu.dk/service.php?SignalP-5.0
https://services.healthtech.dtu.dk/service.php?SignalP-5.0
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
https://www.bioinformatics.org/sms2/
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synthesized from 2 μg of total environmental RNA using 
the “Mint-2 cDNA synthesis and amplification kit” accord-
ing to the manufacturer’s instructions (Evrogen, Moskow, 
Russian Federation). First-strand synthesis was initiated 
at the mRNA poly-A end using a modified poly-dT primer 
(CDS-4 M). All resulting cDNAs were bordered at their 5′ 
and 3′ extremities by the same M1 sequence (5′-AAG CAG 
TGG TAT CAA CGC AGAGT-3′) that can be used for priming 
cDNA PCR amplification.

Gene capture by hybridization

DyP cDNA sequence capture was performed as already 
described in Denonfoux et al. (2013) and Bragalini et al. 
(2014). Briefly, 2 μg of heat-denatured cDNA were hybrid-
ized to 500 ng of a mix of biotinylated RNA probes for 24 h 
at 65 °C in microcentrifuge tubes. The probes/DyP cDNA 
hybrids were then captured on streptavidin-coated paramag-
netic beads (Dynabeads M-280 Streptavidin, Invitrogen, 
Waltham, MA USA). After several washing steps to elimi-
nate unbound cDNAs, the captured cDNAs were detached 
from the beads using 0.1 M NaOH and purified using the 
“Qiaquick PCR purification kit” (Qiagen, Hilden, Germany). 
Captured cDNAs were further amplified using “Encyclo 
Plus PCR kit” and the M1 primer and were purified using 
the “Qiaquick PCR purification kit.” Captured cDNA was 
then subjected to the second round of capture identical to 
the first one. The enrichment in DyP sequences along the 
capture protocol was evaluated via a semi-quantitative PCR 
using DyP-specific primers (Bragalini et al. 2014; Kellner 
et al. 2014).

Sequencing of captured cDNAs and bioinformatics 
analysis of the sequencing data

Since known fungal DyP CDSs range in size from 1500 
to 2000 bp, captured cDNA was the first size fraction-
ated to sequence only putatively full-length cDNAs and 
to eliminate truncated and contaminating sequences. 
Fractionation of 1 µg amplified cDNA (between 1400 and 
2000 bp) was performed using a “BluePippin” instrument 
(Sage Science, Beverly, MA, USA). Fractionated cDNA 
was quantified by fluorimetry using the “Qubit dsDNA HS 
Assay Kit” and “Qubit Fluorimeter 2.0” (Thermo Fisher 
Scientific, Waltham, MA USA) and re-amplified by PCR 
using the M1 primer and “KAPA HiFi Taq polymerase” 
(KAPA Biosystems, Wilmington, MA USA). The 50 μl 
PCR mix contained 10 ng of cDNA, 10 μl of 5X KAPA 
HiFi Fidelity Buffer, 1.5 μl of 10 mM dNTPs, 10 μl of 
the 10 μM concentrated M1 primer, and 1 U of KAPA 
HiFi Taq polymerase. After an initial denaturation at 94 °C 
for 3 min, cDNA fragments were amplified for 25 cycles 

comprising 20 s at 98 °C, 15 s at 66 °C, and 1 min at 
72 °C. Amplification was terminated by a final elonga-
tion at 72 °C for 3 min. The “Agencourt® AMPure® XP 
kit” (Beckman Coulter, Brea, CA USA) was used to per-
form a final purification and partial size fractionation of 
the captured cDNA. A 0.5X concentration of beads was 
used in order to remove small unspecific fragments from 
the eluted material. Purified cDNA quantity was assessed 
using the “Qubit dsDNA HS Assay Kit” and “Qubit Fluor-
imeter 2.0”, while DNA purity was assessed by measuring 
the OD 260/OD 280 and OD 260/OD 230 ratios using a 
NanoDrop TM 2000 spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA USA).

All captured cDNA samples were sequenced using the 
Illumina HiSeq 2000 2 × 250 bp technology (I.G.A. Tech-
nologies, Udine, Italy) using the Illumina MiSeq 2 × 250 bp 
standard protocol for samples preparation.

Adapter sequences were eliminated using Cutadapt (Mar-
tin 2011). Sequence quality was evaluated with Trimmo-
matic (Bolger et al. 2014); bases with quality lower than 20 
were eliminated, and only sequences longer than 60 bases 
were kept. Trimmed sequences were assembled using IDBA-
UD (Peng et al. 2012) and the default parameter. To obtain 
longer contigs, the resulting contigs were then assembled 
using CAP3 and default parameters (Huang 1999). For the 
identification of DyP sequences, a similarity search between 
known fungal DyP sequences and contigs was performed 
using DIAMOND v0.9.22.123 (Buchfink et al. 2015), with 
the BLASTx command in “sensitive” mode (i.e. a maximal 
e-value of 1.e−05 and a minimal identity of 50%). Match-
ing cDNA sequences were translated using the Expasy 
(Gasteiger 2003) translate tool and further analyzed for the 
presence of the DyP peroxidase domain using ScanProSite 
and the Prosite database (de Castro et al. 2006; Sigrist et al. 
2012). Identified DyP proteins were clustered using a 90% 
identity threshold using CD-HIT v4.7 (Fu et  al. 2012). 
Sequences are available on NCBI with the accession num-
bers OM674899-OM674912.

Results

Global distribution of DyP genes in the fungal 
kingdom (Eumycota)

Among the 227 fungal genomes inspected, 454 DyP-coding 
genes were identified in 162 species belonging exclusively 
to the Dikarya (Ascomycota and Basidiomycota; Supple-
mental Table S3) and not in any other fungal taxonomic 
groups. In the Ascomycota, 134 DyP genes were identified 
in the genomes of 84 species, all from the Pezizomycotina 
and none from the Saccharomycotina and Taphrinomyco-
tina. For Basidiomycota, DyP genes were absent from the 
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early-branching clades of Ustilagomycotina (subphylum 
of smut fungi), and present in the Pucciniomycotina (rust 
fungi) and Agaricomycotina. In these latter groups, 306 
sequences were identified in the genomes of 78 species (34% 
of inspected species). Predicted numbers of putative DyP-
encoding genes per genome differed greatly, ranging from 0 
to 1 up to 64 genes in the case of the basidiomycetous spe-
cies Sphaerobolus stellatus (which is remarkable since this 
fungus contains also 78 genes of unspecific peroxygenases/
UPOs, EC 1.11.2.1; Hofrichter et al. 2020). In Ascomycota, 
the number of predicted DyP genes never exceeded six per 
genome (e.g. Paraconiothyrium sporulosum). A detailed list 
of DyP genes identified in the inspected species is given in 
Supplemental Table S4.

Evolution of fungal DyP proteins

DyP amino acid sequences were used to compute a sequence 
similarity network, which individualized seven well-sepa-
rated clusters of sequences (Fig. 1) using a pairwise align-
ment score of 110. Following a phylogenetic analysis, each 
cluster defined one single monophyletic clade, with the 
exception of cluster VI-1, from which emerged clade VI-2 
(Fig. 2). From the taxonomic point of view, while clade VI-1 
encompassed sequences from both Basidiomycota and Asco-
mycota, other clades had a narrower distribution pattern as 
illustrated for clade II present in the plant pathogens belong-
ing to the class Pucciniomycotina (with the exception of one 
sequence originating from the Agaricales Termitomyces sp.).

Fig. 1  Sequence-similarity 
clustering of DyP protein 
sequences retrieved from fully 
sequenced fungal genomes and 
of biochemically-characterized 
fungal DyPs. Clustering using 
the EFI-EST server identified 
seven separate clusters (I − VI-1 
and VI-2). Symbol shape indi-
cates the presence (diamond) or 
absence (circle) of a predicted 
signal peptide. Symbol color 
indicates the trophic mode 
of the corresponding fungal 
species; red, white rot; green, 
brown rot or ectomycorrhizal; 
grey, other. Symbols with a yel-
low contour indicate biochemi-
cally-characterized enzymes
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When representative sequences of each of the seven 
fungal DyP clades were individually used in blast searches 
to identify their closest relatives among bacterial DyP 
sequences, the same set of bacterial sequences was iden-
tified. These bacterial sequences all belonged to group C 
of DyP sequences as defined by (Zámocký et al. 2015). A 
selection of these bacterial sequences was included in the 
fungal DyP phylogeny. They all clustered in a single basal 
clade (Fig. 2).

For each fungal protein sequence, we predicted a number 
of features that either reflected the global protein structure 
(GRAVY hydropathy index, isoelectric point (pI), sequence 
length, number of putative N-glycosylation sites, number 
of acidic amino acid residues at the putative  Mn2+ oxida-
tion site), which could be related to catalytic activities as 
in the case of the number of aromatic residues (tyrosine, 
tryptophan, and phenylalanine), which can participate 

in long-range electron transfers (LRETs) (Supplemental 
Table S4). When incorporated in a PCA analysis, these dif-
ferent variables separated several of the proteins according 
to the clades they belonged to (Fig. 3). The first two axes of 
the PCA altogether explained 52% of the variation in the 
dataset. Clade VI-2 was particularly well separated from all 
other clades with significantly lower average pI values and 
significantly higher GRAVY indices (Fig. 2), as well as the 
number of putative N-glycosylation sites per polypeptide 
(Dunn’s post hoc test, p < 0.05) (Supplemental Fig. S1). Fur-
thermore, 69% of the proteins affiliated with clade VI-2 also 
possessed a predicted N-terminal signal peptide for secre-
tion (Fig. 2). Outside of clade VI-2, only four proteins from 
Puccinia spp., belonging to clade II, also processed a puta-
tive signal peptide. Interestingly, 13 of the 16 purified and 
characterized fungal DyPs identified in the literature belong 
to clade VI-2; the three others were affiliated with clade 

Fig. 2  Phylogenetic analysis of the fungal DyP peroxidase fam-
ily based on the alignment of 301 protein sequences retrieved from 
fully-sequenced genomes, corresponding to biochemically character-
ized enzymes, or encoded by environmental cDNAs isolated by gene 
capture by hybridization. Branch colors correspond to each of the 
sequence clusters illustrated in Fig. 1. The clade with black branches 
corresponds to bacterial sequences with the highest similarity values 
to fungal protein sequences. Grey dots indicate the bootstrap sup-

port (1000 replicates) of the corresponding branch; smallest dots, 
75%; largest ones, 100%. The inner circle, the taxonomic origin of 
the sequences; blue, Basidiomycota; red, Ascomycota; grey, captured 
environmental sequences. Red stars, the presence of a putative signal 
peptide; red triangles, biochemically-characterized enzymes. Outer 
circle (orange bars), theoretical hydropathy (GRAVY) indices of the 
polypeptides (mostly negatives, a few positive values in cluster VI-2). 
Inner circle (light blue bars), pI values (expressed as pI-7)
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VI-1. Most of these characterized proteins indeed appeared 
to be extracellular as they were purified from fungal culture 
filtrates presenting a dye-decolorizing activity (toward Reac-
tive Blue5).

Inspection of amino acid residues present at positions 
essential for catalysis in the AauDyPI enzyme from A. 
auricula-judae (Strittmatter et al. 2013; Linde et al. 2015b) 
highlighted differences between the different clades (Sup-
plemental Fig. S2). Positions in the distal side of the heme 
pocket are well conserved across all the clades, except in the 
case of Clade III, where the aspartate residue is replaced by 
a glycine one (position 168 in AauDyPI), and phenylalanine 
frequently replaced by valine (position 359). In the case of 
the proximal side of the heme pocket, while the histidine and 
aspartate residues, implicated in  Fe3+ ligation as well as in 
peroxide-binding and cleavage, are well conserved across 
the clades, the central valine (position 253) residue present 
in the AauDyPI protein is frequently replaced by isoleu-
cine, methionine, or phenylalanine residues, the latter two 
being predominant in clades I and IV, and III, respectively 
(Supplemental Fig. S2). Finally, the radical-forming resi-
dues tyrosine and tryptophan, probably involved in LRETs, 
present at positions 337 and 377 of the AauDyPI protein 
are conserved in all clades, except in clades VI-1 and VI-2, 
where they are frequently replaced by phenylalanine, another 
aromatic amino acid that can participate in LRETs (Acebes 
et al. 2017).

DyPs and the evolution of trophic modes 
in the Agaricomycotina

We constructed a species phylogenetic tree that included 
128 Agaricomycotina species and two species belonging to 
Ustilaginomycotina (as an outgroup) with fully sequenced 
genomes (Fig. 4), based on the tree published by Zhao et al. 
(2017). According to Zhao et al. (2017), the topology of 
this tree reflected the time-dependent divergence between 
the main agaricomycetous orders. Mapping the occurrence 
of DyP genes and clusters on this consensus species tree 
showed that most major agaricomycetous DyP clades (II, III, 
V, and VI, see Fig. 2) diverged early during the evolution of 
this taxon, being already present in all the most basal taxa of 
the Agaricomycotina, such as Cantharellales, Sebacinales, 
Auriculariales, and Tremellales (Hibbett et al. 2007). The 
tree also illustrates the recurrent loss, but also duplication, 
of several of the DyP clades with a differential distribution 
among the main agaricomycetous orders. For example, cur-
rent genomic data suggest the loss of DyP genes belonging 
to clades VI-1 and VI-2 in the ancestor of the Boletales, 
which seemingly only possess members of clade V.

DyP phylogeny did not match fungal species phylog-
eny. One single species could host genes belonging to up 
to three clades (as in the case of the agaric species Gym-
nopus luxurians or the polypore B. adusta that both pos-
sess DyPs from clades VI-1, V, and III), and the presence 

Fig. 3  Principal component 
analysis (PCA) separates fungal 
DyP protein sequences (dots) 
belonging to different sequence 
clusters (same color code as in 
Fig. 2) according to their struc-
tural characteristics (vectors: 
hydropathy index (GRAVY), 
theoretical isoelectric point 
(pI), number of predicted 
N-glycosylation sites (N-glyc), 
polypeptide length (aa), number 
of specific amino acid residues 
(acidic, F, W, Y))
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of genes encoding DyPs representative of one clade never 
excluded the presence of a gene of another clade. We 
predicted the number of gene loss or gene gain events, 
using the NOTUNG software, separately for the most 

sequence-rich clades VI-1 and VI-2. Diversification at 
the level of the tree leaves (species-level) of clades VI-1 
and VI-2 was not systematically coordinated between DyP 
clades (Fig. 4).

Fig. 4  Phylogenetic tree of 128 fully-sequenced Agaricomyco-
tina species and two Ustilaginomicotina (used as outgroup) com-
puted based on a six genes sequence alignment according to Zhao 
et al. (2017). Species names are colored according to the order they 
belong to. Colored dots associated with species names indicate their 
trophic mode, as reported in the legend. The number of predicted 

DyPs in each sequenced genome and their distribution in the different 
sequence clusters (Fig. 1 and 2) are presented in the bar chart. Arrows 
pointing downwards or upwards indicate significant expansion or 
reduction in the number of DyP genes affiliated to clusters VI-1 and 
VI-2 at the leaves of the tree (according to NOTUNG)
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To further evaluate the potential contribution of agarico-
mycetous DyP genes to organic matter conversion, and more 
specifically, to lignin degradation, we compared the preva-
lence of the different DyP clades in Agaricomycotina with 
respect to their trophic modes. The first observation from the 
cluster analysis is that clade VI-2 (putatively secreted extra-
cellular DyPs) encompassed sequences exclusively from WR 
and OS species and none from BR or EM ones (Fig. 1). 
This distribution is specific to clade VI-2. Indeed, all other 
clades with agaricomycetous sequences (clades II, III, V, 
and VI-1) contained sequences from WR, OS, BR, and EM 
species (the latter being absent from clade III). Although 
clade VI-2 sequences are absent from nearly two-thirds of 
the species classified as WR, and more WR species have 
been sequenced compared to BR and EM ones (Fig. 4),  Chi2 
tests strongly support (p < 0.01) the higher prevalence of 
clade VI-2 sequences in WR (or WR and OS) species than in 
BR and EM ones. On the contrary, we did not find evidence 
for a higher prevalence of other clades in groups of species 
presenting a specific trophic mode (WR, OS, BR, or EM; 
 Chi2 test, p < 0.5).

Diversity of fungal DyPs expressed 
in the environment

A set of 69 biotinylated degenerated RNA probes, whose 
sequences spanned the known phylogenetic diversity of 
fungal DyP sequences, was designed and used to capture 
homologous cDNAs synthesized from mRNA directly 
extracted from different environmental matrices (decaying 
wood, forest and grassland leaf-litter, and soils). DNA recov-
ered after two successive rounds of capture (enrichment) 
was randomly sequenced, and the reads were successfully 
assembled to recover 14 full-length or nearly full-length DyP 
cDNAs. All of these environmental sequences encode dif-
ferent DyP not present in the database. They were clearly 
affiliated with either clade VI-2 (5 sequences) or clade VI-1 
(9 sequences) (Fig. 2). In clade VI-1, three environmental 
DyP sequences were related to reference sequences from 
Ascomycota and six to sequences from Basidiomycota. We 
affiliated “cluster 4” to Basidiomycota, although also close 
to Ascomycota sequences in the phylogeny. In clade VI-2, 
three of the five protein sequences had a predicted N-termi-
nal signal peptide.

Discussion

We provide an exhaustive and comprehensive view of DyP-
encoding genes distribution during the evolution of the 
Dikarya fungi, using all fungal genomes publicly available at 
the start of the study. Fungal (Eumycota) DyP coding genes 
of the clade D, as defined by Zamocky et al. (2015), are 

present in some, but not all, Dikarya species. Search for the 
most similar bacterial sequences and their placement in the 
fungal DyP phylogenetic tree suggest that fungal sequences 
may have originated from a single horizontal transfer of a 
bacterial class C gene to an ancestor of the Dikarya more 
than 400 My ago (Taylor et al. 2004), followed by multiple 
independent events of gene loss, duplication and diversifica-
tion during the course of evolution of this taxonomic group.

The access to a large (more than 450) number of fungal 
DyP sequences allowed the identification of distinct clades, 
defined on the basis of sequence similarities that diverged 
from each other at different periods during the evolution 
of the Dikarya. In the Agaricomycotina, and to a far lesser 
extent in the Pezzizomycotina, DyP diversification did not 
parallel taxa diversification since DyP genes belonging to 
different (up to three) clades can co-exist in the genome of 
a single extant fungal species. The four main DyP clades 
(III, V, VI-1, and VI-2) present in extant Agaricomycotina 
have thus followed different and apparently independent 
evolutionary trajectories, being independently eliminated, 
recruited, or amplified in specific lineages. It seems, for 
example, that clade VI-2 experienced more frequent epi-
sodes of both gene diversification and loss than clade VI-1. 
Consequently, clade VI-1 is more prevalent in extant aga-
ricomycetous species compared to clade VI-2, but with an 
average lower number of copies per genome (1.5 versus 
3.9). These independent evolutionary trajectories suggest 
that enzymes from each of the clades may participate in dif-
ferent functions and are under different selective pressures.

DyP clades, which form distinct clusters in network anal-
yses, can also be, to some extent, distinguished from each 
other based on “global” protein characteristics (hydropathy 
indices, isoelectric points, absolute numbers of aromatic 
residues, and abundance of N-glycosylation sites or the pres-
ence/absence of an N-terminal signal peptide for secretion). 
As observed for other enzyme families, including enzymes 
implicated in biomass degradation (Aspeborg et al. 2012; 
Viborg et al. 2019), these observations suggest that the 
divergence between DyPs could be associated with signifi-
cant changes in catalytic properties, substrate range, and cel-
lular functions (Zallot et al. 2021). It is, however, difficult to 
speculate on the nature of these changes since current struc-
tural (e.g. 3D structure) and functional information on fungal 
DyPs are fragmentary and with regard to related enzymes 
belonging exclusively to the phylogenetically-related clades 
VI-1 and VI-2. Enzymes belonging to this latter clade share 
a number of very distinctive structural features that clearly 
distinguish them from those of other clades. The most strik-
ing one is the presence of a sequence peptide that suggests 
secretion through the conventional endoplasmic reticulum 
pathway. Although SignalP may sometimes fail to predict 
signal peptides, we are confident that in our case, this should 
be a marginal problem as the presence of a signal peptide 
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was predicted for almost all of the sequences of clade VI-2. 
This hypothesis is further supported by the presence in clade 
VI-2 proteins of a higher number of putative N-glycosylation 
sites, a common feature of endoplasmic reticulum-secreted 
proteins (Medus et al. 2017). Although it is tempting to 
hypothesize that the emergence of clade VI-2 corresponded 
to a transition from an intracellular to an extracellular status, 
this hypothesis would need further experimental validation. 
On the one hand, a majority of the biochemically character-
ized fungal DyPs have been purified from culture filtrates 
that precisely belong to clade VI-2 (see Fig. 2). On the other 
hand, novel DyPs also purified from culture filtrates belong 
to clade VI-1, from which emerged clade VI-2. Clade VI-1 
is the only clade that encompasses both ascomycetous and 
basidiomycetous sequences, and one of the characterized 
enzymes was from the wood-rot Ascomycota X. grammica. 
It could thus be hypothesized that clade VI-1 DyPs are 
either intracellular or extracellular, secreted through non-
conventional secretion systems as proposed for a rhamnosi-
dase of Xylaria polymorpha and other fungal proteins (Nghi 
et al. 2012; Prudovsky et al. 2003). Acquisition or loss of 
structural elements favoring secretion of DyPs is also docu-
mented in the bacteria, where type A DyPs possess a Tat 
secretion signal not found in the other bacterial clades such 
as clade C from which fungal DyPs may derive (de Gonzalo 
et al. 2016). Secreted type A bacterial DyPs are suspected 
to be involved in chemical lignin modification (Sugano and 
Yoshida 2021).

Besides clade VI (VI-1 and VI-2) DyPs, no functional 
information exists for DyPs belonging to other clades, 
including their putative cellular localization, although sev-
eral, but not all, DyPs of rust fungi (Puccinomycotina) pos-
sess signal peptides. We suggest that future functional stud-
ies should focus on these other clades, not only to precise 
their cellular localization but also on their catalytic activities 
and substrate range to understand their cellular functions and 
evaluate their potential use as catalysts in biotechnology.

Regarding the most debated role of fungal DyPs, i.e. 
their contribution to lignin degradation, our correlative 
analyses suggest a facultative contribution of a subset of 
these enzymes in this process, as suggested in Nagy et al. 
(2017), who considered the fungal DyP family as a whole 
without splitting it in distinct clades with different evolu-
tionary histories. We show a strong association between 
clade VI-2 and species of Agaricales classified as white-
rotters or litter-decomposers (soil saprotrophs) that, for 
many of them, can degrade lignin and humic substances 
(Steffen et al. 2000, 2002). Intuitively, enzymes active 
on bulky extracellular polymers need to be secreted as 
we hypothesized that they are in the case of clade VI-2 
DyPs. This strong association contrasts with the complete 
absence of this clade from the genomes of either brown 
rot or ectomycorrhizal species sequenced thus far. In the 

case of the Boletales, a taxonomic group composed of BR 
and ECM species, the loss of clade VI-2 DyPs could even 
represent an ancestral characteristic. BR and ECM species 
can, however, possess DyPs belonging to other clades. If 
clade VI-2 DyPs participate in lignin degradation/modifi-
cation, this role may be rather accessory as (i) many WR 
species lack these enzymes and (ii) species that possess 
clade VI-2 DyPs also possess class II peroxidases, includ-
ing MnPs, VPs, and/or LiPs. Besides Agaricales, clade 
VI-2 DyPs are also present in saprotrophic or plant symbi-
onts/endophytes of the orders Cantharellales/Sebacinales 
that are not considered WR species (Nagy et al. 2016) 
but possess a rich set of genes encoding plant cell-wall 
degrading enzymes in their genomes (Kohler et al. 2015). 
Among these species is Sistotrema sp. (Cantharellales), 
sometimes considered a white-rot fungus although not 
possessing class-II peroxidases (Riley et al. 2014).

Contribution of clade VI-1 enzymes to lignin degradation 
by the wood-rot ascomycete X. grammica has also been sug-
gested as one corresponding enzyme purified from culture 
filtrates of this species possesses a  Mn2+-oxidizing activity 
(Kimani et al. 2021). Incidentally, we observe that several 
other ascomycetous species possessing clade VI-1 DyPs 
are associated with decaying wood (e.g. Ascocoryne sp., 
Diaporthe ampelina, Eutypa lata, Kretzschmaria deusta, 
Rosellinia necatrix, and Xylaria spp.). These genera and spe-
cies could be targeted to study the transcription profile of 
their DyPs when grown on lignocellulosic substrates, their 
(extra)cellular localization, and substrate specificity. Other 
ascomycetous species possessing clade VI-2 DyPs were 
however not associated with rotting wood, this is also the 
case for all ascomycetous species processing clade I or IV 
DyPs, the two other clades present in this phylum.

Regarding DyPs expressed in the environment, we success-
fully assembled 14 complete or nearly complete DyP sequences 
following sequence capture of cDNAs retrotranscribed from soil 
and decaying wood RNAs. All DyP sequences were affiliated 
to either clades VI-1 or VI-2 despite the fact that capture probes 
also targeted sequences from the other fungal DyP clades. 
Clades VI-1 and VI-2 sequences represent altogether about two-
thirds of all DyP present in databases. The exclusive presence 
of clades VI-1 or VI-2 DyPs among environmental sequences 
suggests that fungal species harboring DyPs belonging to these 
clades are either overrepresented and/or that the correspond-
ing genes are overexpressed in the studied environments. These 
observations are comforted by the data of Kellner et al. (2014), 
who used PCR to obtain partial DyP sequences from different 
forest soils. Affiliation of these 61 partial sequences to the differ-
ent clades showed that 81% originated from clades VI-1 (42%) 
and VI-2 (24%), while a minority of the sequences came from 
clades I (4 sequences), III (6), and V(1). The absence of environ-
mental sequences that define novel DyP clades may signify that 
fungal genome sequencing may have already captured the entire 
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phylogenetic diversity of the DyP D subfamily or those addi-
tional clades are too divergent to be captured by the designed 
probes or too rare to be easily identified using this approach. 
The occurrence of expressed clades VI-1 and VI-2 DyPs, from 
both basidiomycetous and ascomycetous taxa in organic matter 
(OM)-rich environments (leaf-litter, uppermost soil) reinforces 
our hypothesis for their involvement in OM degradation and 
at the same time should incite us to characterize the catalytic 
properties of the more enigmatic and somewhat structurally 
divergent members of clades I to V.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00253- 022- 11923-0.
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